JPH0988955A - Controller of magnetic bearing - Google Patents

Controller of magnetic bearing

Info

Publication number
JPH0988955A
JPH0988955A JP25045695A JP25045695A JPH0988955A JP H0988955 A JPH0988955 A JP H0988955A JP 25045695 A JP25045695 A JP 25045695A JP 25045695 A JP25045695 A JP 25045695A JP H0988955 A JPH0988955 A JP H0988955A
Authority
JP
Japan
Prior art keywords
air gap
value
current
electromagnet
rotating body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25045695A
Other languages
Japanese (ja)
Other versions
JP3735736B2 (en
Inventor
Yasuhiro Yukitake
康博 行竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koyo Seiko Co Ltd
Original Assignee
Koyo Seiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koyo Seiko Co Ltd filed Critical Koyo Seiko Co Ltd
Priority to JP25045695A priority Critical patent/JP3735736B2/en
Publication of JPH0988955A publication Critical patent/JPH0988955A/en
Application granted granted Critical
Publication of JP3735736B2 publication Critical patent/JP3735736B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0444Details of devices to control the actuation of the electromagnets

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent control from being unstabilized by a variation in voids between a rotator and an electromagnet as well as to make it so as not to cause an increase in cost. SOLUTION: A magnetic bearing 2a is equipped with four electromagnets 5a, 6a, 7a and 8a supporting a rotator 1 in a noncontact manner owing to magnetic force. A controller 4a of this magnetic bearing 2a is equipped with two pairs of position sensors 11a, 12a, 13a and 14a being set up so as to hold the rotator 1 between and outputting each void signal in proportion to size in a void with the rotator 1, and an electromagnet control circuit 9a controlling a supply current to respective electromagnets 5a to 8a on the basis of each void signal out of these position sensors 11a to 14a, respectively. The electromagnet control circuit 9a addeds respective void signals to the paired position sensors 11a and 12a, and this void signal added value is compared with the specified void value, and on the basis of this compared result, each supply current to the respective electromagnets 5a to 8a is compensated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、磁気軸受の制御
装置、さらに詳しくは、回転体を磁力によって非接触支
持する複数の電磁石を備えた磁気軸受の制御装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic bearing control device, and more particularly to a magnetic bearing control device provided with a plurality of electromagnets that support a rotating body in a non-contact manner by magnetic force.

【0002】[0002]

【従来の技術および発明が解決しようとする課題】この
種の磁気軸受には、回転体をラジアル方向に支持するラ
ジアル磁気軸受と、アキシアル方向に支持するアキシア
ル磁気軸受がある。
2. Description of the Related Art Magnetic bearings of this type include a radial magnetic bearing that supports a rotating body in the radial direction and an axial magnetic bearing that supports the rotating body in the axial direction.

【0003】ラジアル磁気軸受は、第1のラジアル方向
の両側から回転体を挾むように配置された1対の第1の
電磁石と、これと直交する第2のラジアル方向の両側か
ら回転体を挟むように配置された1対の第2の電磁石と
を備えており、その制御装置によって回転体の第1およ
び第2のラジアル方向の位置が所定の中立位置に制御さ
れる。アキシアル磁気軸受は、回転体に形成されたフラ
ンジ部をアキシアル方向の両側から回転体を挾むように
配置された1対の電磁石を備えており、その制御装置に
よって回転体のアキシアル方向の位置が所定の中立位置
に制御される。そして、このようにラジアル磁気軸受お
よびアキシアル磁気軸受で支持された回転体が、高周波
モータなどにより高速回転させられる。
The radial magnetic bearing has a pair of first electromagnets arranged so as to sandwich the rotating body from both sides in the first radial direction, and a rotating body sandwiched from both sides in a second radial direction orthogonal to the pair of first electromagnets. And a pair of second electromagnets disposed in the first and second electromagnets, and the controller controls the first and second radial positions of the rotor to a predetermined neutral position. The axial magnetic bearing is provided with a pair of electromagnets arranged so as to sandwich the flange formed on the rotating body from both sides in the axial direction, and the controller controls the axial position of the rotating body to a predetermined position. Controlled to neutral position. The rotating body thus supported by the radial magnetic bearing and the axial magnetic bearing is rotated at a high speed by a high frequency motor or the like.

【0004】ラジアル磁気軸受の制御装置は、第1の電
磁石の近傍において第1のラジアル方向の両側から回転
体を挟むように配置されて回転体との間の同ラジアル方
向の空隙の大きさに比例する空隙信号をそれぞれ出力す
る1対の第1の位置センサ、第2の電磁石の近傍におい
て第2のラジアル方向の両側から回転体を挟むように配
置されて回転体との間の同ラジアル方向の空隙の大きさ
に比例する空隙信号をそれぞれ出力する1対の第2の位
置センサ、1対の第1の位置センサの空隙信号の差を演
算することによって回転体の第1のラジアル方向の変位
を演算する第1のラジアル方向変位演算回路、1対の第
2の位置センサの空隙信号の差を演算することによって
回転体の第2のラジアル方向の変位を演算する第2のラ
ジアル方向変位演算回路、回転体の第1および第2のラ
ジアル方向の変位に基づいて第1および第2の電磁石へ
の供給電流を演算する供給電流演算回路(PID制御回
路)、ならびに供給電流演算回路の演算結果に基づいて
各電磁石に電流を供給する電磁石駆動回路(電力増幅
器)を備えている。
The control device for the radial magnetic bearing is arranged so as to sandwich the rotating body from both sides in the first radial direction in the vicinity of the first electromagnet, and adjusts the size of the gap in the radial direction with the rotating body. A pair of first position sensors that respectively output proportional air gap signals, arranged in the vicinity of the second electromagnet so as to sandwich the rotor from both sides in the second radial direction, and in the same radial direction with the rotor. In the first radial direction of the rotating body by calculating the difference between the air gap signals of the pair of second position sensors and the pair of first position sensors which respectively output air gap signals proportional to the size of the air gap of A first radial displacement calculation circuit for calculating a displacement, and a second radial displacement for calculating a displacement of the rotating body in a second radial direction by calculating a difference between air gap signals of the pair of second position sensors. Performance Circuit, a supply current calculation circuit (PID control circuit) for calculating a supply current to the first and second electromagnets based on displacements of the rotating body in the first and second radial directions, and calculation results of the supply current calculation circuit An electromagnet drive circuit (power amplifier) that supplies a current to each electromagnet based on

