JPH0987900A - Electrolytic pickling method for steel strip - Google Patents

Electrolytic pickling method for steel strip

Info

Publication number
JPH0987900A
JPH0987900A JP25135795A JP25135795A JPH0987900A JP H0987900 A JPH0987900 A JP H0987900A JP 25135795 A JP25135795 A JP 25135795A JP 25135795 A JP25135795 A JP 25135795A JP H0987900 A JPH0987900 A JP H0987900A
Authority
JP
Japan
Prior art keywords
steel strip
electrolytic
current density
stainless steel
electrode plates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25135795A
Other languages
Japanese (ja)
Inventor
Toshiya Hagiwara
俊哉 萩原
Hideaki Yamashita
英明 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP25135795A priority Critical patent/JPH0987900A/en
Publication of JPH0987900A publication Critical patent/JPH0987900A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an electrolytic pickling method capable of suppressing an electric power consumption low and forming uniformly bright surfaces on steel strip surfaces by making the current density distribution in the longitudinal direction of the steel strip surfaces uniform. SOLUTION: An electrolytic cell 3 is provided with a pair of anode electrode plates 5a, 5b arranged above and below the stainless steel strip 1 on a deflector roll 2 side in this cell in three rows along the progression direction of the steel strip 1 and is provided with a pair of cathode electrode plates 6a, 6b arranged above and below the steel strip 1 on a deflector roll 4 side in this cell in three rows along the progression direction of the steel strip 1. The control of the electrolytic current density J(A/dm<2> ) for each of the respective electrode plates 5a, 5b, 6a, 6b is discretely executed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、鋼帯表面のスケー
ルを除去する電解酸洗方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrolytic pickling method for removing scale on the surface of steel strip.

【0002】[0002]

【従来の技術】従来のこの種の電解酸洗方法としては、
例えば図5に示すものが知られている。この方法は、中
性塩電解液が満たされた槽a内を通過するステンレス冷
延鋼帯bに、該鋼帯bの長手方向(進行方向)に沿って
配置された陽電極板c及び陰電極板dを介して電解電流
を付与することにより、鋼帯bの表面のスケールを除去
するようにしたものでる。
2. Description of the Related Art As a conventional electrolytic pickling method of this type,
For example, the one shown in FIG. 5 is known. According to this method, a positive electrode plate c and a cathode arranged along a longitudinal direction (traveling direction) of the steel strip b are provided on a stainless cold-rolled steel strip b passing through a tank a filled with a neutral salt electrolyte. The scale on the surface of the steel strip b is removed by applying an electrolytic current through the electrode plate d.

【0003】詳述すると、陽電極板cは鋼帯bの上流側
で該鋼帯bの上下表面に長手方向に沿って配置され、一
方、陰電極板dは鋼帯bの下流側で該鋼帯bの上下表面
に長手方向に沿って配置されており、陽電極板c,c間
及び陰電極板d,d間には電源電圧eが印加されてい
る。従って、陽電極板c,c間を通過する鋼帯bの上下
表面はマイナスに帯電し、一方、陰電極板d,d間を通
過する鋼帯bの上下表面はプラスに帯電する。この結
果、電源eの電流は、陽電極板cから電解電流となって
鋼帯b表面のマイナス帯電部に流れ、その後、鋼帯bを
陰電極板d側に流れてプラス帯電部に達し、プラス帯電
部から電解電流となって陰電極板dに流れて電源eに戻
る。この時、鋼帯bのプラス帯電部はアノード面とな
り、該アノード面で化学反応による金属や金属酸化物の
溶解及び酸素ガスの発生等の進行によって鋼帯bの表面
のスケールが化学的に除去されるようになっている。
More specifically, the positive electrode plate c is arranged along the longitudinal direction on the upper and lower surfaces of the steel strip b on the upstream side of the steel strip b, while the negative electrode plate d is on the downstream side of the steel strip b. The steel strips b are arranged on the upper and lower surfaces along the longitudinal direction, and a power supply voltage e is applied between the positive electrode plates c, c and between the negative electrode plates d, d. Therefore, the upper and lower surfaces of the steel strip b passing between the positive electrode plates c and c are negatively charged, while the upper and lower surfaces of the steel strip b passing between the negative electrode plates d and d are positively charged. As a result, the current of the power source e becomes an electrolytic current from the positive electrode plate c and flows to the negatively charged portion on the surface of the steel strip b, and then flows to the negative electrode plate d side of the steel strip b to reach the positively charged portion, An electrolytic current flows from the positive charging portion to the negative electrode plate d and returns to the power source e. At this time, the positively charged portion of the steel strip b becomes the anode surface, and the scale on the surface of the steel strip b is chemically removed by the progress of the dissolution of the metal or metal oxide and the generation of oxygen gas due to the chemical reaction on the anode surface. It is supposed to be done.

