JPH09211178A - Method for positioning an underwater traveling robot - Google Patents

Method for positioning an underwater traveling robot

Info

Publication number
JPH09211178A
JPH09211178A JP8015708A JP1570896A JPH09211178A JP H09211178 A JPH09211178 A JP H09211178A JP 8015708 A JP8015708 A JP 8015708A JP 1570896 A JP1570896 A JP 1570896A JP H09211178 A JPH09211178 A JP H09211178A
Authority
JP
Japan
Prior art keywords
robot
pressure vessel
water
reactor
water depth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8015708A
Other languages
Japanese (ja)
Other versions
JP3567583B2 (en
Inventor
Aya Matsuyama
亜弥 松山
Rumi Kuramata
留美 倉股
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP01570896A priority Critical patent/JP3567583B2/en
Priority to US08/772,312 priority patent/US5852984A/en
Priority claimed from US08/772,312 external-priority patent/US5852984A/en
Priority to DE69616975T priority patent/DE69616975T2/en
Priority to EP96120950A priority patent/EP0787646B1/en
Priority to CA002194109A priority patent/CA2194109C/en
Publication of JPH09211178A publication Critical patent/JPH09211178A/en
Application granted granted Critical
Publication of JP3567583B2 publication Critical patent/JP3567583B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

PROBLEM TO BE SOLVED: To easily and accurately position a traveling inspection robot in the reactor water in a reactor pressure vessel. SOLUTION: In a method for positioning an underwater traveling robot 3 which tracklessly travels along a vertical wall face A of a reactor pressure vessel 1 filled with the reactor water 2, while sticking to it, bathometers 13 and 18 are respectively provided at a given datum point P in the reactor water 2, and on the main body of the robot to measure the water depth of each point. The vertical position of the main body of the robot is measured to the pressure vessel 1 by the difference in the water depth detected by the bathometers 13 and 18. At the same time, the main body of the robot is equipped with a light beam projector and a light reflection amount sensor. The light beam projector irradiates light beams B in the direction of in-vessel structures 4 whose positions have already been identified, and the horizontal position of the main body of the robot is detected by the amount of reflection. The position of the underwater traveling robot 3 to the pressure vessel 1 is determined by these vertical and horizontal positions of it.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、冷却水が満たされ
た原子炉圧力容器内の垂直な内壁面に沿って移動しなが
らこれを検査する水中移動ロボットに係り、特にその圧
力容器に対する水中移動ロボットの位置決め方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an underwater mobile robot for inspecting a reactor pressure vessel filled with cooling water while moving along a vertical inner wall surface, and more particularly to an underwater movement for the pressure vessel. The present invention relates to a robot positioning method.

【0002】[0002]

【従来の技術】原子力発電所などの原子力設備はその性
質上、高い安全性が要求されることから、ISI(供用
期間中検査)等の定期検査が義務づけられており、その
重要な検査の一つとして超音波探傷方法を用いた原子炉
圧力容器の非破壊検査がある。
2. Description of the Related Art Since nuclear facilities such as nuclear power plants are required to have high safety by nature, periodic inspections such as ISI (in-service inspection) are obligatory. As one of them, there is a nondestructive inspection of a reactor pressure vessel using an ultrasonic flaw detection method.

【0003】この超音波探傷による非破壊検査は周知の
通り、物体内部に弾性波である超音波を送り込み、その
反射の状態によって物体内部の傷や欠陥を非破壊で測定
しようとするものであり、具体的には、原子炉圧力容器
の外側にレールを設け、このレールに沿って、超音波探
傷装置などを備えた移動検査ロボットを走行させながら
圧力容器を検査する方法や、圧力容器の外表面に、直接
この移動検査ロボットを吸着させて、これをその表面に
沿って無軌道に走行させながら検査する方法がある。
As is well known, this non-destructive inspection by ultrasonic flaw detection is intended to send an ultrasonic wave as an elastic wave into the inside of an object and measure the scratches or defects inside the object non-destructively by the reflection state. Specifically, a rail is provided on the outside of the reactor pressure vessel, and a method for inspecting the pressure vessel while running a mobile inspection robot equipped with an ultrasonic flaw detector along the rail, and a method for inspecting the pressure vessel There is a method in which the mobile inspection robot is directly attracted to the surface and is inspected while running along the surface in a trackless manner.

