JPH0987022A - Fiber reinforced electrically conductive ceramics - Google Patents

Fiber reinforced electrically conductive ceramics

Info

Publication number
JPH0987022A
JPH0987022A JP7250269A JP25026995A JPH0987022A JP H0987022 A JPH0987022 A JP H0987022A JP 7250269 A JP7250269 A JP 7250269A JP 25026995 A JP25026995 A JP 25026995A JP H0987022 A JPH0987022 A JP H0987022A
Authority
JP
Japan
Prior art keywords
fiber
conductive ceramics
powder
electrically conductive
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7250269A
Other languages
Japanese (ja)
Inventor
Akihiko Yoshida
明彦 吉田
Yasunori Kato
泰範 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP7250269A priority Critical patent/JPH0987022A/en
Publication of JPH0987022A publication Critical patent/JPH0987022A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Conductive Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an electrically conductive porous ceramic sintered compact composed of a perovskite type oxide having increased bending strength. SOLUTION: A powdery perovskite type oxide represented by the formula (La1-x Mx )1-y MnO3 (where M is an element selected from among Ca, Sr and Ba, 0<x<=0.4 and 0<=y<=0.2) is mixed with 5-50vol.% ceramic fibers and the resultant mixture is compacted and fired.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は繊維強化導電性セラ
ミックス、特にはこれを固体電解型燃料電池のセル基体
として使用される繊維強化導電性セラミックスに関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fiber reinforced conductive ceramics, and more particularly to a fiber reinforced conductive ceramics which is used as a cell substrate of a solid electrolytic fuel cell.

【0002】[0002]

【従来の技術】ペロブスカイト型酸化物粉末としては一
般式(La1-xMx)1-yMnO3(ここにMはCa、Sr、Baか
ら選択される元素、0<x≦0.4 、0≦y≦0.2 )で示
されるものが公知とされており、この式で示されるペロ
ブスカイト酸化物からなる導電性多孔質セラミックス焼
結体については、この表面に他の部材を熔射するか、ま
たはそのスラリーを塗布してなる複合材も知られてい
る。
2. Description of the Related Art Perovskite type oxide powder has a general formula (La 1-x M x ) 1-y MnO 3 (where M is an element selected from Ca, Sr and Ba, 0 <x ≦ 0.4, 0 ≦ y ≦ 0.2) is publicly known, and for the conductive porous ceramics sintered body made of the perovskite oxide represented by this formula, another member is sprayed on this surface, or A composite material formed by applying the slurry is also known.

【0003】[0003]

【発明が解決しようとする課題】しかし、この複合材に
ついては新しい成膜面とペロブスカイト酸化物からなる
導電性多孔質セラミックスとの線膨張係数の違いにより
発生する残留応力によってクラックや割れが発生する
し、特に 1,000℃という高温で使用する場合には熱衝撃
によって、ペロブスカイト酸化物からなる導電性多孔質
セラミックスにクラックや割れが発生する場合がある。
また、この導電性多孔質セラミックス焼結体について
は、この母材が曲げ強度の弱いものであるということか
ら、これを固体電解質燃料電池(SOFC)の円筒型あ
るいは平板型のセル基体として使用し、例えばこれで
1,000℃の発電試験を行なうと、この導電性セラミック
ス焼結体が割れ易くなるという問題点が発生する。
However, in this composite material, cracks and cracks are generated by the residual stress generated due to the difference in linear expansion coefficient between the new film-forming surface and the conductive porous ceramics made of perovskite oxide. However, especially when used at a high temperature of 1,000 ° C., thermal shock may cause cracks or cracks in the conductive porous ceramics made of perovskite oxide.
Further, regarding this conductive porous ceramics sintered body, since this base material has a low bending strength, it is used as a cylindrical or flat cell base for a solid oxide fuel cell (SOFC). , For example
When conducting a power generation test at 1,000 ° C., there arises a problem that the conductive ceramics sintered body is easily cracked.