【0004】[0004]

【発明が解決しようとする課題】ところで、ステンレス
鋼帯に電解酸洗を施す際には、酸洗設備使用等の条件を
満たす範囲で鋼帯bにかかる電解電流密度を上げて酸洗
能力を最大にして行っている。しかしながら、上記従来
の電解酸洗方法においては、上下の固定電極板c,c
(d,d)間を鋼帯bが移動して酸洗が行われるため、
電極長が長い場合、図6に示すように、電極板c,dの
長手方向に電解電流密度の勾配ができる所謂傾斜電流密
度分布が発生する(図6における電流密度の正負は、電
解電流の流れる向きを表している。)。このような傾斜
電流密度の場合、高密度電流側では、酸素ガスの発生に
多くの電流が費やされて電流の無駄が発生し、電力の原
単位を悪化させるという問題があった。
By the way, when electrolytic pickling is applied to a stainless steel strip, the electrolytic current density applied to the steel strip b is increased within a range satisfying conditions such as use of pickling equipment to improve the pickling ability. I am going to the maximum. However, in the above conventional electrolytic pickling method, the upper and lower fixed electrode plates c, c
Since the steel strip b moves between (d, d) and pickling is performed,
When the electrode length is long, as shown in FIG. 6, a so-called gradient current density distribution is generated in which the electrolytic current density has a gradient in the longitudinal direction of the electrode plates c and d (the positive / negative of the current density in FIG. It represents the direction of flow.) In the case of such a gradient current density, on the high density current side, a large amount of current is consumed for the generation of oxygen gas, which results in a waste of current, which deteriorates the power consumption rate.

【0005】また、傾斜電流密度による電流密度分布の
不均一により、鋼帯b表面に電解模様と呼ばれる光沢む
らが発生するという問題があった。本発明はかかる不都
合を解消するためになされたものであり、鋼帯表面の長
手方向の電流密度分布を均一にして電力原単位を低く抑
えることができると共に、鋼帯表面に均一な光沢面を形
成することができる鋼帯の電解酸洗方法を提供すること
を目的とする。
Further, there is a problem that unevenness in current density distribution due to the gradient current density causes uneven gloss called an electrolytic pattern on the surface of the steel strip b. The present invention has been made in order to eliminate such inconvenience, and it is possible to suppress the electric power consumption to a low level by making the current density distribution in the longitudinal direction of the steel strip surface uniform, and to form a uniform glossy surface on the steel strip surface. An object of the present invention is to provide a method for electrolytic pickling of a steel strip that can be formed.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、本発明に係る鋼帯の電解酸洗方法は、電解液を用い
て鋼帯の電解酸洗を行うに際し、鋼帯の進行方向に沿っ
て配置された電極を介して該鋼帯に電解電流を流すこと
により、鋼帯表面のスケールを除去するようにした鋼帯
の電解酸洗方法であって、前記電極を前記鋼帯の進行方
向に沿って複数並設して該鋼帯表面に付与される電解電
流の電流密度を各電極毎に個別に調整可能にしたことを
特徴とする。
In order to achieve the above object, the method of electrolytic pickling of a steel strip according to the present invention includes a traveling direction of the steel strip when performing electrolytic pickling of the steel strip using an electrolytic solution. A method for electrolytic pickling of a steel strip, wherein an electrolytic current is passed through the steel strip through electrodes arranged along the strip to remove scale on the surface of the steel strip, the electrode being It is characterized in that a plurality of electrodes are arranged in parallel along the traveling direction so that the current density of the electrolytic current applied to the surface of the steel strip can be adjusted individually for each electrode.