【0005】回転体には、回転による遠心力が作用し、
また、鉄損、風損による温度上昇が生じる。このため、
使用中に回転体の外径が変化し、これにより、回転体の
位置が一定であっても回転体とラジアル磁気軸受との空
隙の大きさが変化する。ところで、従来のラジアル磁気
軸受の制御装置では、回転体の変位と各電磁石への供給
電流との関係は、空隙の大きさが所定の値のときに最適
となるように設定され、空隙の大きさが変化しても変わ
ることはない。このため、この空隙の変化が大きくなる
と、磁気軸受の制御が不安定になるという問題がある。
その理由を、図4を参照して説明する。
Centrifugal force due to rotation acts on the rotating body,
In addition, the temperature rises due to iron loss and wind loss. For this reason,
The outer diameter of the rotating body changes during use, which changes the size of the air gap between the rotating body and the radial magnetic bearing even when the position of the rotating body is constant. By the way, in the conventional radial magnetic bearing control device, the relationship between the displacement of the rotor and the current supplied to each electromagnet is set to be optimum when the size of the air gap is a predetermined value. It does not change even when the angle changes. Therefore, when the change in the air gap becomes large, the control of the magnetic bearing becomes unstable.
The reason will be described with reference to FIG.

【0006】図4は、電磁石に流れる電流Iを横軸に、
電磁石による吸引力Fを縦軸に表わしたグラフである。
図4において、F1 は1対の電磁石の内の一方による吸
引力を表わす曲線、F2 は同他方による吸引力を表わす
曲線、Fは1対の電磁石の吸引力を合わせた全体の吸引
力で、通常、直線状をなす。また、図4(a) は回転体と
電磁石との空隙が比較的大きい場合のグラフ、同(b) は
空隙が比較的小さい場合のグラフである。電流の変化量
をΔI、吸引力の変化量をΔFとすると、ΔF/ΔIは
空隙の変化によって変化し、空隙が小さくなるにつれて
大きくなる。なお、このΔF/ΔIは、1自由度制御系
におけるばね定数Kに相当するものである。ここで、制
御装置の制御定数が図4(a) の状態で最適となるように
設定されていたとすると、同(b) のようになったときに
は、設定時と制御対象が異なることになる。したがっ
て、空隙の大きさの変化が大きくなると、制御が不安定
になる。
FIG. 4 shows the current I flowing through the electromagnet on the horizontal axis.
It is the graph which showed the attraction force F by an electromagnet on the vertical axis.
In FIG. 4, F1 is a curve representing the attraction force of one of the pair of electromagnets, F2 is a curve representing the attraction force of the other pair of magnets, and F is the total attraction force of the attraction forces of the pair of electromagnets. It is usually straight. Further, FIG. 4 (a) is a graph when the gap between the rotating body and the electromagnet is relatively large, and FIG. 4 (b) is a graph when the gap is relatively small. Assuming that the amount of change in current is ΔI and the amount of change in attraction force is ΔF, ΔF / ΔI changes due to changes in the air gap, and increases as the air gap becomes smaller. This ΔF / ΔI corresponds to the spring constant K in the one-degree-of-freedom control system. Here, if the control constant of the control device is set to be optimum in the state of FIG. 4 (a), when it becomes as shown in FIG. 4 (b), the control target is different from that at the time of setting. Therefore, if the change in the size of the void becomes large, the control becomes unstable.

【0007】なお、温度センサおよび回転速度センサを
用いて、回転体の温度変化および遠心力による外径の変
化すなわち空隙の変化を求め、これに基づいて電磁石へ
の供給電流を補正するようにすれば、上記の問題はなく
なるが、このようにした場合、位置センサの他に温度セ
ンサと回転速度センサが必要となり、コストが高くな
る。
It should be noted that the temperature sensor and the rotation speed sensor are used to determine the temperature change of the rotating body and the change of the outer diameter due to the centrifugal force, that is, the change of the air gap, and based on this, the current supplied to the electromagnet can be corrected. For example, although the above problem is eliminated, in this case, a temperature sensor and a rotation speed sensor are required in addition to the position sensor, which increases the cost.

【0008】この発明の目的は、上記の問題を解決し、
回転体と電磁石との空隙の変化により制御が不安定にな
ることを防止でき、しかもそれによってコスト高となら
ない磁気軸受の制御装置を提供することにある。
The object of the present invention is to solve the above problems,
It is an object of the present invention to provide a control device for a magnetic bearing which can prevent control from becoming unstable due to a change in the gap between the rotating body and the electromagnet, and at which the cost is not increased.

【0009】[0009]

【課題を解決するための手段および効果】この発明によ
る磁気軸受の制御装置は、回転体を磁力によって非接触
支持する複数の電磁石を備えた磁気軸受において、回転
体を挟むように配置されて回転体との間の空隙の大きさ
に対応する空隙信号をそれぞれ出力する少なくとも1対
の位置センサと、各位置センサからの空隙信号に基づい
て各電磁石への供給電流を制御する電磁石制御手段とを
備えた磁気軸受の制御装置であって、電磁石制御手段
が、1対の位置センサそれぞれの空隙信号を加算し、こ
の空隙信号加算値と所定の基準空隙値とを比較し、この
比較結果に基づいて各電磁石への供給電流を補正するよ
うになされていることを特徴とするものである。
In a magnetic bearing control device according to the present invention, in a magnetic bearing having a plurality of electromagnets for supporting a rotating body in a non-contact manner by magnetic force, the rotating body is arranged so as to sandwich the rotating body. At least one pair of position sensors that respectively output a gap signal corresponding to the size of the gap between the body and the body, and electromagnet control means that controls the supply current to each electromagnet based on the gap signal from each position sensor. In the magnetic bearing control device, the electromagnet control means adds the air gap signals of the pair of position sensors, compares the air gap signal added value with a predetermined reference air gap value, and based on the comparison result. It is characterized in that the current supplied to each electromagnet is corrected.

