JPH0987780A - Beryllium copper alloy for heat exchanger - Google Patents

Beryllium copper alloy for heat exchanger

Info

Publication number
JPH0987780A
JPH0987780A JP24782495A JP24782495A JPH0987780A JP H0987780 A JPH0987780 A JP H0987780A JP 24782495 A JP24782495 A JP 24782495A JP 24782495 A JP24782495 A JP 24782495A JP H0987780 A JPH0987780 A JP H0987780A
Authority
JP
Japan
Prior art keywords
copper alloy
heat exchanger
beryllium copper
beryllium
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP24782495A
Other languages
Japanese (ja)
Inventor
Mamoru Toyao
守 鳥屋尾
Nobuhiro Morita
悦宏 森田
Takashi Mitsui
任 三井
Toshio Yoshioka
俊雄 吉岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Chubu Electric Power Co Inc
Original Assignee
NGK Insulators Ltd
Chubu Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd, Chubu Electric Power Co Inc filed Critical NGK Insulators Ltd
Priority to JP24782495A priority Critical patent/JPH0987780A/en
Publication of JPH0987780A publication Critical patent/JPH0987780A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce a beryllium copper alloy for heat exchanger excellent in corrosion resistance and contamination resistance to seawater, furthermore, high in heat conduction and moreover, capable of easily producing a large heat exchanger. SOLUTION: This beryllium copper alloy for heat exchanger is the one having a compsn. contg. 1.0 to 2.5% beryllium, in which the total content of nickel and cobalt is regulated to 0.2 to 0.6%, and the balance copper with inevitable impurities, and in which the heat conduction is regulated to >=0.25cal/cm.sec. deg.C. The above beryllium copper alloy for heat exchanger can be obtd. by executing bulk overaging in which the final heat treating temp. is regulated to 450 to 600 deg.C and the final heat treating time to 3 to 24hr.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、熱交換器用ベリリ
ウム銅合金に関するものであり、特に海水を冷却源また
は温熱源とする熱交換器に適した熱交換器用ベリリウム
銅合金に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a beryllium copper alloy for heat exchangers, and more particularly to a beryllium copper alloy for heat exchangers suitable for heat exchangers using seawater as a cooling source or a heat source.

【0002】[0002]

【従来の技術】ベリリウム銅合金は熱伝導度が比較的良
好であり、しかも海水に対する耐食性、防汚性にも優れ
るために、海水を冷却源または温熱源として使用する熱
交換器用材料として有用である。しかし、海水によるき
びしい腐食環境に耐えるためにはベリリウム含有率を1.
0 %以上としなければならず、硬化処理を行なっても従
来は0.2cal/cm ・sec ・℃以上の熱伝導度を得ることは
できなかった。このため、従来のベリリウム銅合金は熱
伝達の面で十分とはいえないという問題があった。
BACKGROUND OF THE INVENTION Beryllium copper alloys have relatively good thermal conductivity, and also have excellent corrosion resistance and antifouling properties against seawater, and are therefore useful as materials for heat exchangers that use seawater as a cooling source or a heat source. is there. However, in order to withstand the severe corrosive environment of seawater, the beryllium content is set to 1.
It must be 0% or more, and it was not possible to obtain a thermal conductivity of 0.2 cal / cm.sec.sec. Therefore, the conventional beryllium copper alloy has a problem in that it cannot be said to be sufficient in terms of heat transfer.

【0003】また、ベリリウム銅合金により熱交換器を
製造する場合、多管式熱交換器については熱間押出→冷
間引抜→溶体化処理→仕上引抜→硬化処理という工程で
パイプが製造され、プレート式熱交換器については熱間
圧延→冷間圧延→溶体化処理→仕上圧延→硬化処理とい
う工程でプレートが製造されるが、工程が長いうえに大
型の溶体化処理炉を必要とするため、経済的に困難があ
った。従って、特に大型の熱交換器を製造することはき
わめて困難であった。
Further, when a heat exchanger is manufactured from a beryllium copper alloy, a pipe is manufactured in the process of hot extrusion → cold drawing → solution treatment → finish drawing → hardening treatment in a multi-tube heat exchanger, For plate heat exchangers, plates are manufactured by the steps of hot rolling → cold rolling → solution heat treatment → finish rolling → hardening treatment, but the process is long and requires a large solution heat treatment furnace. , Was financially difficult. Therefore, it has been extremely difficult to manufacture a particularly large heat exchanger.