【0007】[0007]

【作用】本発明では、鋼帯の進行方向に沿って並設され
た複数の電極から該鋼帯表面に付与される電解電流の電
流密度を各電極毎に個別に調整することにより、該鋼帯
表面の長手方向の電流密度分布を均一にする。
In the present invention, the current density of the electrolytic current applied to the surface of the steel strip from a plurality of electrodes arranged in parallel along the traveling direction of the steel strip is adjusted individually for each electrode, thereby The current density distribution in the longitudinal direction of the strip surface is made uniform.

【0008】[0008]

【発明の実施の形態】本発明の実施の形態の一例を図1
を参照して説明する。図1は本発明の実施の形態の一例
であるステンレス鋼帯の電解酸洗方法に用いる電解酸洗
装置の概略図である。冷間圧延が行われた後に焼鈍され
た鋼帯例えばステンレス鋼帯1は、図1に示すように、
デフレクタロール2を介して中性塩電解液が満たされた
電解槽3へ導入されて該電解液中を通過し、その後、デ
フレクタロール4を介して電解槽3から導出されて次工
程の電解槽や洗浄及び乾燥処理装置に送り出される。
BEST MODE FOR CARRYING OUT THE INVENTION One example of an embodiment of the present invention is shown in FIG.
This will be described with reference to FIG. FIG. 1 is a schematic diagram of an electrolytic pickling apparatus used in an electrolytic pickling method for a stainless steel strip, which is an example of an embodiment of the present invention. A steel strip such as a stainless steel strip 1 annealed after cold rolling is, as shown in FIG.
It is introduced into the electrolytic cell 3 filled with the neutral salt electrolytic solution through the deflector roll 2 and passes through the electrolytic solution, and then is led out of the electrolytic cell 3 through the deflector roll 4 to be the electrolytic cell of the next step. And sent to the washing and drying processing equipment.

【0009】電解槽3内のデフレクタロール2側には、
ステンレス鋼帯1の上下に配置された一対の陽電極板5
a,5bが該ステンレス鋼帯1の進行方向に沿って三列
設けられ、電解槽3内のデフレクタロール4側には、ス
テンレス鋼帯1の上下に配置された一対の陰電極板6
a,6bが該ステンレス鋼帯1の進行方向に三列設けら
れている。尚、各電極板の配列は必ずしもこれに限定さ
れるものではなく、例えば、ステンレス鋼帯1の上側に
陽電極板(又は陰電極板)、下側に陰電極板(又は陽電
極板)をそれぞれ該ステンレス鋼帯1の進行方向に複数
配置してもよく、目的に応じて適宜変更可能である。
On the deflector roll 2 side in the electrolytic cell 3,
A pair of positive electrode plates 5 arranged above and below the stainless steel strip 1.
a and 5b are provided in three rows along the traveling direction of the stainless steel strip 1, and a pair of negative electrode plates 6 arranged above and below the stainless steel strip 1 are provided on the deflector roll 4 side in the electrolytic cell 3.
Three rows of a and 6b are provided in the traveling direction of the stainless steel strip 1. The arrangement of the electrode plates is not necessarily limited to this. For example, the positive electrode plate (or the negative electrode plate) is on the upper side of the stainless steel strip 1, and the negative electrode plate (or the positive electrode plate) is on the lower side. A plurality of stainless steel strips 1 may be arranged in the traveling direction of the stainless steel strip 1 and may be appropriately changed depending on the purpose.

