JPH0986967A - Transparent conductive film and its production - Google Patents

Transparent conductive film and its production

Info

Publication number
JPH0986967A
JPH0986967A JP27680995A JP27680995A JPH0986967A JP H0986967 A JPH0986967 A JP H0986967A JP 27680995 A JP27680995 A JP 27680995A JP 27680995 A JP27680995 A JP 27680995A JP H0986967 A JPH0986967 A JP H0986967A
Authority
JP
Japan
Prior art keywords
film
silicate
ito
transparent conductive
conductive film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27680995A
Other languages
Japanese (ja)
Inventor
Junji Tofuku
淳司 東福
Chigusa Ishii
千草 石井
Kenji Adachi
健治 足立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP27680995A priority Critical patent/JPH0986967A/en
Publication of JPH0986967A publication Critical patent/JPH0986967A/en
Pending legal-status Critical Current

Links

Landscapes

  • Vessels, Lead-In Wires, Accessory Apparatuses For Cathode-Ray Tubes (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Non-Insulated Conductors (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Surface Treatment Of Glass (AREA)
  • Manufacture Of Electron Tubes, Discharge Lamp Vessels, Lead-In Wires, And The Like (AREA)
  • Formation Of Various Coating Films On Cathode Ray Tubes And Lamps (AREA)

Abstract

PROBLEM TO BE SOLVED: To simply obtain a transparent conductive film having a function for reducing the light reflection of a CRT display surface, having more excellent conductivity than those of conventional transparent conductive films and suitable for shielding electromagnetic fields at a low cost by a coating method. SOLUTION: This transparent conductive film formed on a glass substrate and having a film thickness of 0.31-0.62μm. The main part of the film comprises a layer wherein ITO particles having particle diameters of <=80nm are dispersed in a silicate matrix, and the ITO layer and the silicate layer do not have a clear boundary therebetween in the main part of the film. The formation of the transparent conductive film formed on the glass substrate by the method enables to obtain the film low in the surface electric resistance and in the surface reflection of light at a low cost by a low temperature baking method.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、OA機器のディス
プレイ、テレビジョンのブラウン管などの陰極線管の前
面ガラスに電界シールド効果を付与するための透明導電
膜およびその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a transparent conductive film for imparting an electric field shield effect to a front glass of a cathode ray tube such as a display of OA equipment and a cathode ray tube of a television, and a manufacturing method thereof.

【0002】[0002]

【従来の技術】近年のオフィスオートメーション(O
A)化により、オフィスに多くのOA機器が導入され、
OA機器のディスプレイと向き合って終日作業を行うと
いう環境が珍しくないが、コンピュータの陰極線管(C
RT)に接して仕事を行う場合には、表示画面が見易
く、視覚疲労を感じさせないことのほかに、CRT表面
の帯電によるホコリの付着や電撃ショックがないことが
要求されている。さらにこれに加えて最近では、CRT
から発生する低周波電磁波の人体に対する悪影響が懸念
され、このような電磁波が外部に漏洩しないことがCR
Tに対して望まれている。
2. Description of the Related Art Recent office automation (O)
A) With the introduction of many OA equipment in the office,
It is not uncommon to have an environment where you face the display of an OA device and work all day, but the cathode ray tube (C
When performing work in contact with (RT), it is required that the display screen be easy to see, that visual fatigue is not felt, and that there is no dust adhesion or electric shock due to charging of the CRT surface. In addition to this, recently, CRT
There is concern that the low-frequency electromagnetic waves generated from the human body may adversely affect the human body, and that such electromagnetic waves do not leak to the outside.
Desired for T.

【0003】電磁波は、偏向コイルやフライバックトラ
ンスから発生し、TVの大型化に伴って益々大きな電磁
波が周囲に漏洩する傾向にある。磁界の漏洩は偏向コイ
ルの形状を変える等の工夫で大部分を防止することがで
きる。一方電界の漏洩に対しては、CTRの前面ガラス
表面に導電性の透明導電膜を形成することにより防止で
きる。このような防止方法は、近年帯電防止のために取
られてきた対策と原理的には同一であるが、この場合の
導電性被膜の導電性は、帯電防止用に形成されていた導
電性被膜の導電性よりもはるかに高い値が求められてお
り、帯電防止には表面抵抗で10Ω/□程度で十分と
されているが、漏洩電界を防ぐためには少なくとも10
Ω/□以下、好ましくは10Ω/□台の低抵抗の透
明膜を形成する必要がある。
Electromagnetic waves are generated from a deflection coil and a flyback transformer, and as the TV becomes larger, a larger electromagnetic wave tends to leak to the surroundings. Most of the magnetic field leakage can be prevented by changing the shape of the deflection coil. On the other hand, leakage of the electric field can be prevented by forming a conductive transparent conductive film on the front glass surface of the CTR. Although such a prevention method is in principle the same as the measures taken for the antistatic in recent years, the electroconductivity of the electroconductive coating in this case is the electroconductive coating formed for the antistatic. The surface resistance of 10 8 Ω / □ is sufficient for preventing electrification, but at least 10% is necessary for preventing leakage electric field.
It is necessary to form a transparent film having a low resistance of 6 Ω / □ or less, preferably 10 3 Ω / □.