【0004】このような無軌道式の移動検査ロボットを
用いた検査方法の場合、原子炉圧力容器の近傍には、作
業員が直接立ち入れないことが多く、この移動検査ロボ
ットの据え付け、制御などは遠隔操作によって行われる
ことから、原子炉圧力容器に対するその移動検査ロボッ
トの位置決めが重要となってくる。そして、この移動検
査ロボットの位置決め方法としては、従来、圧力容器表
面に設定された任意の基準点に超音波やレーザー距離計
を設けると共に、ロボット本体側に走行距離を検出する
プラニメータ等を設けて、予めその位置が判っている基
準点に対する移動検査ロボットの位置を検出する方法な
どがある。
In the case of such an inspection method using a non-orbital mobile inspection robot, an operator often does not directly enter the vicinity of the reactor pressure vessel, and the installation and control of this mobile inspection robot is not possible. Positioning of the mobile inspection robot with respect to the reactor pressure vessel is important because it is performed by remote control. As a method of positioning the movement inspection robot, conventionally, an ultrasonic wave or a laser range finder is provided at an arbitrary reference point set on the surface of the pressure vessel, and a planimeter etc. for detecting a travel distance is provided on the robot body side. , A method of detecting the position of the mobile inspection robot with respect to a reference point whose position is known in advance.

【0005】[0005]

【発明が解決しようとする課題】ところで、上述したよ
うな従来の無軌道式の移動検査ロボットによる検査は、
原子炉圧力容器の外側から行われていたが、より高信頼
性の検査を行うために、原子炉圧力容器の内面に上述し
たような無軌道式の移動検査ロボットを設置し、その内
部から検査を行うことが検討されている。
Inspection by the conventional trackless mobile inspection robot as described above,
Although it was performed from the outside of the reactor pressure vessel, in order to perform a more reliable inspection, the trackless mobile inspection robot as described above was installed on the inner surface of the reactor pressure vessel, and the inspection was performed from the inside. Considered to do.

【0006】しかしながら、この原子炉圧力容器の内部
には炉水が満たされていることから、上述したような直
接距離を計測するレーザーや超音波などでは水中での減
衰が大きい上に、乱反射等が生じるため、水中での移動
検査ロボットの正確な位置決めを行うことは困難であっ
た。
However, since the reactor water is filled in the reactor pressure vessel, the laser and ultrasonic waves for measuring the direct distance as described above have large attenuation in water and diffuse reflection. Therefore, it is difficult to accurately position the mobile inspection robot in water.

【0007】そこで、本発明はこのような課題を有効に
解決するために案出されたものであり、その目的は原子
炉圧力容器の炉水中での移動検査ロボットの位置決めを
容易且つ正確に行うことができる新規な水中移動ロボッ
トの位置決め方法を提供するものである。
Therefore, the present invention has been devised in order to effectively solve such a problem, and the purpose thereof is to easily and accurately position the mobile inspection robot in the reactor water of the reactor pressure vessel. (EN) A novel underwater mobile robot positioning method capable of performing the above.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
に本発明は、炉水が満たされた圧力容器の垂直壁面に吸
着しながらこれに沿って無軌道に移動する水中移動ロボ
ットの位置決め方法において、上記炉水中の任意の基準
点と、上記ロボット本体とにそれぞれその水深を計測す
る水深計を設け、これら水深計で検出された水深の差か
ら上記圧力容器に対する上記ロボット本体の垂直方向の
位置を計測すると共に、このロボット本体に光ビーム投
光器と光反射量センサを設け、この光ビーム投光器か
ら、予めその位置が判っている炉内構造物方向に光ビー
ムを照射し、その反射量からそのロボット本体の水平方
向の位置を検出し、これら垂直方向の位置と水平方向の
位置から上記圧力容器に対する水中移動ロボットの位置
を決定するようにしたものである。
In order to solve the above-mentioned problems, the present invention provides a positioning method for an underwater mobile robot which adsorbs on a vertical wall of a pressure vessel filled with reactor water and moves tracklessly along the same. , A reference point in the reactor water and a depth gauge for measuring the depth of the robot body, respectively, the vertical position of the robot body relative to the pressure vessel from the difference in water depth detected by these depth gauges In addition to measuring, the robot body is equipped with a light beam projector and a light reflection amount sensor, and from this light beam projector, a light beam is emitted in the direction of the internal structure whose position is known in advance, and from that reflection amount the The horizontal position of the robot body is detected, and the position of the underwater mobile robot with respect to the pressure vessel is determined from these vertical position and horizontal position. It is intended.