【0010】各陽電極板5a,5b及び各陰電極板6
a,6b間にはそれぞれ図示しない直流電源が供給され
ており、従って、各陽電極板5a,5b間を通過するス
テンレス鋼帯1の上下表面はマイナスに帯電し、一方、
各陰電極板6a,6b間を通過するステンレス鋼帯1の
上下表面はプラスに帯電する。この結果、電源の電流
は、各陽電極板5a,5bから電解電流となってステン
レス鋼帯1表面のマイナス帯電部に流れ、その後、ステ
ンレス鋼帯1を陰電極板6a,6b側に流れてプラス帯
電部に達し、プラス帯電部から電解電流となって各陰電
極板6a,6bに流れて電源に戻る。この時、ステンレ
ス鋼帯1のプラス帯電部はアノード面となり、該アノー
ド面で化学反応による金属や金属酸化物の溶解及び酸素
ガスの発生等の進行によってステンレス鋼帯1の表面の
スケールが化学的に除去されるようになっている。
Each positive electrode plate 5a, 5b and each negative electrode plate 6
A DC power source (not shown) is supplied between a and 6b, so that the upper and lower surfaces of the stainless steel strip 1 passing between the positive electrode plates 5a and 5b are negatively charged, while
The upper and lower surfaces of the stainless steel strip 1 passing between the negative electrode plates 6a and 6b are positively charged. As a result, the current of the power source becomes an electrolytic current from each of the positive electrode plates 5a and 5b and flows to the negatively charged portion on the surface of the stainless steel strip 1, and then the stainless steel strip 1 flows to the negative electrode plates 6a and 6b side. After reaching the positive charging portion, an electrolytic current is generated from the positive charging portion and flows into the negative electrode plates 6a and 6b to return to the power source. At this time, the positively charged portion of the stainless steel strip 1 becomes the anode surface, and the scale of the surface of the stainless steel strip 1 becomes chemically due to the progress of dissolution of metal and metal oxide and generation of oxygen gas due to the chemical reaction on the anode surface. It is supposed to be removed.

【0011】ここで、この実施の形態では、電解液中を
通過するステンレス鋼帯1の長手方向に沿って常に略均
一な電解電流密度(図2参照)が得られるように、下記
の(1)及び(2)式に基づいて各電極板5a,5b,
6a,6b毎の電解電流密度J(A/dm2 )の制御を
個別に行うようにした。 α=(2 ρs /ρtl)1/2 …(1) J=(I i/WL)・(αL・cosh(αX i)/sinh(αL))…(2) ここで、I iは電極に流れる電流(A)、Wは鋼帯の幅
(m)、ρは液抵抗(Ωm)、ρs は鋼帯抵抗(Ω
m)、tは鋼帯厚(m)、lは電極・鋼帯間距離
(m)、Lは電極長(m)、X iは電極長さ方向の位置
(m)をそれぞれ表す。
Here, in this embodiment, in order to always obtain a substantially uniform electrolytic current density (see FIG. 2) along the longitudinal direction of the stainless steel strip 1 passing through the electrolytic solution, the following (1) ) And (2) based on each electrode plate 5a, 5b,
The electrolytic current density J (A / dm 2 ) is controlled individually for each of 6a and 6b. α = (2ρ s / ρtl) 1/2 (1) J = (I i / WL) · (αL · cosh (αX i ) / sinh (αL)) (2) where I i is an electrode Current (A), W is the width of the steel strip (m), ρ is the liquid resistance (Ωm), and ρ s is the steel strip resistance (Ω).
m) and t are steel strip thicknesses (m), l is an electrode-steel strip distance (m), L is an electrode length (m), and X i is a position (m) in the electrode length direction.

【0012】そして、上記(1),(2)式において、
ステンレス鋼帯1の脱スケールに有効に働く電解電流密
度J(A/dm2 )、電極位置X i(m)をそれぞれ与
えることにより、各電極板5a,5b,6a,6bに付
与される電流がI iとなるように制御する。これによ
り、ステンレス鋼帯1の長手方向にかかる電解電流密度
を常にJ(A/dm2 )とすることができ、従来のよう
な傾斜電流密度が発生するのを良好に防止することがで
きる。
In the above equations (1) and (2),
The current applied to each electrode plate 5a, 5b, 6a, 6b by giving the electrolytic current density J (A / dm 2 ) and the electrode position X i (m) that effectively work for descaling of the stainless steel strip 1. Is controlled to be I i . As a result, the electrolytic current density applied to the longitudinal direction of the stainless steel strip 1 can always be J (A / dm 2 ), and it is possible to favorably prevent the conventional gradient current density from occurring.