【0010】1対の位置センサそれぞれの空隙信号を加
算することにより得られた空隙信号加算値は、回転体と
電磁石との空隙の大きさに対応している。そして、この
空隙信号加算値と基準空隙値との比較結果に基づいて各
電磁石への供給電流を補正することにより、空隙の大き
さの変化によって電磁石への供給電流を補正して、制御
が不安定になることを防止することができる。しかも、
回転体の変位を検出するために必要な位置センサの空隙
信号から回転体と電磁石との空隙の大きさを求めている
ので、元来必要な位置センサの他に温度センサや回転速
度センサを使用する必要がなく、コスト高を招くことが
ない。
The air gap signal addition value obtained by adding the air gap signals of the pair of position sensors corresponds to the size of the air gap between the rotating body and the electromagnet. Then, by correcting the current supplied to each electromagnet based on the result of comparison between the air gap signal added value and the reference air gap value, the current supplied to the electromagnet is corrected by the change in the size of the air gap, and the control becomes uncontrollable. It can be prevented from becoming stable. Moreover,
Since the size of the air gap between the rotating body and the electromagnet is calculated from the air gap signal of the position sensor required to detect the displacement of the rotating body, a temperature sensor or rotation speed sensor is used in addition to the position sensor originally required. There is no need to do so, and there is no increase in cost.

【0011】たとえば、前記1対の位置センサが前記回
転体との間の空隙の大きさに比例する空隙信号をそれぞ
れ出力するものであり、各電磁石への供給電流が、空隙
信号に関係なく定常的に供給される定常電流と、空隙信
号によって変化する制御電流とが加算されたものであ
り、電磁石制御手段が、空隙信号加算値が基準空隙値よ
り大きくなるにつれて定常電流が基準空隙値に対する値
より大きくなり、空隙信号加算値が基準空隙値より小さ
くなるにつれて定常電流が基準空隙値に対する値より小
さくなるように、定常電流を補正するようになされてい
る。
For example, the pair of position sensors each output a gap signal proportional to the size of the gap with the rotating body, and the current supplied to each electromagnet is steady regardless of the gap signal. The constant current supplied to the reference air gap value is added to the control current that changes according to the air gap signal, and the electromagnet control means changes the steady current to the reference air gap value as the air gap signal addition value becomes larger than the reference air gap value. The steady-state current is corrected so that the steady-state current becomes smaller than the reference gap value as the gap signal addition value becomes smaller than the reference gap value.

【0012】あるいは、たとえば、前記1対の位置セン
サが前記回転体との間の空隙の大きさに比例する空隙信
号をそれぞれ出力するものであり、各電磁石への供給電
流が、空隙信号に関係なく定常的に供給される定常電流
と、前記空隙信号によって変化する制御電流とが加算さ
れたものであり、前記電磁石制御手段が、前記空隙信号
加算値が基準空隙値より大きくなるにつれて制御電流の
絶対値が基準空隙値に対する値より大きくなり、空隙信
号加算値が基準空隙値より小さくなるにつれて制御電流
の絶対値が基準空隙値に対する値より小さくなるよう
に、制御電流を補正するようになされている。
Alternatively, for example, the pair of position sensors each output a gap signal proportional to the size of the gap with the rotating body, and the current supplied to each electromagnet is related to the gap signal. The stationary current that is supplied steadily and the control current that changes according to the air gap signal are added, and the electromagnet control means controls the control current as the air gap signal addition value becomes larger than the reference air gap value. The control current is corrected so that the absolute value of the control current becomes smaller than the value of the reference air gap value as the absolute value becomes larger than the value of the reference air gap value and the air gap signal added value becomes smaller than the reference air gap value. There is.