【0004】[0004]

【発明が解決しようとする課題】上記の要求に対応する
ため、従来よりいくつかの提案がなされているが、その
中でも低コストで低い表面抵抗を実現できるものとし
て、極微細なインジウム錫酸化物(ITO)粉末をアル
キルシリケートの結合剤と共に塗布液中に分散したイン
クを、CRT前面ガラスに塗布・乾燥後、200℃以下
の温度で焼成する方法がある。このインク塗布法によれ
ば、膜厚に応じて10〜10Ω/□の表面抵抗値が
得られる上に、真空蒸着やスパッタ法などの他の透明導
電膜の形成方法に比べてはるかに簡便であって製造コス
トも低く、CRT完成球に処置可能な電界シールドへの
対応として極めて有利な方法である。
In order to meet the above requirements, some proposals have been made in the past, but among them, ultrafine indium tin oxide is one that can realize low surface resistance at low cost. There is a method in which an ink in which (ITO) powder is dispersed in a coating liquid together with an alkyl silicate binder is applied to a CRT front glass, dried, and then baked at a temperature of 200 ° C. or lower. According to this ink coating method, a surface resistance value of 10 3 to 10 5 Ω / □ can be obtained according to the film thickness, and it is far more excellent than other transparent conductive film forming methods such as vacuum deposition and sputtering. It is a very advantageous method as a countermeasure for an electric field shield that is simple and low in manufacturing cost and capable of treating a completed CRT sphere.

【0005】一方表示画面を見易くするために、フェイ
スパネル表面に防眩処理を施して画面の反射を抑えるこ
とが行われている。防眩処理は微細な凹凸を付けて表面
の拡散反射を増加する方法によってもなされるが、この
方法は解像度が低下して画質が落ちるためにあまり好ま
しいものとはいえず、むしろ反射光が入射光に対して破
壊的干渉を生ずるように被膜の屈折率と膜厚を制御する
干渉法によって行うことが好ましい。このような干渉法
により低反射効果を生むには、一般的に高屈折率の膜の
上に低屈折率の膜が被膜した状態が好ましく、屈折率の
差が大きいほどその効果は大きい。例えば、ITO分散
液とシリケート液を順次塗布して焼成した従来の2層膜
の場合、ITO分散層とオーバーコート層の可視光中心
(波長550nm)屈折率はそれぞれほぼ1.55〜
1.65程度、および1.4程度となる。したがって、
屈折率約1.5のCRTパネルガラス上では膜厚がそれ
ぞれ89〜83nmおよび98nmにおいて垂直入射光
の一次無反射条件を満足する。この場合には波長550
nm付近で極小値を持つ反射率プロファイルが得られ、
低反射効果が生まれるが、ITO分散層の膜厚が83〜
89nmのような薄い膜厚では電界シールド効果に十分
な導電性を持たせることは困難であった。
On the other hand, in order to make the display screen easier to see, the surface of the face panel is subjected to an antiglare treatment to suppress the reflection of the screen. Anti-glare treatment is also carried out by a method of increasing the diffuse reflection on the surface by adding fine unevenness, but this method is not so preferable because the resolution is lowered and the image quality is deteriorated, and rather the reflected light is incident. It is preferable to carry out by an interferometry method in which the refractive index and the film thickness of the film are controlled so as to cause destructive interference with light. In order to produce a low reflection effect by such an interference method, it is generally preferable that a film having a low refractive index is coated on a film having a high refractive index, and the larger the difference in refractive index, the greater the effect. For example, in the case of a conventional two-layer film in which an ITO dispersion liquid and a silicate liquid are sequentially applied and baked, the ITO dispersion layer and the overcoat layer each have a visible light center (wavelength 550 nm) refractive index of about 1.55.
It becomes about 1.65 and 1.4. Therefore,
On a CRT panel glass having a refractive index of about 1.5, the first-order non-reflection condition of vertically incident light is satisfied at film thicknesses of 89 to 83 nm and 98 nm, respectively. In this case wavelength 550
A reflectance profile with a minimum value near nm is obtained,
A low reflection effect is produced, but the thickness of the ITO dispersion layer is 83-
With a thin film thickness of 89 nm, it was difficult to provide sufficient conductivity for the electric field shielding effect.

【0006】これに対して導電性を向上するため膜を厚
くすることが考えられるが、膜が厚ければ無反射条件を
満足することが困難となり、低反射効果を犠牲にしなけ
ればならなかった。さらに上記に示した反射プロファイ
ルは可視波長領域において比較的切り立った下に凸の曲
線となるため、反射率と視感度の積を波長380nmか
ら780nmに亘って積分した値で定義される「視感反
射率」としては必ずしも十分に低い値をもたらすもので
はなく、したがって可視波長領域全体に亘って低い反射
率を持つようなプロファイルとなる膜が求められてい
た。このようにインク塗布法は、多くの利点を有してい
るが、スパッタ法や蒸着法等のITOが結晶粒界のみで
連続的に連結した膜を形成できるものに比べて、膜導電
性および低反射効果が不十分であるという問題があっ
た。
On the other hand, it is conceivable to increase the thickness of the film in order to improve the conductivity, but if the film is thick, it becomes difficult to satisfy the non-reflection condition, and the low reflection effect must be sacrificed. . Further, since the reflection profile shown above is a curve that is relatively steep and convex in the visible wavelength region, the product of reflectance and luminosity is defined by the value obtained by integrating the product from the wavelength of 380 nm to 780 nm. The "reflectance" does not always bring a sufficiently low value, and therefore, a film having a profile having a low reflectance over the entire visible wavelength region has been demanded. As described above, the ink coating method has many advantages, but the film conductivity and the film conductivity are better than those that can form a film in which ITO is continuously connected only at the crystal grain boundaries, such as the sputtering method and the vapor deposition method. There is a problem that the low reflection effect is insufficient.