【0004】また、この導電性多孔質セラミックス焼結
体の曲げ強度は、このペロブスカイト酸化物のMをSr
とし、x=0.15、y=0.1 のとき、これを緻密体とする
と 100MPa となるが、ガス透過性をもたすようなSOF
Cのセル基体として使用するときは、一般に気孔度の増
加に伴なって曲げ強度の低下がみられることから、これ
を30%の気孔をもつ多孔質体とすると、この母材の曲げ
強度は50MPa 程度まで低下する。
Further, the bending strength of this conductive porous ceramics sintered body is such that M of this perovskite oxide is Sr.
And when x = 0.15 and y = 0.1, it becomes 100MPa when it is a dense body, but SOF that has gas permeability.
When it is used as a cell substrate of C, the flexural strength generally decreases as the porosity increases. Therefore, if this is made into a porous body having 30% of porosity, the flexural strength of this base material is It drops to about 50MPa.

【0005】[0005]

【課題を解決するための手段】本発明はこのような不
利、問題点を解決した繊維強化導電性セラミックスに関
するもので、これは一般式(La1-xMx)1-yMnO3(ここにM
はCa、Sr、Baから選択される元素、0<x≦0.4
、0≦y≦0.2 )で示されるペロブスカイト型酸化物
粉末にセラミックス繊維を5〜50容量%混合し、成形、
焼結してなることを特徴とするものである。
The present invention relates to a fiber-reinforced conductive ceramics which solves the above disadvantages and problems, and it is represented by the general formula (La 1-x M x ) 1-y MnO 3 (here To M
Is an element selected from Ca, Sr, and Ba, 0 <x ≦ 0.4
, 0 ≦ y ≦ 0.2) and 5% to 50% by volume of ceramic fibers are mixed with the perovskite type oxide powder, and molded,
It is characterized by being sintered.

【0006】本発明は繊維強化導電性セラミックスに関
するもので、これは上記したようにペロブスカイト型酸
化物粉末にセラミックス繊維を5〜50容量%混合し、成
形、焼結してなるものであるが、このペロブスカイト型
酸化物としてはペロブスカイト単一相の均一な結晶を有
する複合酸化物としての一般式(La1-xMx)1-yMnO3(M
x、yは前記に同じ)で示されるランタンマンガナイト
粉末とすればよい。
The present invention relates to a fiber-reinforced conductive ceramics, which is obtained by mixing 5 to 50% by volume of ceramic fibers with perovskite type oxide powder, molding and sintering it. The perovskite-type oxide has a general formula (La 1-x M x ) 1-y MnO 3 (M as a complex oxide having a perovskite single-phase uniform crystal.
The lanthanum manganite powder represented by the above (x and y are the same) may be used.

【0007】また、これに添加されるセラミックス繊維
はセラミックスファイバーとして知られているTiO2、Zn
O 、MgO 、Al2O3 、TiB2などを溶融繊維化法、前駆体繊
維化法などで繊維化したものとすればよいが、これにつ
いてはセラミックスの強化材として知られている繊維強
化セラミックス(FRC)のなかでもウイスカに着目
し、その効果を調べたところ、特にウイスカは欠陥がな
い単結晶からなる非常に強力な繊維状の物質であるた
め、導電性セラミックスのマトリックス中で化学的に反
応することがなく、これがウイスカ状で分散、残留する
ので、この焼結体に高い曲げ強度と靭性が与えられるこ
とが見出された。
The ceramic fibers added to this are TiO 2 , Zn, which is known as ceramic fiber.
Fibers such as O 2 , MgO, Al 2 O 3 and TiB 2 may be made into fibers by a melt fiberizing method, a precursor fiberizing method, etc., which are known as fiber-reinforced ceramics. Of the (FRC), focusing on whiskers and examining their effects, it was found that whiskers are very strong fibrous substances made of single crystals without defects. It was found that this sintered body has high bending strength and toughness because it does not react and is dispersed and remains in the form of whiskers.