【0009】従って、炉水が満たされた圧力容器内であ
っても水中移動ロボットの圧力容器に対する位置を正確
に検出することができるため、圧力容器に対する高信頼
性の検査を行うことが可能となる。
Therefore, since the position of the underwater mobile robot with respect to the pressure vessel can be accurately detected even in the pressure vessel filled with the reactor water, highly reliable inspection of the pressure vessel can be performed. Become.

【0010】[0010]

【発明の実施の形態】次に、本発明を実施する好適一形
態を添付図面を参照しながら説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, a preferred embodiment of the present invention will be described with reference to the accompanying drawings.

【0011】図1は本発明の水中移動ロボットの位置決
め方法に係る実施の一形態を示したものであり、図中1
は略円筒形状をした原子炉圧力容器、2はその圧力容器
1内に満たされた炉水、3はその圧力容器1の垂直壁面
に吸着しながら走行する水中移動ロボット、4はこの圧
力容器1内に収容された炉内構造物であり、特に、この
炉内構造物4は炉心をシュラウド4aと、その周囲に立
設された筒状の複数のジェットポンプ4b…、とからな
っている。
FIG. 1 shows an embodiment of a positioning method for an underwater mobile robot according to the present invention.
Is a reactor pressure vessel having a substantially cylindrical shape, 2 is reactor water filled in the pressure vessel 1, 3 is an underwater mobile robot which runs while adsorbing on a vertical wall surface of the pressure vessel 1, 4 is the pressure vessel 1 It is an internal structure housed inside, and in particular, the internal structure 4 comprises a core of a shroud 4a, and a plurality of cylindrical jet pumps 4b ... Standing around the shroud 4a.

【0012】この水中移動ロボット3は、本出願人が先
に提案したもの(特願平6−319972号)を適用し
たものであり、図4及び図5に示すような構成をしてい
る。尚、図4はこの水中移動ロボットの一形態を示す部
分破断平面図、図5はその側断面図である。図示するよ
うに、この水中移動ロボット3は、下方が開口した略円
盤状の筒体5a内に略矩形状をしたフレーム5bを固定
してなるロボット本体5に、これを圧力容器1の垂直壁
面Aに吸着する吸着手段6と、このロボット本体5をこ
の垂直壁面Aに沿って走行させる走行手段7とを主に備
えて構成されている。
The underwater mobile robot 3 is an application of the one previously proposed by the present applicant (Japanese Patent Application No. 6-319972), and has a structure as shown in FIGS. 4 and 5. 4 is a partially cutaway plan view showing an embodiment of the underwater mobile robot, and FIG. 5 is a side sectional view thereof. As shown in the figure, the underwater mobile robot 3 includes a robot main body 5 in which a substantially rectangular frame 5b is fixed in a substantially disk-shaped cylindrical body 5a having an opening at the bottom, and this is mounted on a vertical wall surface of the pressure vessel 1. It is mainly provided with a suction means 6 for adsorbing to A and a traveling means 7 for traveling the robot main body 5 along the vertical wall surface A.