【0007】本発明の目的は、CRT画面の表示反射を
抑制する機能を持ち、かつ従来よりも優れた導電性を有
することにより電界シールドに適切な膜を、塗布法を用
いて簡便かつ低コストに製造できる透明導電膜およびそ
の製造方法を提供することにある。
An object of the present invention is to provide a film suitable for an electric field shield, which has a function of suppressing display reflection on a CRT screen and has conductivity superior to conventional ones, by using a coating method, simply and at low cost. Another object of the present invention is to provide a transparent conductive film that can be manufactured, and a manufacturing method thereof.

【0008】[0008]

【課題を解決しようとする手段】上記課題を達成するた
めに本発明の第1の実施態様は、ガラス基板上に形成さ
れた透明導電膜であって、膜厚が0.31μm以上0.
62μm以下であり、膜主要部が粒径80nm以下のI
TO微粒子がシリケートマトリックス中に分散した層で
あり、膜主要部においてITO層とシリケート層との間
に明確な境界がないよう形成された透明導電膜を特徴と
する。また本発明の第2の実施態様は、ガラス基板上に
塗布法により、粒径80nm以下のITO微粒子を分散
するITO分散液、アルキルシリケート部分加水分解重
合物を含有する処理液の順に塗布して焼成することによ
り透明導電膜を形成する方法であって、該処理液のシリ
ケート濃度が、濃度を順に大きくして成膜した時に製造
された膜のヘイズ値が初めて最小値に達する近傍の大き
さの濃度である透明導電膜を製造する方法を特徴とする
ものである。
In order to achieve the above object, a first embodiment of the present invention is a transparent conductive film formed on a glass substrate and has a film thickness of 0.31 μm or more and a thickness of 0.1.
62 μm or less, and the main part of the film has a grain size of 80 nm or less I
The transparent conductive film is a layer in which TO particles are dispersed in a silicate matrix, and is formed so that there is no clear boundary between the ITO layer and the silicate layer in the main part of the film. In the second embodiment of the present invention, an ITO dispersion liquid in which ITO fine particles having a particle size of 80 nm or less are dispersed and a treatment liquid containing an alkyl silicate partially hydrolyzed polymer are applied in this order on a glass substrate by a coating method. A method of forming a transparent conductive film by baking, wherein the silicate concentration of the treatment liquid is such that the haze value of the film produced when the silicate concentration is sequentially increased to form a minimum value for the first time It is characterized by a method of producing a transparent conductive film having a concentration of.

【0009】[0009]

【発明の実施の形態】本発明において、ITO微粒子は
透明性と導電性を付与する材料として用いられるもので
あり、ITOの一部を、アンチモン添加酸化錫(AT
O)、アルミニウム添加酸化亜鉛(AZO)、フッ素添
加酸化インジウム、フッ素添加酸化錫、フッ素添加酸化
亜鉛、フッ素添加ITO、フッ素添加ATO等で代替し
てもよい。これらの代替物質は全て透明で導電性を有す
る物質であり、またフッ素添加はキャリア濃度を上げて
導電性改良を意図してなされるものである。ITO微粒
子の粒径は大きすぎると散乱の原因となってヘイズが大
きくなるので、通常は80nm以下であることが必要で
ある。この値を越えるとヘイズの大幅な上昇と共に反射
率特性が悪化する。なお前記粒径は一般的には小さい方
が好ましいが、粒度分布の広がりが5nmを下回るよう
なITO超微粉は現在の工業的レベルでは作製が非常に
困難であるため、本発明における膜を構成するITO微
粒子の粒径下限としては、TEMで観察される最小粒径
として2nmと規定した。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, ITO fine particles are used as a material for imparting transparency and conductivity, and a part of ITO is used as antimony-added tin oxide (AT).
O), aluminum-added zinc oxide (AZO), fluorine-added indium oxide, fluorine-added tin oxide, fluorine-added zinc oxide, fluorine-added ITO, fluorine-added ATO, or the like. All of these alternative substances are transparent and have conductivity, and the addition of fluorine is intended to improve the conductivity by increasing the carrier concentration. If the particle size of the ITO fine particles is too large, it causes scattering and increases the haze, so that it is usually necessary to be 80 nm or less. If this value is exceeded, the haze will increase significantly and the reflectance characteristics will deteriorate. It is to be noted that it is generally preferable that the particle size is small, but it is very difficult to produce an ITO ultrafine powder having a particle size distribution spread of less than 5 nm at the current industrial level. The lower limit of the particle size of the ITO fine particles was defined as 2 nm as the minimum particle size observed by TEM.

【0010】また本発明で使用されるITO微粒子を分
散する処理液(以下ITO分散液という)であるシリケ
ートとはポリシロキサン結合によって構成される化合物
をいい、シラノール(Si−OH)の脱水縮重合によっ
て得られる。シロキサン結合のSiの一部は、屈折率調
整や強度補強のためにTi、Zr、Al等で置換するこ
ともでき、またコントラスト向上のために有機色素や顔
料が添加されたものであってもかまわない。
The silicate, which is the treatment liquid for dispersing the ITO fine particles used in the present invention (hereinafter referred to as ITO dispersion liquid), is a compound constituted by a polysiloxane bond, and dehydration condensation polymerization of silanol (Si-OH). Obtained by A part of Si of the siloxane bond may be replaced with Ti, Zr, Al or the like for adjusting the refractive index or reinforcing the strength, and even if an organic dye or pigment is added for improving contrast. I don't care.