【0008】なお、このセラミックス繊維については導
電性セラミックスの焼結温度である1,450℃以上の融点
を有するウイスカを選択することがよいが、これは上記
した金属酸化物のいずれとしてもよく、これらはいずれ
もランタンマンガナイト粉末の構成成分と化学的と反応
しないことから、これをランタンマンガナイト粉末中に
存在させると、繊維強化導電性セラミックスに高い靭性
を付与することができる。
For this ceramic fiber, it is preferable to select a whisker having a melting point of 1,450 ° C. which is the sintering temperature of the conductive ceramics, but this may be any of the metal oxides mentioned above. Since none of them chemically reacts with the constituent components of the lanthanum manganite powder, the presence of this in the lanthanum manganite powder can impart high toughness to the fiber-reinforced conductive ceramics.

【0009】なお、このセラミックス繊維は繊維径が0.
01μm未満では繊維径が細い為クラックディフレクショ
ンといった効果が充分に得られず、 150μmを越えると
焼結時に母材の密度が充分にあがらない(焼結性に問題
が出る)ので、0.01〜 150μmのものとし、これはまた
その繊維長が1μm未満では繊維長が短い為プルアウト
といった効果が充分に得られず、 2,000μmを越えると
焼結性に問題が有るので、1〜 2,000μmのものとする
必要があるが、このものの添加量はこれがランタンマン
ガナイト粉末に対して5容量%未満であると少量にすぎ
て前記した効果が不充分となり、これが50容量%を越え
ると多すぎて焼結性に問題が有るという不利がもたらさ
れるので、これは5〜50容量%とすることが必要とされ
る。
The ceramic fiber has a fiber diameter of 0.
If it is less than 01 μm, the effect of crack deflection cannot be sufficiently obtained because the fiber diameter is small, and if it exceeds 150 μm, the density of the base material does not rise sufficiently at the time of sintering (sinterability is problematic), so 0.01 to 150 μm If the fiber length is less than 1 μm, the effect of pull-out cannot be sufficiently obtained because the fiber length is short, and if it exceeds 2,000 μm, there is a problem in sinterability. However, if the amount of this compound added is less than 5% by volume relative to the lanthanum manganite powder, the above-mentioned effect becomes insufficient, and if it exceeds 50% by volume, sintering becomes too large. This is required to be between 5 and 50% by volume, as this results in the disadvantage of being sexually problematic.

【0010】本発明の繊維強化導電性セラミックスはラ
ンタンマンガナイト粉末に上記したセラミックス繊維の
所定量を添加し、必要に応じバインダーとしての例えば
ポリビニルアルコールを添加して成形し、焼結すること
によって得ることができ、この焼結は 1,400〜 1,500℃
で10時間程度とすればよいが、このものの気孔率の調整
にはバインダーと共にカーボン粉末などの造孔剤を適宜
配合すればよい。
The fiber-reinforced conductive ceramics of the present invention is obtained by adding a predetermined amount of the above-mentioned ceramics fibers to lanthanum manganite powder, and optionally adding, for example, polyvinyl alcohol as a binder, molding and sintering. Can be sintered at 1,400-1,500 ℃
It may be about 10 hours, but the porosity of this may be adjusted by appropriately blending a pore-forming agent such as carbon powder together with the binder.