【0013】すなわち、この吸着手段6は筒体5aに形
成された一対の排水口6a,6aと、この排水口6a,
6a内にそれぞれ位置するスラストファン6b,6b
と、これら、スラストファン6b,6bを駆動するファ
ンモータ6c,6cとから主に構成されており、図5に
示すように、このスラストファン6b,6bによってロ
ボット本体5内の水を排水口6a,6aから強制的に排
水させてロボット本体5の内圧をその周囲の水圧より負
圧の状態にすることで、図5に示すように、ロボット本
体5を圧力容器1の垂直壁面Aに吸着させるようになっ
ている。一方、走行手段7はロボット本体5のフレーム
5b側に取り付けられた一対の走行車輪7a,7aと、
これら走行車輪7a,7aをそれぞれ回転駆動する走行
モータ7b,7bとからなっており、これら走行車輪7
a,7aをそれぞれ正逆方向あるいは同じ方向に回転駆
動することで壁面A上を直角方向旋回しながらに走行し
て、垂直壁面A上の任意の位置に移動できるようになっ
ている。また、この走行手段7の近傍には、フリクショ
ンローラやロータリーエンコーダーなどからなるプラニ
メータ8,8が設けられており、垂直壁面A上のロボッ
ト本体5の走行距離を検出できるようになっている。
尚、これらファンモータ6c,6c、走行モータ7b,
7b側の給電線、制御線、プラニメータ8,8の信号線
等はロボット本体5に接続されたケーブル9に纏められ
て図1に示す制御部10側へ接続されている。
That is, the suction means 6 has a pair of drainage ports 6a, 6a formed in the cylindrical body 5a, and the drainage ports 6a, 6a, 6a.
Thrust fans 6b, 6b respectively located in 6a
And the fan motors 6c, 6c for driving the thrust fans 6b, 6b. As shown in FIG. 5, the thrust fans 6b, 6b are used to discharge the water in the robot body 5 from the drain port 6a. , 6a is forcibly drained to make the internal pressure of the robot body 5 negative than the surrounding water pressure, so that the robot body 5 is attracted to the vertical wall surface A of the pressure vessel 1 as shown in FIG. It is like this. On the other hand, the traveling means 7 includes a pair of traveling wheels 7a, 7a attached to the frame 5b side of the robot body 5,
These traveling wheels 7a, 7a are composed of traveling motors 7b, 7b for rotationally driving the traveling wheels 7a, 7a, respectively.
By rotating and driving a and 7a in the forward and reverse directions or in the same direction, it is possible to travel while turning on the wall surface A at right angles and move to any position on the vertical wall surface A. Further, in the vicinity of the traveling means 7, there are provided planimeters 8 including a friction roller and a rotary encoder, so that the traveling distance of the robot body 5 on the vertical wall surface A can be detected.
The fan motors 6c, 6c, the traveling motor 7b,
The power supply line on the 7b side, the control line, the signal lines of the planimeters 8 and 8 and the like are put together in a cable 9 connected to the robot body 5 and connected to the control unit 10 side shown in FIG.

【0014】また、図4及び図5に示すように、ロボッ
ト本体5を構成する筒体5aの平面部には、光ビームB
を照射する光ビーム投光器11と、この光ビームBの反
射量を検出する光反射量センサ12が設けられており、
この光ビーム投光器11から水平方向、すなわち炉内構
造物4方向に光ビームBを照射すると共に、光反射量セ
ンサ12でこの光ビームBの反射量を検出してこのロボ
ット本体5と炉内構造物4との距離を計測するようにな
っている。さらに、この筒体5aの平面部には、集積化
半導体圧力センサや圧電式圧力センサ等からなる水深計
13が設けられており、このロボット本体5が位置する
圧力容器1内の水圧を検出するようになっている。そし
て、これら光ビーム投光器11、光反射量センサ12、
水深計13の給電線や信号線等も上記と同様にケーブル
9に纏められて光ビーム投光器11、光反射量センサ1
2が制御部10に付設された水平位置検出部17側に、
水深計13が水深計測部16側にそれぞれ接続されてい
る。尚、図4及び図5中15は空気が充填された浮体で
あり、ロボット本体5に適度な浮力を与えることによっ
てロボット本体5の重量を相殺して、ロボット本体5の
移動を容易にするようになっている。また、図中14は
垂直壁面Aに接触して転がるボールキャスターであり、
上述した走行車輪7a,7aと共にロボット本体5を垂
直壁面Aに3点支持するようになっている。また、図示
しないがこのロボット本体5には、その姿勢を検出する
重力センサーと、この垂直壁面Aを探傷すべく上述した
ような非破壊探傷装置などの検査手段などが備えられて
いるのは勿論である。
Further, as shown in FIGS. 4 and 5, the light beam B is formed on the plane portion of the cylindrical body 5a constituting the robot body 5.
A light beam projector 11 for irradiating the light beam and a light reflection amount sensor 12 for detecting the reflection amount of the light beam B are provided,
The light beam projector 11 irradiates the light beam B in a horizontal direction, that is, in the direction of the in-core structure 4, and the light reflection amount sensor 12 detects the reflection amount of the light beam B to detect the robot body 5 and the in-core structure. The distance to the object 4 is measured. Further, a water depth gauge 13 including an integrated semiconductor pressure sensor, a piezoelectric pressure sensor, etc. is provided on the flat surface of the cylindrical body 5a to detect the water pressure in the pressure vessel 1 in which the robot body 5 is located. It is like this. Then, the light beam projector 11, the light reflection amount sensor 12,
The power line, the signal line, etc. of the water depth meter 13 are also bundled in the cable 9 in the same manner as above, and the light beam projector 11 and the light reflection amount sensor 1
2 is on the side of the horizontal position detector 17 attached to the controller 10,
The water depth gauge 13 is connected to the water depth measurement unit 16 side. It should be noted that reference numeral 15 in FIGS. 4 and 5 denotes a floating body that is filled with air. By giving an appropriate buoyancy to the robot body 5, the weight of the robot body 5 is offset and the movement of the robot body 5 is facilitated. It has become. In addition, reference numeral 14 in the drawing denotes a ball caster that rolls in contact with the vertical wall surface A,
The robot main body 5 is supported at three points on the vertical wall surface A together with the traveling wheels 7a, 7a described above. Although not shown, the robot body 5 is of course provided with a gravity sensor for detecting its posture and an inspection means such as the nondestructive flaw detection device as described above for flaw detection on the vertical wall surface A. Is.

【0015】次に、このような構成を用いて本発明方法
である水中移動ロボットの位置決め方法の一形態を説明
する。
Next, an embodiment of the positioning method for the underwater mobile robot, which is the method of the present invention, will be described using such a configuration.

【0016】先ず、図1に示すように、圧力容器1の炉
水内の水面付近に任意の基準点Pを設定し、この基準点
Pにその水深を計測する基準水深計18を設置すると共
に、上述した水中移動ロボット3を図示しないマニュピ
ュレータ等によって圧力容器1の上方から炉水2中に入
れた後、これを圧力容器1の垂直壁面Aに吸着させると
共にこれに沿って垂直下方に走行させながら、この水中
移動ロボット3を目視やITVカメラ等によって垂直壁
面Aの任意のおおよその位置に停止させる。
First, as shown in FIG. 1, an arbitrary reference point P is set near the water surface in the reactor water of the pressure vessel 1, and a reference water depth gauge 18 for measuring the water depth is installed at the reference point P. After the above-mentioned underwater mobile robot 3 is put into the reactor water 2 from above the pressure vessel 1 by a manipulator or the like (not shown), it is adsorbed on the vertical wall surface A of the pressure vessel 1 and runs vertically downward along this. While doing so, the underwater mobile robot 3 is stopped at an arbitrary approximate position on the vertical wall surface A by visual inspection or an ITV camera.

【0017】次に、この基準点Pに設けられた水深計1
8でその水圧を検出すると共に、この水中移動ロボット
3の水深計13でその位置の水圧を検出すると共に、そ
の出力値を制御部10に付設された水深計測部16に入
力する。水深計測部16ではこれら2つの水深計13,
18で検出された水圧の差を計算して、圧力容器1の任
意の基準点Pから水中移動ロボット3間での距離を計算
し、その値を制御部10に入力する。制御部10では、
この水深計測部16で計算された任意の基準点Pから水
中移動ロボット3間での距離と、予め判っている圧力容
器1の形状や大きさなどのデータを基に、圧力容器1に
対する水中移動ロボット3の垂直方向の位置を特定する
ことができる。すなわち、本発明では、水中移動ロボッ
ト3に設けた単一の水深計13のみでなく、基準点P側
にも水深計18を設け、これら水深計13,18の差を
検出するようにしたため、炉水の変動や揺れなどによ
り、水圧が大きく変動しても正確な水深の計測が可能と
なる。尚、このような方法によって得られた計測水深と
実際の水深を比較した結果、その水深の誤差は僅か0.
02%であり、極めて高精度の水深計測ができることが
わかった。
Next, the water depth gauge 1 provided at this reference point P
The water pressure is detected at 8, the water pressure at the position is detected by the water depth gauge 13 of the underwater mobile robot 3, and the output value is input to the water depth measurement unit 16 attached to the control unit 10. In the water depth measuring unit 16, these two water depth gauges 13,
The water pressure difference detected at 18 is calculated, the distance between any underwater mobile robot 3 from an arbitrary reference point P of the pressure vessel 1 is calculated, and the value is input to the control unit 10. In the control unit 10,
Underwater movement with respect to the pressure vessel 1 based on the distance between the arbitrary underwater mobile robot 3 calculated from the water depth measuring unit 16 and the data such as the shape and size of the pressure vessel 1 which are known in advance. The vertical position of the robot 3 can be specified. That is, in the present invention, not only the single water depth gauge 13 provided on the underwater mobile robot 3 but also the water depth gauge 18 is provided on the reference point P side to detect the difference between these water depth gauges 13, 18. Even if the water pressure fluctuates greatly due to fluctuations and shaking of reactor water, accurate water depth measurement becomes possible. As a result of comparing the measured water depth obtained by such a method and the actual water depth, the error of the water depth is only 0.
It was 02%, and it was found that the water depth could be measured with extremely high accuracy.