【0004】[0004]

【発明が解決しようとする課題】本発明は上記した従来
の問題点を解決して、海水に対する耐食性、防汚性に優
れるうえに熱伝導度が大きく、しかも大型の熱交換器を
も容易に製造することができる熱交換器用ベリリウム銅
合金を提供するためになされたものである。
DISCLOSURE OF THE INVENTION The present invention solves the above-mentioned problems of the prior art, and is excellent in corrosion resistance and antifouling property against seawater, has a large thermal conductivity, and can easily form a large heat exchanger. The purpose is to provide a beryllium copper alloy for a heat exchanger that can be manufactured.

【0005】[0005]

【課題を解決するための手段】上記の課題を解決するた
めになされた本発明の熱交換器用ベリリウム銅合金は、
ベリリウム含有率が1.0 〜2.5 %(重量%)、ニッケル
とコバルトの含有率の和が0.2 〜0.6 %、残部が銅およ
び不可避的不純物からなり、熱伝導度を0.25cal/cm・se
c ・℃以上としたことを特徴とするものである。なお、
この熱交換器用ベリリウム銅合金は、最終熱処理温度を
450 〜600℃、最終熱処理時間を3〜24時間としたもの
であることが好ましい。
The beryllium copper alloy for a heat exchanger of the present invention made to solve the above-mentioned problems is
Beryllium content is 1.0 to 2.5% (wt%), sum of nickel and cobalt contents is 0.2 to 0.6%, the balance is copper and inevitable impurities, and thermal conductivity is 0.25 cal / cm · se.
It is characterized in that the temperature is above c- ° C. In addition,
This beryllium copper alloy for heat exchanger has a final heat treatment temperature.
It is preferable that the final heat treatment time is 450 to 600 ° C. and the time is 3 to 24 hours.

【0006】[0006]

【発明の実施の形態】本発明の熱交換器用ベリリウム銅
合金は、ベリリウム含有率が1.0 〜2.5 %、ニッケルと
コバルトの含有率の和が0.2 〜0.6 %、残部が銅および
不可避的不純物から構成されている。ここでベリリウム
含有率が1.0 %未満であると、前記したように海水によ
るきびしい腐食環境に耐えることができない。またベリ
リウム含有率が2.5 %を越えると、γ相の晶出が避けら
れず加工性が低下するうえ、熱伝導度の低下を招く。ま
たニッケルとコバルトの含有率の和が0.2 %未満である
と結晶を微細化させることができず加工性が低下するこ
ととなり、逆に0.6 %を越えると経済性が損なわれると
ともに展延性が阻害されるので好ましくない。
BEST MODE FOR CARRYING OUT THE INVENTION The beryllium-copper alloy for a heat exchanger of the present invention has a beryllium content of 1.0 to 2.5%, a sum of nickel and cobalt contents of 0.2 to 0.6%, and the balance being copper and inevitable impurities. Has been done. If the beryllium content is less than 1.0%, it cannot withstand the severe corrosive environment of seawater as described above. On the other hand, if the beryllium content exceeds 2.5%, crystallization of the γ phase is unavoidable, workability is deteriorated, and thermal conductivity is deteriorated. If the total content of nickel and cobalt is less than 0.2%, the crystal cannot be made finer and the workability will be deteriorated. On the contrary, if it exceeds 0.6%, the economic efficiency will be impaired and the spreadability will be impaired. Therefore, it is not preferable.

【0007】本発明の熱交換器用ベリリウム銅合金は、
従来のような溶体化処理→仕上加工→硬化処理という工
程の代わりに、バルクオーバーエージングを施すことに
よって得られる。このバルクオーバーエージングは引抜
材の場合は定尺に切断をして、圧延材の場合はコイル状
に巻いたまま炉内で加熱するだけでよく、水冷の必要も
ない。多管式の場合には熱間押出→冷間引抜→バルクオ
ーバーエージングという工程となり、プレート式の場合
には熱間圧延→冷間圧延→バルクオーバーエージングと
いう工程となる。
The beryllium copper alloy for heat exchanger of the present invention comprises
It can be obtained by performing bulk overaging instead of the conventional solution heat treatment->finishing-> hardening treatment. In this bulk overaging, in the case of a drawn material, it is only necessary to cut it to a fixed length, and in the case of a rolled material, it is sufficient to heat it in a furnace while winding it in a coil shape, and there is no need for water cooling. In the case of the multi-tube type, the process is hot extrusion → cold drawing → bulk overaging, and in the case of the plate type, hot rolling → cold rolling → bulk overaging.