【0013】たとえば、電磁石制御手段は、1対の位置
センサの空隙信号の差を演算することによって回転体の
変位を演算する変位演算手段、回転体の変位に基づいて
各電磁石への供給電流を演算する供給電流演算手段、供
給電流演算手段の演算結果に基づいて各電磁石に電流を
供給する電磁石駆動手段、1対の位置センサそれぞれの
空隙信号を加算して空隙信号加算値を出力する空隙信号
加算手段、所定の基準状態における空隙信号加算値に対
応する基準空隙値を出力する基準空隙値発生手段、およ
び空隙信号加算値と基準空隙値とを比較して補正値を演
算する比較・補正演算手段を備えており、電磁石駆動手
段が、比較・補正演算手段による演算結果に基づいて各
電磁石への供給電流を補正するようになされている。供
給電流演算手段は、各電磁石に対する定常電流値と制御
電流値を電磁石駆動手段に出力し、電磁石駆動手段は、
定常電流値と制御電流値を加算した電流を各電磁石に供
給する。供給電流演算手段における回転体の変位と定常
電流値および制御電流値との関係は、空隙信号加算値に
関係なく、一定である。比較・補正演算手段は、たとえ
ば、空隙信号加算値が基準空隙値より大きくなるにつれ
て1より大きくなり、空隙信号加算値が基準空隙値より
小さくなるにつれて1より小さくなるような定常電流の
補正係数を演算し、電磁石駆動手段に出力する。そし
て、電磁石駆動手段は、供給電流演算手段からの定常電
流値に比較・補正演算手段からの補正係数を乗算して補
正定常電流値を求め、これと供給電流演算手段からの制
御電流値を加算した電流を各電磁石に供給する。あるい
は、比較・補正演算手段は、上記と同様の電流の補正係
数を演算し、電磁石駆動手段に出力する。そして、電磁
石駆動手段は、供給電流演算手段からの制御電流値に比
較・補正演算手段からの補正係数を乗算して補正制御電
流値を求め、これと供給電流演算手段からの定常電流値
を加算した電流を各電磁石に供給する。
For example, the electromagnet control means calculates displacement of the rotating body by calculating the difference between the air gap signals of the pair of position sensors, and the supply current to each electromagnet based on the displacement of the rotating body. A supply current calculating means for calculating, an electromagnet driving means for supplying a current to each electromagnet based on the calculation result of the supply current calculating means, and a gap signal for adding the gap signals of the pair of position sensors and outputting a gap signal addition value. Adding means, reference air gap value generating means for outputting a reference air gap value corresponding to the air gap signal addition value in a predetermined reference state, and comparison / correction calculation for calculating a correction value by comparing the air gap signal addition value and the reference air gap value. The electromagnet driving means is configured to correct the current supplied to each electromagnet based on the calculation result of the comparison / correction calculation means. The supply current calculation means outputs a steady current value and a control current value for each electromagnet to the electromagnet drive means, and the electromagnet drive means
A current obtained by adding the steady current value and the control current value is supplied to each electromagnet. The relationship between the displacement of the rotating body and the steady current value and the control current value in the supply current calculation means is constant regardless of the air gap signal addition value. The comparison / correction calculation means, for example, sets a correction coefficient for the steady current that becomes larger than 1 as the air gap signal added value becomes larger than the reference air gap value and becomes smaller than 1 as the air gap signal added value becomes smaller than the reference air gap value. It is calculated and output to the electromagnet driving means. Then, the electromagnet driving means obtains a corrected steady current value by multiplying the steady current value from the supply current calculation means by the correction coefficient from the comparison / correction calculation means, and adds this and the control current value from the supply current calculation means. The supplied current is supplied to each electromagnet. Alternatively, the comparison / correction calculation means calculates a current correction coefficient similar to the above, and outputs it to the electromagnet driving means. Then, the electromagnet driving means obtains a corrected control current value by multiplying the control current value from the supply current calculation means by the correction coefficient from the comparison / correction calculation means, and adds this and the steady current value from the supply current calculation means. The supplied current is supplied to each electromagnet.

【0014】[0014]

【発明の実施の形態】以下、図面を参照して、この発明
の実施形態について説明する。
DETAILED DESCRIPTION OF THE INVENTION Embodiments of the present invention will be described below with reference to the drawings.

【0015】図1には、軸状の回転体(1) 、回転体(1)
をラジアル方向に非接触支持するための2組のラジアル
磁気軸受(2a)(2b)、および回転体(1) を高速回転させる
ための高周波モータ(3) が示されている。なお、以下の
説明において、回転体(1) のアキシアル方向(前後方
向)をZ軸方向、Z軸と直交する1つのラジアル方向
(上下方向)をX軸方向、Z軸およびX軸と直交する他
のラジアル方向(左右方向)をY軸方向とする。2組の
ラジアル磁気軸受(2a)(2b)は、前後方向に所定の間隔を
おいて配置され、これらの間にモータ(3) が配置されて
いる。回転体(1) はアキシアル磁気軸受によってアキシ
アル方向に非接触支持されているが、その図示は省略さ
れている。
FIG. 1 shows a shaft-shaped rotating body (1) and a rotating body (1).
There are shown two sets of radial magnetic bearings (2a) and (2b) for supporting the rotor in the radial direction in a non-contact manner, and a high frequency motor (3) for rotating the rotating body (1) at a high speed. In the following description, the axial direction (front-back direction) of the rotating body (1) is the Z-axis direction, and one radial direction (vertical direction) orthogonal to the Z-axis is orthogonal to the X-axis direction, the Z-axis and the X-axis. The other radial direction (left-right direction) is the Y-axis direction. The two sets of radial magnetic bearings (2a) and (2b) are arranged at a predetermined distance in the front-rear direction, and the motor (3) is arranged between them. The rotating body (1) is axially supported in a non-contact manner by an axial magnetic bearing, but its illustration is omitted.

【0016】図2には前側ラジアル磁気軸受(2a)とその
制御装置(4a)の1例が示され、図3には後側ラジアル磁
気軸受(2b)とその制御装置(4b)の1例が示されている。
なお、図1、図2および図3において、同じ部分には同
一の符号を付している。また、前側の磁気軸受(2a)およ
び制御装置(4a)と、後側の磁気軸受(2b)および制御装置
(4b)とにおいて、対応する部分の符号には同じ数字を用
い、前側のものには添字a を、後側のものには添字b を
付している。
FIG. 2 shows an example of the front radial magnetic bearing (2a) and its controller (4a), and FIG. 3 shows an example of the rear radial magnetic bearing (2b) and its controller (4b). It is shown.
Note that, in FIGS. 1, 2, and 3, the same portions are denoted by the same reference numerals. In addition, the front magnetic bearing (2a) and control device (4a) and the rear magnetic bearing (2b) and control device
In (4b), the same numerals are used for the corresponding parts, and the subscript a is attached to the front part and the subscript b is attached to the rear part.

【0017】次に、図2を参照して、前側の磁気軸受(2
a)および制御装置(4a)について説明する。
Next, referring to FIG. 2, the front magnetic bearing (2
The a) and the control device (4a) will be described.

【0018】前側磁気軸受(2a)は、X軸方向の両側から
回転体(1) をはさむように配置された1対のX軸電磁石
(5a)(6a)、およびY軸方向の両側から回転体(1) を挟む
ように配置された1対のY軸電磁石(7a)(8a)を備えてい
る。
The front magnetic bearing (2a) is a pair of X-axis electromagnets arranged so as to sandwich the rotating body (1) from both sides in the X-axis direction.
(5a) and (6a), and a pair of Y-axis electromagnets (7a) and (8a) arranged so as to sandwich the rotating body (1) from both sides in the Y-axis direction.