【0011】なお、このようにして得られたランタンマ
ンガナイト焼結体については、これを溶射やスラリー塗
布といった方法で他の部材と複合化してもよいし、気孔
を設けて 1,000℃といった高温で使用しても、焼結体中
に添加されたセラミックス繊維のブリッジングやプルア
ウト、クラックディフレクションという効果によってク
ラックの進展が防止され、曲げ強度の向上が図られる
し、このセラミックス繊維を導電性のものとすれば繊維
添加によるランタンマンガナイト焼結体の導電率の低下
も抑えることができる。
The lanthanum manganite sintered body thus obtained may be compounded with other members by a method such as thermal spraying or slurry coating, or may be provided with pores at a high temperature of 1,000 ° C. Even when used, the ceramic fibers added to the sintered body are prevented from propagating cracks due to the effects of bridging, pullout and crack deflection, and the bending strength is improved. If so, it is possible to suppress a decrease in conductivity of the lanthanum manganite sintered body due to the addition of fibers.

【0012】[0012]

【発明の実施の形態】つぎに本発明の実施の形態につい
て実施例、比較例をあげて説明する。 実施例1 平均粒径が3〜10μmの式(La0.85Sr0.15)0.9MnO3 で示
される、ランタンマンガナイト粉末に、繊維径が 0.2〜
3μmで繊維長が30μmの ZnOウイスカを20容量%添加
し、これにバインダーとしてポリビニルアルコールを3
重量%添加して成形体用造粒粉とした。
BEST MODE FOR CARRYING OUT THE INVENTION Next, embodiments of the present invention will be described with reference to Examples and Comparative Examples. Example 1 A lanthanum manganite powder represented by the formula (La 0.85 Sr 0.15 ) 0.9 MnO 3 having an average particle diameter of 3 to 10 μm and a fiber diameter of 0.2 to
20% by volume of ZnO whiskers with a fiber length of 3 μm and a fiber length of 30 μm was added, and polyvinyl alcohol was added as a binder to this.
% By weight to give a granulated powder for a molded body.

【0013】ついで、この成形体用造粒粉を金型プレス
器に装入し、0.5ton/cm2で成形して外径 135mm×厚さ5
mmの成形体を製造し、これを大気中において焼結温度
1,500℃で10時間焼成して焼結体としたところ、このも
のは曲げ強度が146MPaで気孔率が 7.2%のものであっ
た。
Then, the granulated powder for molding is charged into a die press and molded at 0.5 ton / cm 2 to have an outer diameter of 135 mm and a thickness of 5
mm compacts are manufactured and the sintering temperature is
When sintered at 1,500 ° C for 10 hours to obtain a sintered body, this had a bending strength of 146 MPa and a porosity of 7.2%.

【0014】実施例2 平均粒径が3〜10μmの式(La0.85Sr0.15)0.9MnO3 で示
されるランタンマンガナイト粉末に、造孔剤として平均
粒径が5μmのカーボン粉末を30重量%加え、繊維径が
0.2〜3μm、繊維長が30μmの ZnOウイスカを20容量
%とバインダーとしてのポリビニルアルコール3重量%
を添加して成形体用造粒粉とした。
Example 2 To a lanthanum manganite powder represented by the formula (La 0.85 Sr 0.15 ) 0.9 MnO 3 having an average particle size of 3 to 10 μm, 30% by weight of carbon powder having an average particle size of 5 μm was added as a pore forming agent. , The fiber diameter is
20% by volume of ZnO whiskers with 0.2 to 3 μm and fiber length of 30 μm and 3% by weight of polyvinyl alcohol as a binder
Was added to obtain a granulated powder for a molded body.

【0015】ついで、この成形体用造粒粉を金型プレス
器に装入し、0.5ton/cm2で成形して外径 135mm×厚さ5
mmの成形体を製造し、これを大気中において焼結温度
1,450℃で10時間焼成して焼結体としたところ、このも
のは曲げ強度が 87MPaで気孔率が20%のものであった。
Then, the granulated powder for molding is charged into a die press and molded at 0.5 ton / cm 2 to have an outer diameter of 135 mm and a thickness of 5
mm compacts are manufactured and the sintering temperature is
When sintered at 1,450 ° C for 10 hours to obtain a sintered body, this had a bending strength of 87 MPa and a porosity of 20%.