【0008】このバルクオーバーエージングのための最
終熱処理温度は450 〜600 ℃、最終熱処理時間は3〜24
時間とされる。ここで最終熱処理温度が450 ℃未満であ
ったり最終熱処理時間が3時間未満であると、十分な加
工性が得られないうえに0.25cal/cm・sec ・℃以上の熱
伝導度を得ることができない。逆に最終熱処理温度が60
0 ℃を越えたり最終熱処理時間が24時間を越えること
は、経済的に好ましくない。このように本発明の熱交換
器用ベリリウム銅合金は、前記した組成の合金に最終熱
処理温度450 〜600 ℃、最終熱処理時間3〜24時間のバ
ルクオーバーエージングを施すことにより0.25cal/cm・
sec ・℃以上の熱伝導度を達成したもので、この値は通
常の熱処理を行なったベリリウム銅合金の熱伝導度であ
る0.2cal/cm ・sec ・℃よりもはるかに大きく、従来の
ベリリウム銅合金にない高い熱伝導度である。
The final heat treatment temperature for this bulk over-aging is 450 to 600 ° C., and the final heat treatment time is 3 to 24.
It is time. If the final heat treatment temperature is less than 450 ° C or the final heat treatment time is less than 3 hours, sufficient workability cannot be obtained and a thermal conductivity of 0.25 cal / cm · sec · ° C or more can be obtained. Can not. Conversely, the final heat treatment temperature is 60
It is economically unfavorable that the temperature exceeds 0 ° C or the final heat treatment time exceeds 24 hours. As described above, the beryllium copper alloy for heat exchanger of the present invention is obtained by subjecting the alloy having the above composition to bulk overaging at a final heat treatment temperature of 450 to 600 ° C. for a final heat treatment time of 3 to 24 hours.
It achieves a thermal conductivity of sec. ℃ or more, which is 0.2cal / cm which is the thermal conductivity of beryllium copper alloy that has been subjected to normal heat treatment, which is much higher than that of conventional beryllium copper alloy. High thermal conductivity not found in alloys.

【0009】このように本発明の熱交換器用ベリリウム
銅合金は、溶体化処理→仕上加工→硬化処理という工程
をバルクオーバーエージングに置換したために、熱交換
器の製造に際しては従来に比較して大幅な工程短縮を図
ることができるとともに、高価な溶体化処理炉が不要と
なる。
As described above, in the beryllium copper alloy for heat exchangers of the present invention, the steps of solution heat treatment → finishing → hardening treatment are replaced by bulk overaging. It is possible to shorten the number of steps and eliminate the need for an expensive solution treatment furnace.

【0010】[0010]

【実施例】〔実施例1〕 ベリリウム含有率1.90%、ニッケルとコバルトの含有率
の和0.30%、残部が銅および不可避的不純物からなるベ
リリウム銅合金を、適当な条件で熱間圧延し、適当な条
件で冷間圧延したうえ、最終熱処理温度500 ℃、最終熱
処理時間10時間のバルクオーバーエージングを施してプ
レート式熱交換器のための伝熱プレートを製造した。こ
の材料の熱伝導度は0.3cal/cm ・sec ・℃であった。こ
れに比較して従来のベリリウム銅合金(ベリリウム含有
率1.90%、ニッケルとコバルトの含有率の和0.30%、溶
体化処理条件800 ℃×2時間、硬化処理条件280 ℃×4
時間)からなる伝熱プレートの熱伝導度は0.2cal/cm ・
sec ・℃であり、本発明の熱交換器用ベリリウム銅合金
の熱伝導度が非常に大きいことが確認された。
Example 1 A beryllium copper alloy having a beryllium content of 1.90%, a sum of nickel and cobalt contents of 0.30%, and a balance of copper and unavoidable impurities was hot-rolled under appropriate conditions. After cold rolling under various conditions, the final heat treatment temperature was 500 ° C. and the final heat treatment time was 10 hours for bulk overaging to manufacture a heat transfer plate for a plate heat exchanger. The thermal conductivity of this material was 0.3 cal / cm · sec · ° C. Compared with this, conventional beryllium copper alloy (beryllium content 1.90%, sum of nickel and cobalt content 0.30%, solution heat treatment condition 800 ℃ × 2 hours, hardening treatment condition 280 ℃ × 4
The heat conductivity of the heat transfer plate is 0.2 cal / cm
sec · ° C., and it was confirmed that the beryllium copper alloy for heat exchangers of the present invention has a very high thermal conductivity.