【0013】このようにかかる鋼帯の電解酸洗方法にお
いては、ステンレス鋼帯1の長手方向にかかる電流密度
分布を均一にすることができるので、従来のように高密
度電流側での酸素ガス発生に使われる電流が大幅に少な
くなってその分無駄がなくなり、電力原単位を低く抑え
ることができる。また、電流密度分布を均一にできるこ
とから、鋼帯1の表面に電解模様とよばれる光沢むらが
発生するのを防止することができる。更に、各電極毎で
脱スケールに有効に働く電解電流密度を得ることができ
るので、ステンレス鋼帯1の脱スケールを効率よく行う
ことができ、従来に比べてスケール残りを少なくするこ
とができる。
In such a steel strip electrolytic pickling method as described above, since the current density distribution in the longitudinal direction of the stainless steel strip 1 can be made uniform, the oxygen gas on the high density current side as in the prior art can be obtained. The amount of current used for generation is greatly reduced, so that there is no waste, and the power consumption rate can be kept low. Further, since the current density distribution can be made uniform, it is possible to prevent the occurrence of uneven gloss called an electrolytic pattern on the surface of the steel strip 1. Further, since the electrolytic current density that works effectively for descaling can be obtained for each electrode, the descaling of the stainless steel strip 1 can be efficiently performed, and the scale residue can be reduced as compared with the conventional case.

【0014】尚、上記実施の形態では、中性塩液が満た
された電解槽3内で電解酸洗を行っているが、中性塩の
代わりに硝酸又は硫酸等の酸性溶液を用いてもよい。ま
た、上記実施の形態では、ステンレス鋼帯1を電解液中
に通過させる場合を例に採ったが、これに限定されず、
ステンレス鋼帯1と各電極5a,5b,6a,6bとの
間に電解液を噴射するタイプにも適用可能である。
In the above embodiment, electrolytic pickling is performed in the electrolytic bath 3 filled with a neutral salt solution, but an acidic solution such as nitric acid or sulfuric acid may be used instead of the neutral salt. Good. In the above embodiment, the case where the stainless steel strip 1 is passed through the electrolytic solution is taken as an example, but the present invention is not limited to this.
It is also applicable to a type in which an electrolytic solution is sprayed between the stainless steel strip 1 and each of the electrodes 5a, 5b, 6a, 6b.

【0015】[0015]

【実施例】図1に示す電極配列の中性塩電解槽3を用い
て冷間圧延した後、1050°Cの大気焼鈍で仕上げ焼
鈍を施したSUS304のステンレス鋼帯1を脱スケー
ルした。酸洗液として硫酸ナトリウム20%溶液を用
い、また、中性塩電解酸洗後の後処理として硝弗酸酸洗
及び硝酸電解酸洗を施した。
EXAMPLE A stainless steel strip 1 of SUS304, which was cold-rolled by using the neutral salt electrolytic cell 3 shown in FIG. 1 and then finish-annealed by atmospheric annealing at 1050 ° C., was descaled. A 20% sodium sulfate solution was used as the pickling solution, and nitric hydrofluoric acid pickling and nitric acid electrolytic pickling were performed as post-treatments after the neutral salt electrolytic pickling.

【0016】図2にステンレス鋼帯1の長手方向に並設
された電極1本1本を上述した(1),(2)式を用い
てJ=500A/dm2 となるように制御した場合のス
テンレス鋼帯1の長手方向での電流密度分布を示す。図
2から明らかなようにステンレス鋼帯1の長手方向で略
均一な電流密度分布が得られ、従来のような傾斜電流密
度分布(図6参照)は発生しなかった。
FIG. 2 shows a case where the electrodes arranged in parallel in the longitudinal direction of the stainless steel strip 1 are controlled so that J = 500 A / dm 2 by using the above equations (1) and (2). 2 shows a current density distribution in the longitudinal direction of the stainless steel strip 1 of FIG. As is clear from FIG. 2, a substantially uniform current density distribution was obtained in the longitudinal direction of the stainless steel strip 1, and the conventional gradient current density distribution (see FIG. 6) was not generated.