【0018】次に、このようにして水中移動ロボット3
の圧力容器1に対する垂直方向の位置が特定されたなら
ば、図2に示すように、水中移動ロボット3を垂直壁面
Aに沿って90°旋回させた後、その光ビーム投光器1
1から炉内構造物4方向に光ビームBを照射しながら、
圧力容器1の垂直壁面Aの水平方向に沿ってゆっくりと
移動させてその光ビームBの反射量の変化を同じく光反
射量センサ12で検出する。一般に、圧力容器1の炉内
構造物4としては、図示するような筒状をしたジェット
ポンプ4bがその垂直壁面Aに最も近い位置に設置され
ていることから、本実施の形態でもこのジェットポンプ
4bを光ビームBによる計測目標構造物とする。する
と、その光ビームBの反射量はジェットポンプ4bの表
面との距離に比例して変化することから、その出力値が
入力される水平位置検出部17では、その反射量を計測
して制御部10に入力する。制御部10ではこの水平位
置検出部17からの出力値とプラニメータ等で検出され
た水中移動ロボット3の走行距離との関係を図3に示す
ようなグラフィック化し、これからジェットポンプ4b
の円筒の中心位置を計算する。さらに、制御部10では
この円筒の中心位置と、水中移動ロボット3の現在位置
とのオフセット距離を計算すると共に、予め判っている
このジェットポンプ4bの据付寸法図などを基にして、
圧力容器1に対する水中移動ロボット3の水平方向の位
置を特定することができる。
Next, in this way, the underwater mobile robot 3
When the vertical position of the underwater mobile robot 3 is specified with respect to the pressure vessel 1, the underwater mobile robot 3 is turned by 90 ° along the vertical wall surface A, and then the light beam projector 1 is turned on, as shown in FIG.
While irradiating the light beam B from 1 to the internal structure 4 direction,
The pressure vessel 1 is slowly moved along the horizontal direction of the vertical wall surface A and the change in the reflection amount of the light beam B is also detected by the light reflection amount sensor 12. Generally, as the reactor internal structure 4 of the pressure vessel 1, a cylindrical jet pump 4b as shown in the figure is installed at a position closest to the vertical wall surface A thereof. 4b is a target structure to be measured by the light beam B. Then, since the reflection amount of the light beam B changes in proportion to the distance from the surface of the jet pump 4b, the horizontal position detection unit 17 to which the output value is input measures the reflection amount and controls the control unit. Enter in 10. In the control unit 10, the relationship between the output value from the horizontal position detection unit 17 and the traveling distance of the underwater mobile robot 3 detected by the planimeter etc. is made into a graphic as shown in FIG.
Calculate the center position of the cylinder. Further, the control unit 10 calculates the offset distance between the center position of the cylinder and the current position of the underwater mobile robot 3, and based on the previously known installation dimension drawing of the jet pump 4b,
The horizontal position of the underwater mobile robot 3 with respect to the pressure vessel 1 can be specified.

【0019】そして、このようにして求められた圧力容
器1の垂直方向に対する水中移動ロボット3の位置と水
平方向に対する位置から圧力容器1に対する水中移動ロ
ボット3の位置が特定されたなら、この位置を水中移動
ロボット3の走行原点として位置決めし、その後この原
点を基に水中移動ロボット3の移動を計測することにな
るが、垂直方向については引き続き水深計13,18で
計測しながら、後は重力センサとプラニメータで軌跡を
求めることで、圧力容器1に対する水中移動ロボット3
の位置を精度良く検出することができる。
If the position of the underwater mobile robot 3 with respect to the pressure vessel 1 is specified from the position of the underwater mobile robot 3 with respect to the vertical direction of the pressure vessel 1 and the position with respect to the horizontal direction thus obtained, this position is determined. The underwater mobile robot 3 is positioned as the traveling origin, and then the movement of the underwater mobile robot 3 is measured based on this origin, but the vertical direction continues to be measured by the depth gauges 13 and 18, while the gravity sensor is used thereafter. And the trajectory with the planimeter, the underwater mobile robot 3 for the pressure vessel 1
The position of can be detected accurately.