【0011】次にITO微粒子が分散する処理液上に塗
布するアルキルシリケート部分加水分解重合物を含有す
る処理液(以下シリケート処理液という)とは、オルト
アルキルシリケート或いはこれを加水分解してある程度
脱水縮重合を進行させたものを主成分とする溶液であ
る。アルキルシリケート部分加水分解重合物としては、
オルトアルキルシリケートに水や酸触媒を加えて加水分
解し脱水縮重合を進行させた形のもの、または既に4〜
5量体まで加水分解縮重合を進ませた市販のアルキルシ
リケート溶液を、さらに加水分解と脱水縮重合を進行さ
せた形のもの等を用いることができる。縮重合が進行す
ると溶液粘度が上昇して最終的には固化するので、溶液
の縮重合度合いは溶液が基板に塗布できる粘度以下のと
ころで用いる。ただし縮重合の度合いはそれ以下のレベ
ルであれば特に指定されない。アルキルシリケート部分
加水分解重合物は、膜塗布後の焼成加熱時に縮重合反応
がほぼ完結して、硬いシリケートになる。
Next, a treatment liquid containing a partially hydrolyzed polymer of an alkyl silicate to be applied on the treatment liquid in which ITO fine particles are dispersed (hereinafter referred to as a silicate treatment liquid) is an orthoalkyl silicate or is hydrolyzed to this and dehydrated to some extent. It is a solution containing as a main component a polycondensation product. As the alkyl silicate partially hydrolyzed polymer,
Orthoalkyl silicates in which water or acid catalyst is added and hydrolyzed to proceed dehydration polycondensation, or already 4 to
It is possible to use a commercially available alkyl silicate solution in which hydrolysis and polycondensation have proceeded to a pentamer, and a form in which hydrolysis and dehydration polycondensation have further proceeded. When the polycondensation progresses, the solution viscosity increases and finally solidifies. Therefore, the degree of polycondensation of the solution is used at a viscosity below the level at which the solution can be applied to the substrate. However, the degree of polycondensation is not particularly specified as long as it is at a lower level. The partially hydrolyzed alkyl silicate polymer undergoes a polycondensation reaction when it is baked and heated after coating the film to form a hard silicate.

【0012】前記2つの処理液を順に塗布した後に焼成
して膜を完成させるが、その焼成温度は、CRT完成球
の限界加熱温度を考慮して通常200℃以下で行う。そ
れ以上でもCRT完成球の状態を十分考慮すればもちろ
ん焼成可能であり、加熱温度が高いほどオーバーコート
に用いるシリケートの重合収縮がより完全なものへ近付
くために低抵抗性も反射特性も向上するのでむしろ好ま
しいといえるが、約300℃を超えるとITOの再酸化
等のため抵抗値は再び上昇傾向になるので好ましくな
い。
The two treatment liquids are applied in order and then baked to complete the film. The baking temperature is usually 200 ° C. or less in consideration of the limit heating temperature of the CRT completed sphere. Even if it is more than that, it can be fired if the state of the finished CRT sphere is sufficiently taken into consideration, and the higher the heating temperature is, the more the polymerization shrinkage of the silicate used for the overcoat becomes closer to perfect one, so that the low resistance and the reflection property are improved. Therefore, it can be said that it is rather preferable, but if the temperature exceeds about 300 ° C., the resistance value tends to increase again due to reoxidation of ITO and the like, which is not preferable.

【0013】本発明による膜においては、膜厚が0.3
1μm以上0.62μm以下と限定したが、これはIT
O分散層の十分な導電性と低反射性の両者を考慮したも
のである。ITO分散層の実測屈折率1.63の場合に
は低反射のための光学膜厚3λ/4と5λ/4に対応す
る膜厚はそれぞれ0.23〜0.29μmおよび0.3
9〜0.48μmになる。これに約0.1μmの薄いシ
リケート層が被さるために低反射効果が生ずる。
In the film according to the present invention, the film thickness is 0.3.
Although it was limited to 1 μm or more and 0.62 μm or less, this is IT
This is because both sufficient conductivity and low reflectivity of the O dispersion layer are taken into consideration. When the measured refractive index of the ITO dispersion layer is 1.63, the film thicknesses corresponding to the optical thicknesses 3λ / 4 and 5λ / 4 for low reflection are 0.23 to 0.29 μm and 0.3, respectively.
It becomes 9 to 0.48 μm. Since a thin silicate layer having a thickness of about 0.1 μm covers this, a low reflection effect occurs.

【0014】また本発明の膜では膜主要部においてIT
O層と上のシリケート層との境界が明確でないことを特
徴としており、このことによって膜の反射率プロファル
は従来の切り立ったものから広範に開いたものとなる
が、同時に上記の膜厚条件は、ITO層とシリケート層
との境界面の粗雑さに応じて、実際の測定値とは異なっ
てくる。実際に成膜された膜の膜厚を分光反射率計とエ
リプソメータにより光学的に読み取ると、0.31〜
0.62μmの範囲にある場合に低反射効果が得られた
ので、膜厚を上記の範囲に限定した。膜厚が0.31よ
り薄い場合には視感反射率が上昇するのみならず、10
Ω/□台の表面抵抗を得ることができず、逆に0.6
2を超える場合にはヘイズ値も無視できない大きさにな
るばかりか、視感反射率が高すぎて低反射膜としての機
能を果たさなくなる。
In the membrane of the present invention, IT is used in the main part of the membrane.
It is characterized by the fact that the boundary between the O layer and the upper silicate layer is not clear, which makes the reflectivity profile of the film wide open from the conventional steep one. , The actual measured value differs depending on the roughness of the interface between the ITO layer and the silicate layer. When the film thickness of the film actually formed is optically read by a spectral reflectometer and an ellipsometer, it is 0.31 to
Since the low reflection effect was obtained in the range of 0.62 μm, the film thickness was limited to the above range. When the film thickness is less than 0.31, not only the luminous reflectance increases but 10
The surface resistance on the order of 3 Ω / □ cannot be obtained, and conversely 0.6
When it exceeds 2, not only does the haze value become a non-negligible value, but also the luminous reflectance is too high to serve as a low reflection film.