【0017】また、電力原単位を従来例と比較したとこ
ろ、図3に示すように、本発明の方が従来例より約20
%低くなったことが判った。更に、電解模様による不良
発生率を従来例と比較したところ、図4に示すように、
本発明が0.2%、従来例が2.0%であり、電解電流
密度がステンレス鋼帯1の長手方向で均一になったこと
により電解模様の発生率が大幅に低くなったことが判っ
た。
Further, when the electric power consumption rate is compared with that of the conventional example, as shown in FIG.
It turned out to be% lower. Further, comparing the defective occurrence rate due to the electrolytic pattern with the conventional example, as shown in FIG.
The present invention was 0.2% and the conventional example was 2.0%, and it was found that the electrolytic pattern generation rate was significantly reduced because the electrolytic current density was uniform in the longitudinal direction of the stainless steel strip 1. It was

【0018】[0018]

【発明の効果】上記の説明から明らかなように、本発明
では、鋼帯の長手方向にかかる電流密度分布を均一にす
ることができるので、従来のように高密度電流側での酸
素ガス発生に使われる電流が大幅に少なくなってその分
無駄がなくなり、電力原単位を低く抑えることができる
という効果が得られる。
As is apparent from the above description, according to the present invention, the current density distribution applied in the longitudinal direction of the steel strip can be made uniform, so that the oxygen gas generation on the high density current side as in the conventional case. The electric current used for is drastically reduced, so that there is no waste and the power consumption rate can be kept low.

【0019】また、電流密度分布を均一にできることか
ら、鋼帯の表面に電解模様とよばれる光沢むらが発生す
るのを防止することができ、鋼帯の長手方向に沿って均
一な酸洗を行うことができるという効果が得られる。更
に、各電極毎で脱スケールに有効に働く電解電流密度を
得ることができるので、鋼帯の脱スケールを効率よく行
うことができ、従来に比べてスケール残りを少なくする
ことができるという効果が得られる。
Further, since the current density distribution can be made uniform, it is possible to prevent the occurrence of uneven luster called an electrolytic pattern on the surface of the steel strip, and to perform uniform pickling along the longitudinal direction of the steel strip. The effect that it can be obtained is obtained. Furthermore, since it is possible to obtain an electrolytic current density that effectively works for descaling for each electrode, it is possible to efficiently perform descaling of the steel strip, and it is possible to reduce the scale residue compared to the conventional case. can get.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の形態の一例であるステンレス鋼
帯の電解酸洗方法に用いる装置の概略図である。
FIG. 1 is a schematic diagram of an apparatus used in an electrolytic pickling method for a stainless steel strip, which is an example of an embodiment of the present invention.

【図2】電極長さ方向における電流密度を示す分布図で
ある。
FIG. 2 is a distribution diagram showing current density in the electrode length direction.

【図3】電力原単位を従来例と比較したグラフ図であ
る。
FIG. 3 is a graph diagram comparing electric power consumption with a conventional example.

【図4】電解模様による不良発生率を従来例と比較した
グラフ図である。
FIG. 4 is a graph diagram comparing a defect occurrence rate due to an electrolytic pattern with a conventional example.

【図5】従来例を説明するための説明図である。FIG. 5 is an explanatory diagram for explaining a conventional example.

【図6】従来例の電極長さ方向における電流密度を示す
分布図である。
FIG. 6 is a distribution diagram showing the current density in the electrode length direction of the conventional example.