【0019】前側制御装置(4a)は、X軸電磁石(5a)(6a)
の近傍においてX軸方向の両側から回転体(1) を挟むよ
うに配置された1対のX軸位置センサ(11a)(12a)、Y軸
電磁石(7a)(8a)の近傍においてY軸方向の両側から回転
体(1) を挟むように配置された1対のY軸位置センサ(1
3a)(14a)、および電磁石制御手段としての電磁石制御回
路(9a)より構成されている。電磁石制御回路(9a)は、そ
れぞれ減算器よりなるX軸変位演算回路(15a) およびY
軸変位演算回路(16a) 、PID制御回路(17)、それぞれ
電力増幅器よりなるX軸電磁石駆動回路(18a) およびY
軸電磁石駆動回路(19a) 、加算器よりなる空隙信号加算
手段としての空隙信号加算回路(20a) 、基準空隙値発生
手段としての基準空隙値発生器(21a) 、ならびに比較・
補正演算手段としての比較・補正演算回路(22a) を備え
ている。
The front side control device (4a) is an X-axis electromagnet (5a) (6a)
A pair of X-axis position sensors (11a) (12a) arranged so as to sandwich the rotating body (1) from both sides in the X-axis direction near the Y-axis, and in the Y-axis direction near the Y-axis electromagnets (7a) (8a). A pair of Y-axis position sensors (1
3a) and (14a), and an electromagnet control circuit (9a) as electromagnet control means. The electromagnet control circuit (9a) includes an X-axis displacement calculation circuit (15a) and Y
Axial displacement calculation circuit (16a), PID control circuit (17), X-axis electromagnet drive circuit (18a) composed of a power amplifier, and Y
Axial electromagnet drive circuit (19a), air gap signal addition circuit (20a) as air gap signal addition means consisting of an adder, reference air gap value generator (21a) as reference air gap value generation means, and comparison /
A comparison / correction calculation circuit (22a) is provided as correction calculation means.

【0020】X軸位置センサ(11a)(12a)は、回転体(1)
との間のX軸方向の空隙の大きさに比例する空隙信号を
それぞれ出力する。Y軸位置センサ(13a)(14a)は、回転
体(1) との間のY軸方向の空隙の大きさに比例する空隙
信号をそれぞれ出力する。X軸変位演算回路(15a) は、
1対のX軸位置センサ(11a)(12a)の空隙信号の差を演算
することにより、回転体(1) のX軸方向の変位を演算
し、その演算結果を出力する。Y軸変位演算回路(16a)
は、1対のY軸位置センサ(13a)(14a)の空隙信号の差を
演算することにより、回転体(1) のY軸方向の変位を演
算し、その演算結果を出力する。PID制御回路(17)
は、X軸変位演算回路(15a) の出力である回転体(1) の
X軸方向の変位と、Y軸変位演算回路(16a) の出力であ
る回転体(1)のY軸方向の変位とに基づいて、各電磁石
(5a)(6a)(7a)(8a)への供給電流を演算し、その演算結果
を出力する。制御回路(17)は、各電磁石(5a)〜(8a)に対
する定常電流値と制御電流値を出力する。定常電流値
は、回転体(1) の変位に関係なく、一定の正の値であ
る。制御電流値は、回転体(1) の変位により、0を中心
に正および負に変化する。また、制御回路(17)における
回転体(1) の変位と定常電流値および制御電流値との関
係は、後述の空隙信号加算値に関係なく、一定である。
各電磁石駆動回路(18a)(19a)は、制御回路(17)からの定
常電流値と制御電流値に基づいて、各電磁石(5a)〜(8a)
に電流を供給する。空隙信号加算回路(20a) は、1対の
X軸位置センサ(11a)(12a)それぞれの空隙信号を加算し
て、空隙信号加算値を出力する。この空隙信号加算値
は、X軸位置センサ(11a)(12a)と回転体(1) との空隙の
大きさ、すなわちX軸電磁石(5a)(6a)と回転体(1) との
空隙の大きさに対応している。また、遠心力や温度変化
による回転体(1) のラジアル方向の寸法変化には方向性
がないから、上記の空隙信号加算値はY軸電磁石(7a)(8
a)と回転体(1) との空隙の大きさにも対応している。し
たがって、X軸位置センサ(11a)(12a)の空隙信号を加算
するだけで、X軸電磁石(5a)(6a)およびY軸電磁石(7a)
(8a)と回転体(1) との空隙の大きさを求めることができ
る。基準空隙値発生回路(21a) は、所定の基準状態にお
ける空隙信号加算値に対応する基準空隙値を出力する。
比較・補正演算回路(22a) は、空隙信号加算回路(20a)
からの空隙信号加算値と基準空隙値発生回路(21a) から
の基準空隙値とを比較して、各電磁石(5a)〜(8a)への供
給電流の補正係数を演算し、これを電磁石駆動回路(18
a)(19a)へ出力する。補正係数は、空隙信号加算値が基
準空隙値と等しいときは1で、空隙信号加算値が基準空
隙値より大きくなるにつれて1より大きくなり、空隙信
号加算値が基準空隙値より小さくなるにつれて1より小
さくなる。各電磁石駆動回路(18a)(19a)は、比較・補正
演算回路(22a) からの補正係数に基づいて、制御回路(1
7)からの供給電流値を補正し、補正された電流を各電磁
石(5a)〜(8a)に供給する。供給電流値の補正の仕方はい
ろいろあるが、たとえば、制御回路(17)からの定常電流
値に補正係数を乗算して、定常電流値を補正し、これと
制御回路(17)からの制御電流値とを加算して、供給電流
として供給する。あるいは、場合によっては、制御回路
(17)からの制御電流値に補正係数を乗算して、補正電流
値を補正し、これと制御回路(17)からの定常電流値とを
加算して、供給電流として供給する。さらに、定常電流
値と制御電流値の両方に所定の割合で補正係数を乗算し
て、定常電流値、制御電流値の両方を同時に補正するよ
うにしてもよい。
The X-axis position sensor (11a) (12a) is composed of the rotating body (1).
A gap signal proportional to the size of the gap in the X-axis direction between and is output. The Y-axis position sensors (13a) and (14a) respectively output air gap signals proportional to the size of the air gap with the rotating body (1) in the Y-axis direction. X-axis displacement calculation circuit (15a)
By calculating the difference between the air gap signals of the pair of X-axis position sensors (11a), (12a), the displacement of the rotating body (1) in the X-axis direction is calculated, and the calculation result is output. Y-axis displacement calculation circuit (16a)
Calculates the displacement of the rotating body (1) in the Y-axis direction by calculating the difference between the air gap signals of the pair of Y-axis position sensors (13a) (14a), and outputs the calculation result. PID control circuit (17)
Is the displacement of the rotating body (1) in the X-axis direction, which is the output of the X-axis displacement calculation circuit (15a), and the displacement of the rotating body (1) in the Y-axis direction, which is the output of the Y-axis displacement calculation circuit (16a). And based on each electromagnet
The current supplied to (5a) (6a) (7a) (8a) is calculated and the calculation result is output. The control circuit (17) outputs a steady current value and a control current value for each of the electromagnets (5a) to (8a). The steady current value is a constant positive value regardless of the displacement of the rotating body (1). The control current value changes positively and negatively around 0 due to the displacement of the rotating body (1). Further, the relationship between the displacement of the rotating body (1) and the steady-state current value and the control current value in the control circuit (17) is constant regardless of the air gap signal added value described later.
Each electromagnet drive circuit (18a) (19a), based on the steady current value and the control current value from the control circuit (17), each electromagnet (5a) ~ (8a)
To supply current. The air gap signal addition circuit (20a) adds the air gap signals of the pair of X-axis position sensors (11a) (12a) and outputs the air gap signal addition value. This air gap signal added value is the size of the air gap between the X-axis position sensors (11a) (12a) and the rotor (1), that is, the air gap between the X-axis electromagnets (5a) (6a) and the rotor (1). It corresponds to the size. Also, since there is no directionality in the radial dimension change of the rotating body (1) due to centrifugal force or temperature change, the above-mentioned air gap signal addition value is obtained by the Y-axis electromagnet (7a) (8
It corresponds to the size of the gap between a) and the rotating body (1). Therefore, only by adding the air gap signals of the X-axis position sensors (11a) (12a), the X-axis electromagnets (5a) (6a) and the Y-axis electromagnets (7a)
The size of the gap between (8a) and the rotating body (1) can be calculated. The reference air gap value generation circuit (21a) outputs a reference air gap value corresponding to the air gap signal addition value in a predetermined reference state.
The comparison / correction calculation circuit (22a) is the gap signal addition circuit (20a)
The air gap signal addition value from the reference air gap value generation circuit (21a) is compared to calculate the correction coefficient for the current supplied to each electromagnet (5a) to (8a), and this is calculated. Circuit (18
a) Output to (19a). The correction coefficient is 1 when the air gap signal added value is equal to the reference air gap value, becomes larger than 1 as the air gap signal added value becomes larger than the reference air gap value, and becomes 1 as the air gap signal added value becomes smaller than the reference air gap value. Get smaller. Each electromagnet drive circuit (18a) (19a) is controlled by the control circuit (1a) based on the correction coefficient from the comparison / correction calculation circuit (22a).
The supply current value from 7) is corrected and the corrected current is supplied to each electromagnet (5a) to (8a). There are various ways to correct the supply current value.For example, the steady current value from the control circuit (17) is multiplied by the correction coefficient to correct the steady current value, and this and the control current from the control circuit (17) are corrected. The value is added and supplied as a supply current. Alternatively, in some cases, the control circuit
The control current value from (17) is multiplied by the correction coefficient to correct the correction current value, and this and the steady current value from the control circuit (17) are added and supplied as the supply current. Furthermore, both the steady current value and the control current value may be multiplied by a correction coefficient at a predetermined ratio to correct both the steady current value and the control current value at the same time.