【0015】膜主要部はITOが密に充填した間をシリ
ケートが埋めた構造となっているためシリケート層より
も屈折率が高く、結果として低い視感反射率が得られ
る。このような膜構造を得るには、ITO分散液とシリ
ケート処理液の塗布条件における工夫が必要である。す
なわち、まずITO分散液の濃度や塗布条件を変えて上
記の膜厚になるように制御する必要がある。さらに、シ
リケート処理液のシリケート固形分濃度が形成されたI
TO膜の微粒子間を滲み込んで、丁度ITO層の膜厚を
埋めてやや余る程度であることが要求される。シリケー
ト処理液中のシロキサン粒子の大きさは2〜4nm以下
の程度であるから、粒径80nm以下のITO微粒子の
堆積した間隙をぬって容易に滲み込むが、シリケート処
理液の固形分濃度が低いと滲み込みが不十分で低反射効
果は全く現われなくなり、逆に固形分濃度が高すぎると
ITO層を滲み込み埋めつくした後でもさらに上に厚い
シリケート層が形成され、膜の表面抵抗が急激に増加
し、また反射率も増加する。シリケート処理液の固形分
濃度は本発明の透明導電膜の形成に微妙な影響を及ぼす
が、この最適点はヘイズ値に着目すれば容易に決定で
き、この点が本発明の1つの要旨となる。すなわち、成
膜された膜のヘイズ値は、シリケート処理液の固形分濃
度の上昇と共に低下し、シリケートがITO層を埋めつ
くした時に最小値を取り、以後シリケート膜厚が増加し
ても殆ど不変である。そこで、試作膜においてシリケー
ト処理液の固形分を徐々に増加させてヘイズ値を測定
し、これが最小値に落ち着いた時の固形分濃度またはそ
の近傍値を用いることにより、上記の膜を容易に製造す
ることが可能となる。このシリケート処理液の固形分濃
度は塗布方法や塗布条件に応じて変化するので、数値的
に一元化は難しいが、逆にどのような塗布条件であって
も予め測定ヘイズ値を用いた上記の方法により明確に決
定することができる。
Since the main part of the film has a structure in which the silicate is filled while being densely filled with ITO, the refractive index is higher than that of the silicate layer, and as a result, a low luminous reflectance is obtained. In order to obtain such a film structure, it is necessary to devise the coating conditions of the ITO dispersion liquid and the silicate treatment liquid. That is, first, it is necessary to control the concentration of the ITO dispersion liquid and the coating conditions so that the above film thickness is obtained. In addition, the silicate solids concentration of the silicate treatment liquid formed I
It is required that the fine particles of the TO film be permeated between the fine particles to just fill the film thickness of the ITO layer and be slightly left over. Since the size of the siloxane particles in the silicate treatment liquid is about 2 to 4 nm or less, it easily penetrates through the gap where the ITO fine particles having a particle diameter of 80 nm or less are deposited, but the solid content concentration of the silicate treatment liquid is low. When the solid content concentration is too high, a thick silicate layer is formed even after the ITO layer has soaked in and filled up, and the surface resistance of the film suddenly increases. And the reflectance also increases. The solid content concentration of the silicate treatment liquid has a delicate influence on the formation of the transparent conductive film of the present invention, but this optimum point can be easily determined by focusing on the haze value, which is one of the gist of the present invention. . That is, the haze value of the formed film decreases with an increase in the solid content concentration of the silicate treatment liquid, takes a minimum value when the silicate fills the ITO layer, and remains almost unchanged even if the silicate film thickness increases thereafter. Is. Therefore, the haze value was measured by gradually increasing the solid content of the silicate treatment liquid in the prototype film, and the solid content concentration at the time when it settled to the minimum value or a value in the vicinity thereof was used to easily produce the above film. It becomes possible to do. Since the solid content concentration of this silicate treatment liquid changes depending on the coating method and coating conditions, it is difficult to unify numerically, but conversely the above method using the measured haze value in advance regardless of the coating conditions. Can be determined more clearly.

【0016】[0016]

【実施例】以下に、本発明の実施例を示す。EXAMPLES Examples of the present invention will be shown below.