【0011】また、上記のようにして得られた本発明材
と従来材の伝熱プレートを流速1m/分の海水と接触さ
せて1年間の腐食深さを測定したところ、いずれも20μ
m /年であり、本発明材も従来材と同様の海水に対する
耐食性、防汚性を備えていることが分かった。さらに試
験板を海水に1年間浸漬して貝類および藻類に対する防
汚性能を調べた結果、次の表1の通りの結果となった。
The heat transfer plates of the present invention material and the conventional material obtained as described above were brought into contact with seawater at a flow rate of 1 m / min, and the corrosion depth for one year was measured.
It was found that the material of the present invention has the same corrosion resistance and antifouling property against seawater as the conventional material. Further, as a result of immersing the test plate in seawater for 1 year and examining the antifouling property against shellfish and algae, the results are as shown in Table 1 below.

【0012】[0012]

【表1】 [Table 1]

【0013】〔実施例2〕次に表2に示す4種類の熱交
換器用ベリリウム銅合金を製造し、最終熱処理温度と最
終熱処理時間を様々に変化させて、得られた材料の熱伝
導率を測定した。その結果を表3〜表6に示す。
Example 2 Next, four kinds of beryllium copper alloys for heat exchangers shown in Table 2 were manufactured, and the final heat treatment temperature and the final heat treatment time were variously changed to obtain the thermal conductivity of the obtained material. It was measured. The results are shown in Tables 3 to 6.

【0014】[0014]

【表2】 [Table 2]

【0015】[0015]

【表3】 [Table 3]

【0016】[0016]

【表4】 [Table 4]

【0017】[0017]

【表5】 [Table 5]

【0018】[0018]

【表6】 [Table 6]

【0019】[0019]

【発明の効果】以上に説明したように、本発明の熱交換
器用ベリリウム銅合金は従来品とは合金組成と熱処理条
件とを変更することにより、従来にない大きい熱伝導度
を有するものであるため、熱交換器の伝熱部材として用
いれば、優れた伝熱効果を得ることができる。また本発
明の熱交換器用ベリリウム銅合金は、従来のような溶体
化処理工程を必要としないので、熱交換器の製造工程を
短縮できるとともに、溶体化処理炉を必要としないため
に大型の熱交換器用のパイプやプレートをも容易かつ経
済的に製造できる利点がある。
As described above, the beryllium copper alloy for a heat exchanger of the present invention has a large thermal conductivity which has not been found in the prior art by changing the alloy composition and heat treatment conditions. Therefore, if it is used as a heat transfer member of a heat exchanger, an excellent heat transfer effect can be obtained. Further, the beryllium copper alloy for heat exchangers of the present invention does not require a solution treatment step as in the conventional art, and therefore, the manufacturing process of the heat exchanger can be shortened, and since a solution treatment furnace is not required, a large heat treatment is not required. There is also an advantage that pipes and plates for exchangers can be manufactured easily and economically.

フロントページの続き (72)発明者 三井 任 愛知県名古屋市瑞穂区須田町2番56号 日 本碍子株式会社内 (72)発明者 吉岡 俊雄 愛知県名古屋市瑞穂区須田町2番56号 日 本碍子株式会社内Front Page Continuation (72) Inventor Mitsuto Mitsui Nihon Insulator Co., Ltd. 2-56 Sudacho, Mizuho-ku, Nagoya-shi, Aichi (72) Inventor Toshio Yoshioka 2-56, Suda-cho, Mizuho-ku, Nagoya, Aichi Nihon Insulator Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ベリリウム含有率が1.0 〜2.5 %、ニッ
ケルとコバルトの含有率の和が0.2 〜0.6 %、残部が銅
および不可避的不純物からなり、熱伝導度を0.25cal/cm
・sec ・℃以上としたことを特徴とする熱交換器用ベリ
リウム銅合金。
1. A beryllium content rate of 1.0 to 2.5%, a sum of nickel and cobalt content rates of 0.2 to 0.6%, the balance being copper and inevitable impurities, and a thermal conductivity of 0.25 cal / cm.
-Sec-Beryllium-copper alloy for heat exchangers characterized by having a temperature of ℃ or more.
【請求項2】 最終熱処理温度を450 〜600 ℃、最終熱
処理時間を3〜24時間とした請求項1に記載の熱交換器
用ベリリウム銅合金。
2. The beryllium copper alloy for a heat exchanger according to claim 1, wherein the final heat treatment temperature is 450 to 600 ° C. and the final heat treatment time is 3 to 24 hours.
JP24782495A 1995-09-26 1995-09-26 Beryllium copper alloy for heat exchanger Withdrawn JPH0987780A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24782495A JPH0987780A (en) 1995-09-26 1995-09-26 Beryllium copper alloy for heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24782495A JPH0987780A (en) 1995-09-26 1995-09-26 Beryllium copper alloy for heat exchanger