【0021】上記のように電磁石(5a)〜(8a)と回転体
(1) との空隙の変化に応じて電磁石(5a)〜(8a)への供給
電流を補正することにより、回転体(1) のラジアル方向
の寸法変化によって空隙が変化しても制御が不安定にな
ることがない。
As described above, the electromagnets (5a) to (8a) and the rotating body
By correcting the current supplied to the electromagnets (5a) to (8a) according to the change in the air gap with (1), control is not possible even if the air gap changes due to the radial dimension change of the rotating body (1). It never stabilizes.

【0022】後側の磁気軸受(2b)およびその制御装置(4
b)の構成は前側のそれとほとんど同じであるから、説明
は省略する。なお、上記実施例では、前側の電磁石(5a)
(6a)(7a)(8a)への供給電流値を演算するために回転体
(1) の後側のX軸およびY軸方向の変位も用い、後側の
電磁石(5b)(6b)(7b)(8b)への供給電流値を演算するため
に回転体(1) の前側のX軸およびY軸方向の変位も用い
るいわゆる交差制御を行っているので、前側の制御装置
(4a)と後側の制御装置(4b)で1つの共通のPID制御回
路(17)を使用している。しかし、前側の電磁石(5a)〜(8
a)の制御と後側の電磁石(5b)〜(8b)の制御が完全に独立
しているような場合には、前側の制御装置(4a)と後側の
制御装置(4b)とで別々のPID制御回路が使用される。
The rear magnetic bearing (2b) and its control device (4
Since the configuration of b) is almost the same as that of the front side, the description is omitted. In the above embodiment, the front electromagnet (5a)
(6a) (7a) (8a) to calculate the value of the current supplied to the rotating body
(1) Using the displacements of the rear side X-axis and Y-axis directions, in order to calculate the value of the current supplied to the rear side electromagnets (5b) (6b) (7b) (8b), the rotor (1) Since the so-called cross control that uses the displacement in the X-axis and Y-axis directions on the front side is also performed, the control device on the front side
One common PID control circuit (17) is used by (4a) and the control device (4b) on the rear side. However, the electromagnets (5a) to (8
In the case where the control of a) and the control of the electromagnets (5b) to (8b) on the rear side are completely independent, the front control device (4a) and the rear control device (4b) are separated. PID control circuit is used.