【0017】(実施例1)住友金属鉱山(株)製の平均
粒径20nmのITOを固形分で6wt%含み、希釈溶
液をエタノールとするITO微粒子分散液10gを、1
60rpmで回転する200×150×3mmの板ガラ
ス基板上にビーカから滴下した。そのまま8分間回転さ
せたまま乾燥し回転を止めた後、この板ガラスを防爆型
乾燥機中で160℃で30分間焼成して単層膜とした。
次に2層膜としては、ITO微粒子分散液を滴下して8
分間回転させたまま乾燥した後、続けてシリケート処理
液10gを滴下して、1分後に回転を止め、この板ガラ
スを防爆型乾燥機中で、160℃で30分焼成して作製
した。なおシリケート処理液は、多摩化学工業製エチル
シリケート40を10部、エタノール48部、5%塩酸
水溶液26部、蒸留水16部を用いてSiO固形分濃
度が4%のものを調製し、最終的にSiO固形分が
1.30、1.50、1.75、1.90、2.00、
2.20、2.50、3.00、4.00%になるよう
にエタノールで希釈して、9種類の異なる濃度のものを
作製した。
(Example 1) 1 g of an ITO fine particle dispersion liquid containing 6 wt% of ITO having an average particle diameter of 20 nm manufactured by Sumitomo Metal Mining Co., Ltd. in a solid content of 6 wt% and ethanol was used as a diluting solution.
It was dropped from a beaker on a plate glass substrate of 200 × 150 × 3 mm rotating at 60 rpm. The plate glass was dried while being rotated for 8 minutes as it was, and the rotation was stopped. Then, the plate glass was baked in an explosion-proof dryer at 160 ° C. for 30 minutes to form a single-layer film.
Next, as a two-layer film, an ITO fine particle dispersion is dropped to form a 8 layer film.
After drying while rotating for 1 minute, 10 g of the silicate treatment liquid was continuously added, rotation was stopped after 1 minute, and the plate glass was baked at 160 ° C. for 30 minutes in an explosion-proof dryer. As the silicate treatment liquid, 10 parts of ethyl silicate 40 manufactured by Tama Chemical Industry, 48 parts of ethanol, 26 parts of 5% hydrochloric acid aqueous solution, and 16 parts of distilled water were used to prepare a SiO 2 solid content concentration of 4%. SiO 2 solid content is 1.30, 1.50, 1.75, 1.90, 2.00,
It diluted with ethanol so that it might become 2.20, 2.50, 3.00, 4.00%, and produced 9 different density | concentrations.

【0018】(実施例2)ITO微粒子分散液のITO
を固形分で7wt%含むとした以外は、実施例1と全く
同様にして10種類の膜を作製した。
(Example 2) ITO of ITO fine particle dispersion liquid
Ten kinds of membranes were prepared in exactly the same manner as in Example 1 except that the solid content was 7 wt%.

【0019】(比較例1)ITO微粒子分散液のITO
を固形分で2wt%含むとした以外は、実施例1と全く
同様にして10種類の膜を作製した。
(Comparative Example 1) ITO of ITO fine particle dispersion liquid
Ten kinds of membranes were prepared in exactly the same manner as in Example 1 except that 2% by weight of solid content was included.

【0020】(比較例2)ITO微粒子として平均粒径
100nmの粗粒ITOを用いた以外は、実施例1と全
く同様にして10種類の膜を作製した。
Comparative Example 2 Ten kinds of films were prepared in exactly the same manner as in Example 1 except that coarse ITO particles having an average particle diameter of 100 nm were used as the ITO fine particles.

【0021】実施例1と2および比較例1と2で得られ
た膜について、表面抵抗値、ヘイズ、膜厚、反射率の測
定を行い、その結果を表1および図1〜5に示した。な
お比較例1と2の結果については視感反射率が最小にな
ったものだけを示した。表面抵抗は三菱油化(株)製表
面抵抗計ロレスタMCP−T200を用い、ヘイズは村
上色材技術研究所製ヘイズメータHR−200を用いて
測定した。反射率は島津製作所製分光光度計を用いて測
定した。膜厚は、まずITO層のみを成膜した時の屈折
率nを溝尻光学工業所製エリプソメータによって測定
し、反射率プロファイルの極大位置から、nd=(奇
数)λ/4の式を用いて膜厚概算値を求めた。シリケー
ト被膜をつけたものについては、反射率プロファイルの
3λ/4位置に極小値が来るように上記のnを用いてシ
ミュレーション計算して得られるdを全膜厚とした。
The surface resistance, haze, film thickness and reflectance of the films obtained in Examples 1 and 2 and Comparative Examples 1 and 2 were measured, and the results are shown in Table 1 and FIGS. . As for the results of Comparative Examples 1 and 2, only those in which the luminous reflectance was minimum are shown. The surface resistance was measured using a surface resistance meter Loresta MCP-T200 manufactured by Mitsubishi Petrochemical Co., Ltd., and the haze was measured using a haze meter HR-200 manufactured by Murakami Color Research Laboratory. The reflectance was measured using a spectrophotometer manufactured by Shimadzu Corporation. The film thickness is measured by first measuring the refractive index n when only the ITO layer is formed by an ellipsometer manufactured by Mizojiri Optical Co., Ltd., and using the formula nd = (odd number) λ / 4 from the maximum position of the reflectance profile. An estimated thickness value was obtained. For those with a silicate coating, d obtained by a simulation calculation using the above n so that the minimum value comes to the 3λ / 4 position of the reflectance profile was taken as the total thickness.

【0022】視感反射率(luminous refl
ectance)Ref1m,については1924CI
E、1933CIPM(国際度量衡委員会)採用データ
(光学技術ハンドブック、pp387−421、朝倉書
店)に準拠して、下記数式1より算出した。
Luminous refl
ectance) Ref 1m , for 1924CI
E, calculated based on 1933 CIPM (International Committee for Weights and Measures) adoption data (Optical Technology Handbook, pp387-421, Asakura Shoten) by the following mathematical formula 1.

【0023】[0023]

【数1】 [Equation 1]

【0024】ここで、S(λ):CIEが定める標準照
明の分光分布。ここではB光源を使用。 ρ(λ):実測分光反射率。 V(λ):1924CIEに準拠した標準比視感度(s
pectral luminous efficien
cy)。
Here, S (λ): Spectral distribution of standard illumination defined by CIE. B light source is used here. ρ (λ): Measured spectral reflectance. V (λ): Standard relative luminous efficiency (s according to 1924CIE
spectral luminous efficien
cy).