【符号の説明】[Explanation of symbols]

1…ステンレス鋼帯 3…電解槽 5a,5b…陽電極板 6a,6b…陰電極板 1 ... Stainless steel strip 3 ... Electrolyzer 5a, 5b ... Positive electrode plate 6a, 6b ... Negative electrode plate

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 電解液を用いて鋼帯の電解酸洗を行うに
際し、鋼帯の進行方向に沿って配置された電極を介して
該鋼帯に電解電流を流すことにより、鋼帯表面のスケー
ルを除去するようにした鋼帯の電解酸洗方法であって、 前記電極を前記鋼帯の進行方向に沿って複数並設して該
鋼帯表面に付与される電解電流の電流密度を各電極毎に
個別に調整可能にしたことを特徴とする鋼帯の電解酸洗
方法。
1. When electrolytically pickling a steel strip using an electrolytic solution, an electrolytic current is passed through the steel strip through electrodes arranged along the traveling direction of the steel strip, thereby A method for electrolytic pickling of a steel strip adapted to remove scale, wherein a plurality of the electrodes are arranged in parallel along the traveling direction of the steel strip and the current densities of the electrolytic currents applied to the surface of the steel strip are varied. An electrolytic pickling method for steel strips characterized in that each electrode can be individually adjusted.
JP25135795A 1995-09-28 1995-09-28 Electrolytic pickling method for steel strip Pending JPH0987900A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25135795A JPH0987900A (en) 1995-09-28 1995-09-28 Electrolytic pickling method for steel strip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25135795A JPH0987900A (en) 1995-09-28 1995-09-28 Electrolytic pickling method for steel strip

Publications (1)

Publication Number Publication Date
JPH0987900A true JPH0987900A (en) 1997-03-31

Family

ID=17221631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25135795A Pending JPH0987900A (en) 1995-09-28 1995-09-28 Electrolytic pickling method for steel strip

Country Status (1)

Country Link
JP (1) JPH0987900A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105040088A (en) * 2015-08-11 2015-11-11 佛山市环宇新型材料有限公司 Electrolytic decontamination device for strip steel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105040088A (en) * 2015-08-11 2015-11-11 佛山市环宇新型材料有限公司 Electrolytic decontamination device for strip steel

Similar Documents

Publication Publication Date Title
EP0644276B1 (en) Method and apparatus for descaling a hot-rolled steel strip
KR100530814B1 (en) Indirect conducting type continuous electrolytic etching method and apparatus for metallic strap
RU2375506C2 (en) Method and device for etching of metals
JP2012162757A (en) Continuous electrolytic cleaning method and continuous electrolytic cleaning device of metal band
JPH05202500A (en) Method for electrolytic acid cleaning and device performing it
KR19980033150A (en) Method and apparatus for electrolytic acid washing of metal strip
US2197653A (en) Method of electrically pickling and cleaning stainless steel and other metals
JPH0827600A (en) Descaling method and device for stainless steel strip
JP2000064100A (en) Descaling apparatus for steel strip and apparatus for producing steel strip
JPH0987900A (en) Electrolytic pickling method for steel strip
US4050996A (en) Electochemically exchanging a steel surface with a pure iron surface
US4711707A (en) Method for removal of scale from hot rolled steel
JP3792335B2 (en) Finishing electrolytic pickling method in descaling of stainless steel strip
US2267146A (en) Apparatus for electrically pickling and cleaning stainless steel and other metals
JP4177476B2 (en) Method and apparatus for continuous cleaning of steel strip
JP2000204499A (en) Electrolytical descaling of stainless steel strip
JP4157441B2 (en) Indirect energization type continuous electrolytic etching method and indirect energization type continuous electrolytic etching apparatus for low iron loss unidirectional silicon steel sheet
JP3846646B2 (en) Surface cleaning method by electrolysis of steel
JP2517353B2 (en) Descaling method for stainless steel strip
JPH06220699A (en) Device for electrolytically pickling steel material
RU2578623C1 (en) Electrolytic method for removing scales from belt of rolled metal
JP4189053B2 (en) High speed electrolytic descaling method for stainless steel
JP4157442B2 (en) Direct conduction type continuous electrolytic etching method and direct conduction type continuous electrolytic etching apparatus for low iron loss unidirectional silicon steel sheet
JPS6160920B2 (en)
RU2581957C1 (en) Method for scale removal from surface of flat rolled stock in electrolyte