【0020】[0020]

【発明の効果】以上要するに本発明によれば、垂直方向
の位置決めに複数の水深計を用いると共に、水平方向の
位置決めに、炉内構造物に照射した光ビームの反射量を
利用するようにしたことから、圧力容器に対する水中移
動ロボットの位置決めを精度良く行うことができる。
In summary, according to the present invention, a plurality of water depth gauges are used for vertical positioning, and the amount of reflection of the light beam applied to the reactor internal structure is used for horizontal positioning. Therefore, the underwater mobile robot can be accurately positioned with respect to the pressure vessel.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の一形態を示す説明図である。FIG. 1 is an explanatory diagram showing an embodiment of the present invention.

【図2】図1中A−A矢視図である。FIG. 2 is a view taken in the direction of arrows AA in FIG.

【図3】光反射量センサーと水中移動ロボットの走行距
離の関係を示すグラフ図である。
FIG. 3 is a graph showing a relationship between a light reflection amount sensor and a traveling distance of an underwater mobile robot.

【図4】本発明方法に用いる水中移動ロボットの一形態
を示す一部破断平面図である。
FIG. 4 is a partially cutaway plan view showing an embodiment of an underwater mobile robot used in the method of the present invention.

【図5】本発明方法に用いる水中移動ロボットの一形態
を示す側断面図である。
FIG. 5 is a side sectional view showing an embodiment of an underwater mobile robot used in the method of the present invention.

【符号の説明】[Explanation of symbols]

1 原子炉圧力容器 2 炉水 3 水中移動ロボット 4 炉内構造物 5 ロボット本体 11 光ビーム投光器 12 光反射量センサ 13,18 水深計 A 垂直壁面 B 光ビーム P 基準点 1 Reactor pressure vessel 2 Reactor water 3 Underwater mobile robot 4 Reactor internal structure 5 Robot body 11 Light beam projector 12 Light reflection sensor 13,18 Depth gauge A Vertical wall B Light beam P Reference point

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 G21C 17/013 B62D 57/02 D 19/02 G21C 17/00 H ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location G21C 17/013 B62D 57/02 D 19/02 G21C 17/00 H

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 炉水が満たされた圧力容器の垂直壁面に
吸着しながらこれに沿って無軌道に移動する水中移動ロ
ボットの位置決め方法において、上記炉水中の任意の基
準点と、上記ロボット本体とにそれぞれその水深を計測
する水深計を設け、これら水深計で検出された水深の差
から上記圧力容器に対する上記ロボット本体の垂直方向
の位置を計測すると共に、このロボット本体に光ビーム
投光器と光反射量センサを設け、この光ビーム投光器か
ら、予めその位置が判っている炉内構造物方向に光ビー
ムを照射し、その反射量からそのロボット本体の水平方
向の位置を検出し、これら垂直方向の位置と水平方向の
位置から上記圧力容器に対する水中移動ロボットの位置
を決定するようにしたことを特徴とする水中移動ロボッ
トの位置決め方法。
1. A method of positioning a submersible mobile robot which adsorbs on a vertical wall of a pressure vessel filled with reactor water and moves tracklessly along the vertical wall, wherein an arbitrary reference point in the reactor water and the robot body are provided. Each of them is equipped with a water depth gauge to measure the water depth, and the vertical position of the robot body with respect to the pressure vessel is measured from the difference in water depth detected by these water depth gauges. A quantity sensor is provided, a light beam is emitted from this light beam projector in the direction of the internal structure whose position is known in advance, and the horizontal position of the robot body is detected from the amount of reflection, and the vertical direction A positioning method for an underwater mobile robot, characterized in that the position of the underwater mobile robot with respect to the pressure vessel is determined from a position and a horizontal position.
JP01570896A 1996-01-31 1996-01-31 Underwater mobile robot positioning method Expired - Lifetime JP3567583B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP01570896A JP3567583B2 (en) 1996-01-31 1996-01-31 Underwater mobile robot positioning method
US08/772,312 US5852984A (en) 1996-01-31 1996-12-23 Underwater vehicle and method of positioning same
DE69616975T DE69616975T2 (en) 1996-01-31 1996-12-27 Submersible and positioning method
EP96120950A EP0787646B1 (en) 1996-01-31 1996-12-27 Underwater vehicle and method of positioning same
CA002194109A CA2194109C (en) 1996-01-31 1996-12-30 Underwater vehicle and method of positioning same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP01570896A JP3567583B2 (en) 1996-01-31 1996-01-31 Underwater mobile robot positioning method
US08/772,312 US5852984A (en) 1996-01-31 1996-12-23 Underwater vehicle and method of positioning same

Publications (2)

Publication Number Publication Date
JPH09211178A true JPH09211178A (en) 1997-08-15
JP3567583B2 JP3567583B2 (en) 2004-09-22

Family

ID=26351901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01570896A Expired - Lifetime JP3567583B2 (en) 1996-01-31 1996-01-31 Underwater mobile robot positioning method

Country Status (1)

Country Link
JP (1) JP3567583B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005030771A (en) * 2003-07-07 2005-02-03 Toshiba Corp Automatic equipment for nuclear energy
JP2005300266A (en) * 2004-04-08 2005-10-27 Toshiba Corp Positioning device of nuclear reactor inspection/repair robot
JP2007057357A (en) * 2005-08-24 2007-03-08 Toshiba Corp Inspection maintenance method of reactor inside
JP2008128788A (en) * 2006-11-20 2008-06-05 Toshiba Corp Control device of underwater remote operation apparatus, and control method therefor
JP2008209189A (en) * 2007-02-26 2008-09-11 Hitachi Ltd Position determination system for underwater moving apparatus
US8655022B2 (en) 2009-03-03 2014-02-18 Hitachi-Ge Nuclear Energy, Ltd. System and method for detecting position of underwater vehicle
CN108639273A (en) * 2018-05-16 2018-10-12 河北工业大学 A kind of hull bottom dredging robot
CN113479307A (en) * 2021-08-11 2021-10-08 刘满贤 Outdoor automatic mapping device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005030771A (en) * 2003-07-07 2005-02-03 Toshiba Corp Automatic equipment for nuclear energy
JP4528500B2 (en) * 2003-07-07 2010-08-18 株式会社東芝 Automatic equipment for nuclear power
JP2005300266A (en) * 2004-04-08 2005-10-27 Toshiba Corp Positioning device of nuclear reactor inspection/repair robot
JP2007057357A (en) * 2005-08-24 2007-03-08 Toshiba Corp Inspection maintenance method of reactor inside
JP2008128788A (en) * 2006-11-20 2008-06-05 Toshiba Corp Control device of underwater remote operation apparatus, and control method therefor
JP2008209189A (en) * 2007-02-26 2008-09-11 Hitachi Ltd Position determination system for underwater moving apparatus
US8655022B2 (en) 2009-03-03 2014-02-18 Hitachi-Ge Nuclear Energy, Ltd. System and method for detecting position of underwater vehicle
CN108639273A (en) * 2018-05-16 2018-10-12 河北工业大学 A kind of hull bottom dredging robot
CN113479307A (en) * 2021-08-11 2021-10-08 刘满贤 Outdoor automatic mapping device

Also Published As

Publication number Publication date
JP3567583B2 (en) 2004-09-22

Similar Documents

Publication Publication Date Title
US20070140403A1 (en) Method for inspection and maintenance of an inside of a nuclear power reactor
US20220155767A1 (en) Autonomous metal-plate inspection apparatus, inspection method, and method for manufacturing metal plate
JP5085115B2 (en) 3D inspection system for water turbine structures
JP3567583B2 (en) Underwater mobile robot positioning method
JP2651382B2 (en) Structure inspection equipment
KR102013918B1 (en) Moving test apparatus and liner plate test system
JPH04231899A (en) Inspecting apparatus for housing in reactor core
JP2019056671A (en) Wall surface damage inspection device
Smith et al. Inspection of nuclear storage tanks using remotely deployed ACFMT.
JP4763632B2 (en) Moisture measuring method and moisture measuring device
RU2691246C1 (en) Method of determining leakage coordinates of a nuclear power plant pool with a pronounced acoustic signature and a robotic system for its implementation
JP2000249783A (en) Position detection method of in-core pipe welding part and device thereof
JP2000121611A (en) Corrosion damage detecting device
JPH0569186B2 (en)
JPH01191053A (en) Ultrasonic flaw detection traveling device
JPH10142383A (en) Method for positioning underwater moving robot
KR200263219Y1 (en) A Non-destructive Examination Apparatus of the weldment
JPS6342744B2 (en)
RU193902U1 (en) Device for measuring the curvature of tubing
GB2285131A (en) Water level measurement
JPS5829462B2 (en) When the weather is too hot, it's too late.
JPS5913706B2 (en) Weld position detection device
JPH03104787A (en) Running control apparatus
JP3665920B2 (en) Remote nondestructive inspection equipment
JPS61223510A (en) System for detecting position of probe

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040525

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040607

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080625

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080625

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090625

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100625

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110625

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110625

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120625

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120625

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140625

Year of fee payment: 10

EXPY Cancellation because of completion of term