【0025】[0025]

【表1】 [Table 1]

【0026】表1および図3からわかるように、表面抵
抗はITO分散液の固形分が6%の時はシリケート処理
液の固形分1.5〜2.0の範囲で、ITOの分散液の
固形分が7%の時はシリケート処理液の固形分が1.3
〜2.2の範囲で、それぞれ10Ω/□台の値を示し
ており、ITO分散液の固形分が2wt%と少ない場合
の比較例1の膜が膜厚0.17μmで8.2×10Ω
/□であるのに比べて非常に低い値になっている。10
Ω/□台と10Ω/□台の差は、電界シールド効果
としては大きな差となって現われてくる。
As can be seen from Table 1 and FIG. 3, when the solid content of the ITO dispersion liquid is 6%, the surface resistance of the ITO dispersion liquid is in the range of 1.5 to 2.0 of the solid content of the silicate treatment liquid. When the solid content is 7%, the solid content of the silicate treatment liquid is 1.3.
The values in the range of up to 2.2 are in the order of 10 3 Ω / □, and when the solid content of the ITO dispersion is as small as 2 wt%, the film of Comparative Example 1 has a thickness of 0.17 μm and a thickness of 8.2. × 10 4 Ω
It is a very low value compared to / □. 10
The difference between the 4 Ω / □ range and the 10 3 Ω / □ range appears as a large difference in the electric field shielding effect.

【0027】また視感反射率としては、表1および図5
からわかるように、表面抵抗値の低いシリケート濃度の
付近で極小値を取っており、例えばITO分散液の固形
分6%ではシリケート処理液の固形分濃度1.75%の
時には1.508、ITO分散液の固形分7%ではシリ
ケート処理液の固形分濃度1.90の時には1.430
の値となり、比較例1の膜の視感反射率1.251には
やや及ばないが、それ以外のシリケート処理液の固形分
濃度を用いた場合の視感反射率2〜6よりははるかに低
い値となり、十分に低反射効果を持つ値となっている。
The luminous reflectance is shown in Table 1 and FIG.
As can be seen from the above, the minimum value is taken in the vicinity of the silicate concentration where the surface resistance value is low. For example, when the solid content of the ITO dispersion liquid is 6%, 1.508 when the solid content concentration of the silicate treatment liquid is 1.75%, ITO When the solid content of the dispersion liquid is 7%, it is 1.430 when the solid content concentration of the silicate treatment liquid is 1.90.
Value, which is slightly less than the luminous reflectance of 1.251 of the film of Comparative Example 1, but far higher than the luminous reflectances of 2 to 6 when the solid content concentration of the other silicate-treated liquid is used. It has a low value, and has a sufficiently low reflection effect.

【0028】さらに、このように表面抵抗と視感反射率
の極小値をとるようなシリケート処理液の固形分濃度
は、図4より膜のヘイズ値が最小値に落ち着く近傍であ
ることが分かる。ヘイズの変化は単調であって、ITO
層へのシリケートの滲み込み量の増加と共に低下し、I
TO層に滲み込みつくして新たにシリケート膜を形成す
る厚さになると実質的に変化しなくなる。従って最適な
シリケート処理液の固形分濃度は、ヘイズ値が下がりき
った近傍の濃度を用いることによって決定でき、その値
は例えばITO分散液の固形分6%の場合には1.75
%、ITO分散液の固形分7%の場合には1.90%で
ある。
Further, it can be seen from FIG. 4 that the solid content concentration of the silicate-treated liquid in which the surface resistance and the luminous reflectance are minimum values is in the vicinity where the haze value of the film settles to the minimum value. The change in haze is monotonous, and ITO
It decreases as the amount of silicate seeping into the layer increases, and
When the thickness of the silicate film permeates into the TO layer to form a new silicate film, the thickness does not substantially change. Therefore, the optimum solid content concentration of the silicate treatment liquid can be determined by using the concentration in the vicinity of the lower haze value, and the value is 1.75 when the solid content of the ITO dispersion liquid is 6%, for example.
%, When the solid content of the ITO dispersion is 7%, it is 1.90%.

【0029】比較例2のように用いるITO微粒子の粒
径が100nmと大きい場合には、表面抵抗も3.49
×10Ω/□と高く、またヘイズも視感反射率も上昇
して特性の悪い膜となる。
When the particle size of the ITO fine particles used as in Comparative Example 2 is as large as 100 nm, the surface resistance is 3.49.
It is as high as × 10 4 Ω / □, and haze and luminous reflectance are increased, resulting in a film with poor characteristics.

【0030】[0030]

【発明の効果】以上述べた通り、本発明にかかる透明導
電膜をガラス基板上に形成することにより、低い表面抵
抗をもってかつ表面反射の低い膜を、低コスト、低温度
焼成で得ることが可能である。
As described above, by forming the transparent conductive film of the present invention on a glass substrate, a film having low surface resistance and low surface reflection can be obtained at low cost and at low temperature. Is.

【図面の簡単な説明】[Brief description of drawings]

【図1】試作膜の実測反射率プロファイル(ITO固形
分:6wt%)を示す図である。
FIG. 1 is a view showing a measured reflectance profile (ITO solid content: 6 wt%) of a trial film.

【図2】試作膜の実測反射率プロファイル(ITO固形
分:7wt%)を示す図である。
FIG. 2 is a diagram showing a measured reflectance profile (ITO solid content: 7 wt%) of a prototype film.

【図3】シリケートインク濃度による二層膜面抵抗の変
化を示すグラフ図である。
FIG. 3 is a graph showing a change in bilayer film surface resistance depending on a silicate ink concentration.

【図4】シリケートインク濃度による二層膜ヘイズの変
化を示すグラフ図である。
FIG. 4 is a graph showing a change in haze of a two-layer film depending on a silicate ink concentration.