【0016】比較例1 平均粒径が3〜10μmの式(La0.85Sr0.15)0.9MnO3 で示
されるランタンマンガナイト粉末に、バインダーとして
のポリビニルアルコールを3重量%添加して成形体用造
粒粉を製造し、これを金型プレス器に装入して0.5ton/c
m2で成形して外径 135mm×厚さ5mmの成形体を製造した
のち、大気中において焼結温度 1,500℃で10時間焼成し
て緻密な焼結体を製造し、この曲がり強度と気孔率をし
らべたところ、この曲げ強度は103MPaで気孔率は 4.9%
であった。
Comparative Example 1 Granules for moldings were prepared by adding 3% by weight of polyvinyl alcohol as a binder to lanthanum manganite powder represented by the formula (La 0.85 Sr 0.15 ) 0.9 MnO 3 having an average particle diameter of 3 to 10 μm. Produce powder, put it in the die press and press 0.5ton / c
After molding with m 2 to produce a molded body with an outer diameter of 135 mm and a thickness of 5 mm, it is fired at a sintering temperature of 1,500 ° C for 10 hours in the atmosphere to produce a dense sintered body, which has bending strength and porosity. The bending strength was 103 MPa and the porosity was 4.9%.
Met.

【0017】比較例2 平均粒径が3〜10μmの式(La0.85Sr0.15)0.9MnO3 で示
されるランタンマンガナイトに、造孔剤として平均粒径
が5μmのカーボン粉末30重量%と、バインダーとして
のポリビニルアルコール3重量%を添加して成形体用造
粒粉を製造し、これを金型プレス器に装入し、0.5ton/c
m2で成形して外径 135mm×厚さ5mmの成形体を製造し、
これを大気中において焼結温度 1,450℃で10時間焼成し
て多孔質焼結体を製造したところ、曲げ強度が 54MPaで
気孔率は24%である焼結体が得られた。
Comparative Example 2 A lanthanum manganite represented by the formula (La 0.85 Sr 0.15 ) 0.9 MnO 3 having an average particle size of 3 to 10 μm was used, and 30% by weight of carbon powder having an average particle size of 5 μm was used as a pore forming agent, and a binder. Polyvinyl alcohol (3% by weight) is added to produce granulated powder for moldings, which is loaded into a die press to obtain 0.5ton / c.
Molded with m 2 to produce a molded body with an outer diameter of 135 mm × thickness of 5 mm,
When this was sintered in air at a sintering temperature of 1,450 ° C. for 10 hours to produce a porous sintered body, a sintered body having a bending strength of 54 MPa and a porosity of 24% was obtained.

【0018】[0018]

【発明の効果】本発明は繊維強化導電性セラミックスに
関するものであるが、これによればランタンマンガナイ
ト粉末から曲げ強度が大きく、気孔率が高くても曲げ強
度が低下しない、導電性多孔質焼結体が得られるので、
特に固体電解型燃料電池用セル基材として有用とされる
導電性多孔質焼結体が得られる。
INDUSTRIAL APPLICABILITY The present invention relates to a fiber-reinforced conductive ceramics, which has a large bending strength from lanthanum manganite powder, and does not deteriorate even if the porosity is high. Because you can get a unity
In particular, a conductive porous sintered body that is useful as a cell substrate for solid electrolytic fuel cells can be obtained.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 一般式(La1-xMx)1-yMnO3(ここにMはC
a、Sr、Baから選択される元素、0<x≦0.4 、0
≦y≦0.2 )で示されるペロブスカイト型酸化物粉末
に、セラミックス繊維を5〜50容量%混合し、成形、焼
結してなることを特徴とする繊維強化導電性セラミック
ス。
1. The general formula (La 1-x M x ) 1-y MnO 3 (where M is C
an element selected from a, Sr, and Ba, 0 <x ≦ 0.4, 0
Fiber-reinforced conductive ceramics characterized by being obtained by mixing 5 to 50% by volume of ceramic fibers with perovskite type oxide powder represented by ≦ y ≦ 0.2), molding and sintering.
【請求項2】 セラミックス繊維がTiO2、MgO 、ZnO 、
Al2O3 、TiB2の少なくとも1種からなるものである請求
項1に記載した繊維強化導電性セラミックス。
2. The ceramic fibers are TiO 2 , MgO, ZnO,
The fiber-reinforced conductive ceramics according to claim 1, which is composed of at least one of Al 2 O 3 and TiB 2 .
JP7250269A 1995-09-28 1995-09-28 Fiber reinforced electrically conductive ceramics Pending JPH0987022A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7250269A JPH0987022A (en) 1995-09-28 1995-09-28 Fiber reinforced electrically conductive ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7250269A JPH0987022A (en) 1995-09-28 1995-09-28 Fiber reinforced electrically conductive ceramics