Publications (1)

Publication Number Publication Date
JPH0987780A true JPH0987780A (en) 1997-03-31

Family

ID=17169218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24782495A Withdrawn JPH0987780A (en) 1995-09-26 1995-09-26 Beryllium copper alloy for heat exchanger

Country Status (1)

Country Link
JP (1) JPH0987780A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115261666A (en) * 2022-07-18 2022-11-01 江西省金叶有色新材料研究院 Lead-free high-strength high-conductivity beryllium bronze bar and manufacturing method and application thereof
KR20230104291A (en) 2021-01-08 2023-07-07 고쿠리쓰다이가쿠호진 규슈다이가쿠 Copper alloy joint body and manufacturing method thereof
US11761071B2 (en) 2019-07-04 2023-09-19 Ngk Insulators, Ltd. Beryllium copper alloy bonded body and production method therefor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11761071B2 (en) 2019-07-04 2023-09-19 Ngk Insulators, Ltd. Beryllium copper alloy bonded body and production method therefor
KR20230104291A (en) 2021-01-08 2023-07-07 고쿠리쓰다이가쿠호진 규슈다이가쿠 Copper alloy joint body and manufacturing method thereof
CN115261666A (en) * 2022-07-18 2022-11-01 江西省金叶有色新材料研究院 Lead-free high-strength high-conductivity beryllium bronze bar and manufacturing method and application thereof
CN115261666B (en) * 2022-07-18 2023-03-31 江西省金叶有色新材料研究院 Lead-free high-strength high-conductivity beryllium bronze bar and manufacturing method and application thereof

Similar Documents

Publication Publication Date Title
JP3961529B2 (en) High strength copper alloy
EP0116969B1 (en) Precipitation hardenable copper alloy, process for treating such alloy and use of such alloy
US4799973A (en) Process for treating copper-nickel alloys for use in brazed assemblies and product
CN114855026B (en) High-performance precipitation strengthening type copper alloy and preparation method thereof
JP2515127B2 (en) Method for producing alloy of copper, chromium, titanium and silicon
CN110090875A (en) A kind of preparation method of heat exchanger copper strips
JPH0987780A (en) Beryllium copper alloy for heat exchanger
JPS61119660A (en) Manufacture of copper alloy having high strength and electric conductivity
JPS61272339A (en) Lead material for electronic parts excelled in repeated bendability and its production
US3287180A (en) Method of fabricating copper base alloy
US3366477A (en) Copper base alloys
JPS6156236A (en) Manufacture of two phase stainless steel hot rolled steel strip for working
JP4718273B2 (en) Reinforced α brass and method for producing the same
TWI855053B (en) Copper alloys with high strength and high conductivity, and processes for making such copper alloys
JP3225604B2 (en) Method for producing intermetallic compound precipitation-strengthened Ni-Cr-Mo-based alloy cast member having excellent corrosion resistance
JPS5934782B2 (en) Manufacturing method of droop-resistant aluminum alloy plate
JPH04371541A (en) Aluminum alloy for heat exchanger piping
JPS60145348A (en) High-strength thin al alloy plate having superior formability and corrosion resistance and its manufacture
JPS61143564A (en) Manufacture of high strength and highly conductive copper base alloy
CN106939382B (en) A kind of plate heat exchanger alcu alloy film and its manufacturing method
JPH0693365A (en) High strength al-mg alloy excellent in corrosion resistance and its production
JPH04354843A (en) Copper base alloy for heat exchanger
JP2004143469A (en) High strength copper alloy excellent in bendability
JPS5810465B2 (en) Manufacturing method of highly heat-resistant aluminum alloy for conductive use
JPH09287062A (en) Production of pure aluminum material excellent in pitting corrosion resistance

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20021203