【図5】シリケートインク濃度による二層膜視感反射率
の変化を示すグラフ図である。
FIG. 5 is a graph showing a change in luminous reflectance of a two-layer film depending on the concentration of silicate ink.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01J 9/24 H01J 9/24 A 29/88 29/88 H05K 9/00 H05K 9/00 S ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Internal reference number FI Technical indication H01J 9/24 H01J 9/24 A 29/88 29/88 H05K 9/00 H05K 9/00 S

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ガラス基板上に形成された透明導電膜で
あって、膜厚が0.31μm以上0.62μm以下であ
り、膜主要部が粒径80nm以下のITO微粒子がシリ
ケートマトリックス中に分散した層であり、膜主要部に
おいてITO層とシリケート層との間に明確な境界がな
いよう形成されたことを特徴とする透明導電膜。
1. A transparent conductive film formed on a glass substrate, having a film thickness of 0.31 μm or more and 0.62 μm or less, and a main part of the film having ITO fine particles having a particle diameter of 80 nm or less dispersed in a silicate matrix. And a transparent conductive film formed so that there is no clear boundary between the ITO layer and the silicate layer in the main part of the film.
【請求項2】 ガラス基板上に塗布法により、粒径80
nm以下のITO微粒子を分散するITO分散液、アル
キルシリケート部分加水分解重合物を含有する処理液の
順に塗布して焼成することにより透明導電膜を形成する
方法であって、該処理液のシリケート濃度が、濃度を順
に大きくして成膜した時に製造された膜のヘイズ値が初
めて最小値に達する近傍の大きさの濃度であることを特
徴とする透明導電膜を製造する方法。
2. A particle size of 80 on a glass substrate by a coating method.
A method for forming a transparent conductive film by coating and baking an ITO dispersion liquid in which ITO fine particles having a particle size of not more than 10 nm are dispersed and a treatment liquid containing an alkyl silicate partial hydrolysis polymer in order, and a silicate concentration of the treatment liquid. The method for producing a transparent conductive film is characterized in that the haze value of the film produced when the film is formed by increasing the concentration in order is a concentration in the vicinity of the minimum value for the first time.
JP27680995A 1995-09-29 1995-09-29 Transparent conductive film and its production Pending JPH0986967A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27680995A JPH0986967A (en) 1995-09-29 1995-09-29 Transparent conductive film and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27680995A JPH0986967A (en) 1995-09-29 1995-09-29 Transparent conductive film and its production

Publications (1)

Publication Number Publication Date
JPH0986967A true JPH0986967A (en) 1997-03-31

Family

ID=17574694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27680995A Pending JPH0986967A (en) 1995-09-29 1995-09-29 Transparent conductive film and its production

Country Status (1)

Country Link
JP (1) JPH0986967A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999066527A1 (en) * 1998-06-19 1999-12-23 Kabushiki Kaisha Toshiba Cathode-ray tube and method for manufacturing the same
WO2003049123A1 (en) * 2001-12-05 2003-06-12 Asahi Glass Company, Limited Conductive film, manufacturing method thereof, substrate having the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999066527A1 (en) * 1998-06-19 1999-12-23 Kabushiki Kaisha Toshiba Cathode-ray tube and method for manufacturing the same
US6570317B1 (en) 1998-06-19 2003-05-27 Kabushiki Kaisha Toshiba Cathode-ray tube and method for manufacturing the same
WO2003049123A1 (en) * 2001-12-05 2003-06-12 Asahi Glass Company, Limited Conductive film, manufacturing method thereof, substrate having the same

Similar Documents

Publication Publication Date Title
KR100236154B1 (en) Coating solution for forming a transparent and electrically conductive film
JP5784528B2 (en) Antiglare glass substrate and method for producing the same
JPH11258405A (en) Antireflection film
JP3266323B2 (en) Composite functional materials
JP3399270B2 (en) Transparent conductive film and composition for forming the same
JPH10142401A (en) Low-reflectivity transparent conductive film as well as its production and display device
JP3460484B2 (en) Transparent conductive film
JP3367241B2 (en) Low reflective / electromagnetic shielding transparent conductive film and paint for its formation
JPH0986967A (en) Transparent conductive film and its production
US5853869A (en) Transparent conductor film for electric field shielding
JPH10182190A (en) Transparent black electroconducive film
JP2003301141A (en) Coating liquid for forming transparent electroconductive layer having low transmittance and front panel of display device
JP3288417B2 (en) CRT panel having low reflection conductive film formed thereon and method of manufacturing the same
JP3451808B2 (en) Low reflective transparent conductive film and method for forming the same
JP2677281B2 (en) Picture tube and picture tube reflection and antistatic treatment method
JP2005048056A (en) Coating liquid for forming low transmission transparent electroconductive film, low transmission transparent electroconductive film, low transmission transparent electroconductive base material and display applied with this base material
JP2005099421A (en) Low transmittance transparent conductive substrate and its manufacturing method, coating liquid for forming low transmittance transparent conductive layer used for manufacturing the substrate, and display device applied with the substrate
JP3103643B2 (en) Picture tube
JPH06234552A (en) Electric conductive transparent film for electric field shield
JPH07105841A (en) Method for forming dark-colored transparent conductive film for field shield
JP3661244B2 (en) Method for forming conductive film and low reflective conductive film
JPH0978008A (en) Transparent electroconductive film of low reflection
JPH06139822A (en) Transparent conducting film, reflection-proof electrification preventing film, and their manufacture
JPH08143337A (en) Transparent electrically conductive film for shielding electric field
JP2000351939A (en) Coating solution for forming transparent thin layer of low refractive index, antireflecting transparent electroconductive membrane and display device