Publications (1)

Publication Number Publication Date
JPH0987022A true JPH0987022A (en) 1997-03-31

Family

ID=17205389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7250269A Pending JPH0987022A (en) 1995-09-28 1995-09-28 Fiber reinforced electrically conductive ceramics

Country Status (1)

Country Link
JP (1) JPH0987022A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10214519A (en) * 1996-12-31 1998-08-11 Praxair Technol Inc Solid electrolyte membrane having component for improving mechanical and catalytic characteristics
CN115925418A (en) * 2022-12-14 2023-04-07 肇庆市金龙宝电子有限公司 Low-temperature NTC thermistor ceramic and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10214519A (en) * 1996-12-31 1998-08-11 Praxair Technol Inc Solid electrolyte membrane having component for improving mechanical and catalytic characteristics
CN115925418A (en) * 2022-12-14 2023-04-07 肇庆市金龙宝电子有限公司 Low-temperature NTC thermistor ceramic and preparation method thereof

Similar Documents

Publication Publication Date Title
US4861345A (en) Method of bonding a conductive layer on an electrode of an electrochemical cell
CA1257899A (en) High strength porous support tubes for high temperature solid electrolyte electrochemical cells
US10421691B2 (en) Joined body and method for producing the same
US4585499A (en) Method of producing ceramics
US20040053101A1 (en) Method for preparing a thin ceramic material with controlled surface porosity gradient, and resulting ceramic material
JPH08503193A (en) Sintered solid electrolyte with high oxygen ion conductivity
WO1992010862A1 (en) Method for manufacturing solid-state electrolytic fuel cell
KR101892909B1 (en) A method for manufacturing protonic ceramic fuel cells
JPH0471166A (en) Manufacture of air electrode material for solid electrolyte fuel cell
EP0395399A1 (en) Method of manufacturing conductive porous ceramic tube
JPH07315922A (en) Solid electrolytic ceramic and supporting member for solid electrolyte
JPH0987022A (en) Fiber reinforced electrically conductive ceramics
JPH0769721A (en) Zirconia solid-electrolytic material having high strength partially stabilized by scandia
JP2001192274A (en) Setter for debindering/sintering and manufacturing process for the same
JPH07126061A (en) Magnesia-based sintered material and production thereof
US5227102A (en) Method of manufacturing conductive porous ceramic tube
JP3254456B2 (en) Method for manufacturing solid oxide fuel cell
JP2000272968A (en) Silicon nitride sintered compact and its production
JPH07235319A (en) Solid electrolyte type fuel cell
JPH07249414A (en) Solid electrolytic fuel cell
JP2734768B2 (en) Method for manufacturing solid oxide fuel cell
US20230219853A1 (en) Functionally graded firing setters and process for manufacturing these setters
JPH0969365A (en) Solid electrolyte fuel cell
JPH09132459A (en) Porous ceramic sintered compact
JP5468984B2 (en) Sintering aid for lead-free piezoelectric ceramics, lead-free piezoelectric ceramics and manufacturing method thereof