【0023】回転体(1) の温度変化は前側磁気軸受(2a)
の部分と後側磁気軸受(2b)の部分とで同じであるとは限
らない。このため、2組の磁気軸受(2a)(2b)のそれぞれ
において、空隙信号加算値に基づいて電磁石(5a)〜(8a)
(5b)〜(8b)への供給電流を補正している。
The temperature change of the rotating body (1) depends on the front magnetic bearing (2a).
The portion and the rear magnetic bearing (2b) are not necessarily the same. Therefore, in each of the two sets of magnetic bearings (2a) and (2b), the electromagnets (5a) to (8a) are calculated based on the air gap signal addition value.
The supply current to (5b) to (8b) is corrected.

【0024】なお、上記実施例では、位置センサとして
回転体と位置センサとの間の空隙の大きさに比例する空
隙信号を出力するものを用いたが、逆に回転体と位置セ
ンサとの間の空隙の大きさに反比例する空隙信号を出力
するものを位置センサとして用いてもよい。ただし、そ
の場合は、電磁石制御手段を、空隙信号加算値が基準空
隙値より大きくなるにつれて供給電流値が基準空隙値に
対する値より小さくなり、空隙信号加算値が基準空隙値
より小さくなるにつれて供給電流値が基準空隙値に対す
る値より大きくなるように、供給電流値を補正するよう
構成する必要がある。
In the above embodiment, the position sensor that outputs a gap signal proportional to the size of the gap between the rotating body and the position sensor is used. A position sensor that outputs a gap signal that is inversely proportional to the size of the gap may be used as the position sensor. However, in that case, the supply current value becomes smaller than the value for the reference air gap value as the air gap signal added value becomes larger than the reference air gap value, and the supply current becomes smaller as the air gap signal added value becomes smaller than the reference air gap value. The supply current value needs to be corrected so that the value is larger than the reference air gap value.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施形態を示す回転体と2組のラジ
アル磁気軸受の側面図である。
FIG. 1 is a side view of a rotating body and two sets of radial magnetic bearings showing an embodiment of the present invention.

【図2】1組のラジアル磁気軸受とその制御装置の1例
を示す構成図である。
FIG. 2 is a configuration diagram showing an example of a set of radial magnetic bearings and a control device therefor.

【図3】他の1組のラジアル磁気軸受とその制御装置の
1例を示す構成図である。
FIG. 3 is a configuration diagram showing an example of another set of radial magnetic bearings and a control device therefor.

【図4】電磁石への供給電流と電磁石の吸引力との関係
を示すグラフである。
FIG. 4 is a graph showing the relationship between the current supplied to the electromagnet and the attractive force of the electromagnet.

【符号の説明】[Explanation of symbols]

(1) 回転体 (2a) X軸磁気軸受 (2b) Y軸磁気軸受 (4a) X軸制御装置 (4b) Y軸制御装置 (5a)(5b)(6a)(6b) X軸電磁石 (7a)(7b)(8a)(8b) Y軸電磁石 (9a) X軸電磁石制御回路 (9b) Y軸電磁石制御回路 (11a)(11b)(12a)(12b) X軸位置センサ (13a)(13b)(14a)(14b) Y軸位置センサ (1) Rotating body (2a) X-axis magnetic bearing (2b) Y-axis magnetic bearing (4a) X-axis controller (4b) Y-axis controller (5a) (5b) (6a) (6b) X-axis electromagnet (7a) ) (7b) (8a) (8b) Y-axis electromagnet (9a) X-axis electromagnet control circuit (9b) Y-axis electromagnet control circuit (11a) (11b) (12a) (12b) X-axis position sensor (13a) (13b) ) (14a) (14b) Y-axis position sensor

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】回転体を磁力によって非接触支持する複数
の電磁石を備えた磁気軸受において、前記回転体を挟む
ように配置されて前記回転体との間の空隙の大きさに対
応する空隙信号をそれぞれ出力する少なくとも1対の位
置センサと、前記各位置センサからの空隙信号に基づい
て前記各電磁石への供給電流を制御する電磁石制御手段
とを備えた磁気軸受の制御装置であって、 前記電磁石制御手段が、前記1対の位置センサそれぞれ
の空隙信号を加算し、この空隙信号加算値と所定の基準
空隙値とを比較し、この比較結果に基づいて前記各電磁
石への供給電流を補正するようになされていることを特
徴とする磁気軸受の制御装置。
1. A magnetic bearing including a plurality of electromagnets for supporting a rotating body in a non-contact manner by magnetic force, and a gap signal corresponding to a size of a gap between the rotating body and the rotating body. A controller for a magnetic bearing, comprising: at least one pair of position sensors that respectively output the position sensor; and electromagnet control means that controls a supply current to each of the electromagnets based on an air gap signal from each of the position sensors. The electromagnet control means adds the air gap signals of the pair of position sensors, compares the air gap signal added value with a predetermined reference air gap value, and corrects the current supplied to each of the electromagnets based on the comparison result. A control device for a magnetic bearing, which is characterized in that
【請求項2】前記1対の位置センサが前記回転体との間
の空隙の大きさに比例する空隙信号をそれぞれ出力する
ものであり、前記各電磁石への供給電流が、前記空隙信
号に関係なく定常的に供給される定常電流と、前記空隙
信号によって変化する制御電流とが加算されたものであ
り、前記電磁石制御手段が、前記空隙信号加算値が前記
基準空隙値より大きくなるにつれて前記定常電流が前記
基準空隙値に対する値より大きくなり、前記空隙信号加
算値が前記基準空隙値より小さくなるにつれて前記定常
電流が前記基準空隙値に対する値より小さくなるよう
に、前記定常電流を補正するようになされていることを
特徴とする請求項1の磁気軸受の制御装置。
2. The pair of position sensors each output a gap signal proportional to the size of the gap between the position sensor and the rotating body, and the current supplied to each electromagnet is related to the gap signal. A stationary current that is supplied steadily and a control current that changes according to the air gap signal are added, and the electromagnet control means uses the steady current as the air gap signal addition value becomes larger than the reference air gap value. The steady current is corrected so that the steady current becomes smaller than the value for the reference air gap value as the current becomes larger than the value for the reference air gap value and the air gap signal addition value becomes smaller than the reference air gap value. The control device for the magnetic bearing according to claim 1, wherein the control device is provided.
【請求項3】前記1対の位置センサが前記回転体との間
の空隙の大きさに比例する空隙信号をそれぞれ出力する
ものであり、前記各電磁石への供給電流が、前記空隙信
号に関係なく定常的に供給される定常電流と、前記空隙
信号によって変化する制御電流とが加算されたものであ
り、前記電磁石制御手段が、前記空隙信号加算値が前記
基準空隙値より大きくなるにつれて前記制御電流の絶対
値が前記基準空隙値に対する値より大きくなり、前記空
隙信号加算値が前記基準空隙値より小さくなるにつれて
前記制御電流の絶対値が前記基準空隙値に対する値より
小さくなるように、前記制御電流を補正するようになさ
れていることを特徴とする請求項1の磁気軸受の制御装
置。
3. The pair of position sensors each output an air gap signal proportional to the size of the air gap between the rotor and the rotating body, and the current supplied to each electromagnet is related to the air gap signal. A stationary current that is constantly supplied and a control current that changes depending on the air gap signal are added, and the electromagnet control means controls the air gap signal as the air gap signal addition value becomes larger than the reference air gap value. The absolute value of the current becomes larger than the value for the reference air gap value, and the absolute value of the control current becomes smaller than the value for the reference air gap value as the air gap signal added value becomes smaller than the reference air gap value. 2. The magnetic bearing control device according to claim 1, wherein the control device corrects an electric current.
JP25045695A 1995-09-28 1995-09-28 Magnetic bearing control device Expired - Fee Related JP3735736B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25045695A JP3735736B2 (en) 1995-09-28 1995-09-28 Magnetic bearing control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25045695A JP3735736B2 (en) 1995-09-28 1995-09-28 Magnetic bearing control device

Publications (2)

Publication Number Publication Date
JPH0988955A true JPH0988955A (en) 1997-03-31
JP3735736B2 JP3735736B2 (en) 2006-01-18

Family

ID=17208152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25045695A Expired - Fee Related JP3735736B2 (en) 1995-09-28 1995-09-28 Magnetic bearing control device

Country Status (1)

Country Link
JP (1) JP3735736B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0982836A2 (en) * 1998-08-24 2000-03-01 Sulzer Electronics AG Method and device for determining the radial position of a permanent magnetic rotor
US6249067B1 (en) 1998-08-24 2001-06-19 Sulzer Electronics Ag Method and sensor arrangement for the determination of the radial position of a permanent magnetic rotor
CN110657159A (en) * 2019-09-24 2020-01-07 东北大学 Magnetic suspension bearing stability control device and method
CN114810826A (en) * 2022-03-30 2022-07-29 清华大学 Zero bias control method and device of magnetic bearing and magnetic bearing

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0982836A2 (en) * 1998-08-24 2000-03-01 Sulzer Electronics AG Method and device for determining the radial position of a permanent magnetic rotor
EP0982836A3 (en) * 1998-08-24 2000-06-07 Sulzer Electronics AG Method and device for determining the radial position of a permanent magnetic rotor
US6249067B1 (en) 1998-08-24 2001-06-19 Sulzer Electronics Ag Method and sensor arrangement for the determination of the radial position of a permanent magnetic rotor
CN110657159A (en) * 2019-09-24 2020-01-07 东北大学 Magnetic suspension bearing stability control device and method
CN114810826A (en) * 2022-03-30 2022-07-29 清华大学 Zero bias control method and device of magnetic bearing and magnetic bearing
CN114810826B (en) * 2022-03-30 2023-05-05 清华大学 Zero bias control method and device for magnetic bearing and magnetic bearing

Also Published As

Publication number Publication date
JP3735736B2 (en) 2006-01-18

Similar Documents

Publication Publication Date Title
JPH06300041A (en) Magnetic bearing device
US6984907B2 (en) Magnetic bearing apparatus
JPH02107815A (en) Controller of magnetic levitation body
WO2000045059A1 (en) Controlled magnetic bearing device
US10968949B2 (en) Magnetic bearing control device and vacuum pump
US20210273521A1 (en) Magnetic bearing controller and magnetic bearing control method
JP3680226B2 (en) Magnetic bearing device
JPH0988955A (en) Controller of magnetic bearing
JP2002247823A (en) Magnetic levitation type motor
JPS6166541A (en) Controlled radial magnetic bearing device
JP6801481B2 (en) Magnetic bearing equipment and vacuum pump
JPH09126236A (en) Magnetic bearing device
JP3651703B2 (en) Magnetic bearing device
JPH06213233A (en) Magnetic bearing device
JP6628388B2 (en) Bearingless motor
JP2005140190A (en) Power amplifying device and magnetic bearing
JP4237926B2 (en) Magnetic levitation body control device
JP3930264B2 (en) Magnetic bearing control device
JP3174864B2 (en) Magnetic bearing control device
JPH04300417A (en) Magnetic bearing device
JP2546997B2 (en) Non-contact support method
JP3480503B2 (en) Control device for magnetic bearing
JP3248108B2 (en) Control device for magnetic bearing
JPH03255240A (en) Rotor support control device of active bearing
JPH1122730A (en) Magnetic bearing and magnetic bearing unit

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050215

A521 Written amendment

Effective date: 20050418

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20050913

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051011

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20091104

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101104

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees