JPH0984363A - Dead-time compensating method for inverter - Google Patents

Dead-time compensating method for inverter

Info

Publication number
JPH0984363A
JPH0984363A JP7267601A JP26760195A JPH0984363A JP H0984363 A JPH0984363 A JP H0984363A JP 7267601 A JP7267601 A JP 7267601A JP 26760195 A JP26760195 A JP 26760195A JP H0984363 A JPH0984363 A JP H0984363A
Authority
JP
Japan
Prior art keywords
inverter
value
dead
output voltage
compensation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7267601A
Other languages
Japanese (ja)
Inventor
Ko Yo
耕 楊
Koji Nagase
浩二 永瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kasuga Denki Inc
Original Assignee
Kasuga Denki Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kasuga Denki Inc filed Critical Kasuga Denki Inc
Priority to JP7267601A priority Critical patent/JPH0984363A/en
Publication of JPH0984363A publication Critical patent/JPH0984363A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Ac Motors In General (AREA)
  • Inverter Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To perform stable compensation in the total area of an inverter without using extra hardware for dead-time compensation by setting the dead-time compensation value to 0 for the preset frequency of the inverter and setting the value closer to 0 for the maximum value as much as possible. SOLUTION: R, S and T are three-phase AC power supplies. The AC power supplies are converted to DC by a forward rectifier 20. The DC is converted to the AC with a smoothing capacitor 21 and a reverse inverter 22 by PWM control. An induction motor load 23 and a one-chip CPU 24 having a PWM generating means 25 and a dead-time correcting means 26 are provided. A frequency command device 27 is provided. An inverter, which controls the speed of the induction motor 23, is constituted of these parts. In the vicinity, where the output voltage of the inverter is 0, it is possible that the output voltage becomes unstable by the excessive correction. In the vicinity, where the output voltage V has the maximum value, the compensation at the dead-time compensation value cannot be performed. Then, the coefficient is set so that the PWM compensation value is 0 at the output voltage and becomes small in the vicinity of the maximum value. The PWM compensation value is made to be the value obtained by multiplying the coefficient on the dead-time compensation value.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は,インバータのPWM制
御出力で誘導電動機を速度制御するものにおいて,イン
バータの上下スイッチング素子の短絡を防止するインバ
ータのデッドタイム補償方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an inverter dead time compensation method for preventing a short circuit between upper and lower switching elements of an inverter in a speed control of an induction motor by a PWM control output of the inverter.

【0002】[0002]

【従来の技術】従来実施されているインバータは図1に
示す如く,R,S,Tは3相交流電源,は順変換器で
3相交流電源を直流変換し,は逆変換器で直流をPW
M制御で交流に変換し,3は誘導電動機負荷である。こ
の従来のインバータで誘導電動機を速度制御する場合,
PWM制御のキャリア周波数による騒音を防止するため
にキャリア周波数を高くする必要があるが,図1に示す
上下のスイッチング素子U+とU−,V+とV−,W+
とW−のアーム短絡防止期間(デッドタイム)による波
形歪成分により出力トルクのリップルの増大,軽負荷に
対する不安定運転の原因となっていた。
2. Description of the Related Art In the conventional inverter, as shown in FIG. 1, R, S, T are three-phase AC power supplies, 1 is a forward converter for converting the three-phase AC power to DC, and 2 is an inverse converter. DC to PW
Converted to AC by M control, and 3 is an induction motor load. When controlling the speed of an induction motor with this conventional inverter,
It is necessary to increase the carrier frequency in order to prevent noise due to the PWM control carrier frequency, but the upper and lower switching elements U + and U-, V + and V-, W + shown in FIG.
The waveform distortion component caused by the arm short circuit prevention period (dead time) of W and W-caused an increase in the ripple of the output torque and an unstable operation for a light load.

【0003】図2に示すように,PWM指令電圧UON
に対して誘導電動機3に図1に示すように電流i+が流
出する場合は1回分の出力電圧UがデッドタイムT
分が少なくなり,逆に誘導電動機3から図1に示すよう
に電流i−が流入する場合は,出力電圧U−がデッドタ
イムT分だけ多くなる。図3に示す如く,インバータ
出力の相順がW,V,Uの順番で相電流iU,iV,i
Wが流出の場合「1」,流入の場合「0」とし,電流ベ
クトルIとデッドタイムTdによる出力電圧の損出平均
値ΔU,ΔU,ΔUは図3の如くになり,電流ベ
クトルIが分かれば出力電圧の損失ΔVの方向が分か
り,その損失ΔVを指令電圧Vに加えれば出力電圧の損
失の補償ができる。
As shown in FIG. 2, the PWM command voltage U ON
On the other hand, when the current i + flows out to the induction motor 3 as shown in FIG. 1, the output voltage U + for one time is the dead time T d.
When the current i- flows in from the induction motor 3 as shown in FIG. 1, the output voltage U- increases by the dead time Td . As shown in FIG. 3, the phase order of the inverter output is W, V, U in the order of the phase currents iU, iV, i.
When W is an outflow, it is "1", and when it is an inflow, it is "0". The average loss values ΔU U , ΔU V , and ΔU W of the output voltage due to the current vector I and the dead time Td are as shown in FIG. If I is known, the direction of the output voltage loss ΔV can be known, and if the loss ΔV is added to the command voltage V, the output voltage loss can be compensated.

【0004】従来のデッドタイム補償の具体的例とし
て,図4で示すものはハードウェアの方法で,パルス指
令値TONに加算器4,5でデッドタイム補償値T
−Tを加算して逆変換器をPWM制御する方法と,
図5に示すソフトウェアによる方法はステップ100で
インバータの出力電圧指令値の計算をし,ステップ10
1でPWMパルス指令値TONの計算をし,ステップ1
02でインバータの出力電流の方向によってパルス指令
値TON±デッドタイムTの計算をし,ステップ10
3でパルス指令値TON±デッドタイムTの上・下限
の計算をし,ステップ104でTON±Tによるデッ
ドタイム補償をしていた。
As a concrete example of the conventional dead time compensation, the one shown in FIG. 4 is a hardware method, in which the dead time compensation value T d , is added to the pulse command value T ON by the adders 4 and 5.
A method of performing PWM control of the inverse converter 2 by adding −T d ,
In the method using software shown in FIG. 5, the output voltage command value of the inverter is calculated in step 100, and the step 10
In step 1, calculate the PWM pulse command value T ON , and
In step 02, the pulse command value T ON ± dead time T d is calculated according to the direction of the output current of the inverter.
In step 3, the upper and lower limits of the pulse command value T ON ± dead time T d are calculated, and in step 104, the dead time is compensated by T ON ± T d .

【0005】[0005]

【発明が解決しようとする課題】本発明は,デッドタイ
ムの補償方法としてハードウェアによる方法ではよけい
な制御回路を必要とし,又,ソフトウェアによる補償方
法では高キャリア周波数でプログラム実行時間を早くし
なければならない問題点があった。
SUMMARY OF THE INVENTION The present invention requires an extra control circuit in a hardware method as a dead time compensating method, and requires a program execution time at a high carrier frequency in a software compensating method. There was a problem that had to be addressed.

【0006】[0006]

【課題を解決するための手段】本発明では,インバータ
の上下のスイッチング素子のパルス指令値のデッドタイ
ム補償値を,インバータの設定周波数の0及び最大値で
可級的に0にすることでデッドタイム補償をした。
According to the present invention, the dead time compensation value of the pulse command value of the upper and lower switching elements of the inverter is set to 0 and the maximum value of the set frequency of the inverter so that the dead time compensation value becomes zero. I compensated the time.

【0007】[0007]

【発明の作用】デッドタイム補償のためのよけいなハー
ドを使用することなく,デッドタイム補償値を可変にす
ることでインバータの全領域で安定した補償ができ,プ
ログラムの分段処理によってプログラム処理のスピード
を早めることができる。
The dead time compensation value can be made variable without using extra hardware for dead time compensation, so that stable compensation can be performed in the entire area of the inverter. You can speed it up.

【0008】[0008]

【実施例】以下図6〜図10に基づいて説明すると,
R,S,Tは3相交流電源,20は順変換器で交流電源
を直流に変換し,21は平滑用のコンデンサ,22は逆
変換器で直流をPWM制御で交流に変換し,23は誘導
電動機負荷,24は1チップCPUでPWM発生手段2
5とデッドタイム補正手段26を有し,27は周波数指
令器であり,以上で誘導電動機23を速度制御するイン
バータを構成している。
EXAMPLE An explanation will be given below with reference to FIGS. 6 to 10.
R, S, T are three-phase AC power supplies, 20 is a forward converter for converting the AC power supply to DC, 21 is a smoothing capacitor, 22 is an inverse converter for converting DC to AC by PWM control, and 23 is Induction motor load, 24 is a 1-chip CPU, PWM generating means 2
5 and dead time correction means 26, and 27 is a frequency commander, which constitutes an inverter for controlling the speed of the induction motor 23.

【0009】インバータの出力電圧ベクトルV〜V
と電流ベクトルI〜Iの関係は図7に示す如くであ
り,例えば電圧ベクトルVを(001)に設定し,電
流ベクトルIを(001)になった時に,U相の出力
電圧がON,V相の出力電圧がOFF,W相の出力電圧
がOFFとなり,U相電流iU+が誘導電動機23方向
に流れ,V相電流i−とW相電流i−が,誘導電動
機23から直流方向に図6の如く流れる。U相電流がi
+の時,デッドタイムTによる電圧損失は−V直流
・Tであるので,補償すべき電圧VはV=V直流
・Tとなり,U,V,W各相の補償電圧は表1の如く
となる。
Inverter output voltage vectors V 1 to V 6
The relationship between the current vectors I 1 to I 6 is as shown in FIG. 7. For example, when the voltage vector V 1 is set to (001) and the current vector I 1 becomes (001), the output voltage of the U phase Is ON, the output voltage of the V phase is OFF, the output voltage of the W phase is OFF, the U phase current i U + flows in the direction of the induction motor 23, and the V phase current i V − and the W phase current i W − are the induction motor. As shown in FIG. 6, the current flows from 23 in the direct current direction. U-phase current is i
When U +, the voltage loss due to the dead time Td is −V DC · T d , so the voltage V d to be compensated is V d = V DC · T d , and the compensation voltage of each phase of U, V, W. Is as shown in Table 1.

【0010】[0010]

【表1】 [Table 1]

【0011】ここで,インバータの出力電圧が0の近傍
では,デッドタイム補償前の電圧指令値VOUtからな
る補償電圧Vになる場合,表1の通りに補正すれば,
過補正になって出力電圧が不安定になる恐れがあり,出
力電圧Vが最大値の近傍では,デッドタイム補償値V
での補償ができなくなる。また,電圧指令値VOUt
大なる100%の場合,完全にVでの補正もでき
なくなる。そこでPWM補償値Vを図8に示す如く,
出力電圧の0及び最大値の近傍では補償値Vが小さく
なるように係数hを設定する。出力指令電圧VOUt
0及び最大値の近傍では補償値V′=h・Vで設定
する。
Here, when the output voltage of the inverter is near 0, and when the compensation voltage V d consisting of the voltage command value V OUt before dead time compensation is reached, correction is performed as shown in Table 1,
There is a possibility that the output voltage becomes unstable due to overcorrection, and when the output voltage V is near the maximum value, the dead time compensation value V d
Will not be able to compensate. In addition, the voltage command value V OUT +
In the case of V d size becomes 100%, completely can not be the correction in the V d. Therefore, the PWM compensation value V d is as shown in FIG.
The coefficient h is set so that the compensation value V d becomes small in the vicinity of 0 and the maximum value of the output voltage. When the output command voltage V OUt is close to 0 and the maximum value, the compensation value V d ′ = h · V d is set.

【0012】次に図9に基づいて,キャリア周期毎に算
出するプログラムを説明すると,ステップ200で電流
ベクトルによってインバータのV(出力電圧)±V
(補償値)の計算をし,ステップ201で出力電圧V
のPWMパルス指令値TONの計算をし,ステップ20
2で補償したPWM指令パルスを出力する。
Next, referring to FIG. 9, a program for calculating each carrier period will be described. In step 200, V (output voltage) ± V of the inverter is calculated by the current vector.
d (compensation value) is calculated, and in step 201 the output voltage V
Calculate the PWM pulse command value T ON of
The PWM command pulse compensated in 2 is output.

【0013】図10に基づいて,dなるキャリア周期で
ある一定時間毎に,補償値Vとインバータ出力電流,
ベクトルの方向を算出するプログラムを説明すると,ス
テップ300で指令電圧Voutと図8のh値によって
値を計算する。ステップ301でインバータの出力
電流の位相によって電流ベクトルの方向を計算し,結果
を図9のフローチャートで使用する為にRAMに記憶す
る。この部分はキャリア周期毎の計算ではない為,キャ
リア周期毎に行なう図9の計算時間が短くなる。
Based on FIG. 10, the compensation value V d and the inverter output current are calculated at regular intervals of the carrier period d .
Describing the program for calculating the direction of the vector, to calculate the V d value by h value of the command voltage V out and 8 in step 300. In step 301, the direction of the current vector is calculated according to the phase of the output current of the inverter and the result is stored in RAM for use in the flow chart of FIG. Since this portion is not calculated for each carrier cycle, the calculation time of FIG. 9 performed for each carrier cycle is shortened.

【0014】[0014]

【発明の効果】本発明は,ハードウェアを追加すること
なくデッドタイムの補償のプログラム制御が早くできる
と共に,デッドタイムによる出力電圧の波形歪をインバ
ータの出力周波数全領域で安定した補償が得られた。
According to the present invention, the program control of the dead time compensation can be speeded up without adding hardware, and the waveform distortion of the output voltage due to the dead time can be stably compensated over the entire output frequency range of the inverter. It was

【図面の簡単な説明】[Brief description of drawings]

【図1】従来のインバータのブロック回路図。FIG. 1 is a block circuit diagram of a conventional inverter.

【図2】従来のインバータパルス指令の説明図。FIG. 2 is an explanatory diagram of a conventional inverter pulse command.

【図3】従来のインバータ出力波形の説明図。FIG. 3 is an explanatory diagram of a conventional inverter output waveform.

【図4】従来のハードによるデッドタイム補償方法の説
明図。
FIG. 4 is an explanatory view of a conventional hardware dead time compensation method.

【図5】従来のソフトウェアによりデッドタイム補償方
法のフローチャート図。
FIG. 5 is a flowchart of a dead time compensation method using conventional software.

【図6】本発明に係るインバータのブロック回路図。FIG. 6 is a block circuit diagram of an inverter according to the present invention.

【図7】インバータの出力電圧,出力電流のベクトル
図。
FIG. 7 is a vector diagram of the output voltage and output current of the inverter.

【図8】インバータの周波数に対するデッドタイム補償
係数を示す図。
FIG. 8 is a diagram showing a dead time compensation coefficient with respect to the frequency of the inverter.

【図9】本発明のデッドタイム補償方法のソフトウェア
フローチャート図。
FIG. 9 is a software flowchart of the dead time compensation method of the present invention.

【図10】本発明のデッドタイム補償方法のソフトウェ
アフローチャート図。
FIG. 10 is a software flowchart of the dead time compensation method of the present invention.

【符号の説明】 順変換器 逆変換器 3 誘導電動機負荷 4 加算器 5 加算器20 順変換器22 逆変換器 23 誘導電動機24 1チップCPU 25 RWM発生手段 26 デッドタイム補正手段 27 周波数指令器[Description of Reference Signs] 1 forward converter 2 inverse converter 3 induction motor load 4 adder 5 adder 20 forward converter 22 inverse converter 23 induction motor 24 1-chip CPU 25 RWM generation means 26 dead time correction means 27 frequency command vessel

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】交流電源を直流に変換する順変換器と,該
順変換器の出力をPWM制御で交流に変換する逆変換器
と,該逆変換器の出力で誘導電動機を速度制御するイン
バータにおいて,前記逆変換器の上下スイッチング素子
が短絡することなく,ON,OFFをするパルス指令値
と,該上下スイッチング素子のパルス指令値を補償する
デッドタイム補償値と,該デッドタイム補償値をインバ
ータの設定周波数が0及び最大値で可級的に0にしたイ
ンバータのデッドタイム補償方法。
1. A forward converter for converting an AC power supply into a direct current, an inverse converter for converting an output of the forward converter into an alternating current by PWM control, and an inverter for controlling a speed of an induction motor by an output of the inverse converter. In the inverter, the pulse command value for turning on and off without shorting the upper and lower switching elements of the inverse converter, the dead time compensation value for compensating the pulse command value of the upper and lower switching elements, and the dead time compensation value The dead time compensation method of the inverter in which the set frequency is set to 0 and the maximum value is set to 0.
JP7267601A 1995-09-08 1995-09-08 Dead-time compensating method for inverter Pending JPH0984363A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7267601A JPH0984363A (en) 1995-09-08 1995-09-08 Dead-time compensating method for inverter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7267601A JPH0984363A (en) 1995-09-08 1995-09-08 Dead-time compensating method for inverter

Publications (1)

Publication Number Publication Date
JPH0984363A true JPH0984363A (en) 1997-03-28

Family

ID=17447003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7267601A Pending JPH0984363A (en) 1995-09-08 1995-09-08 Dead-time compensating method for inverter

Country Status (1)

Country Link
JP (1) JPH0984363A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6362593B1 (en) 2001-01-05 2002-03-26 Samsung Electronics Co., Ltd. Apparatus and method for compensating dead time of motor
JP2006352957A (en) * 2005-06-13 2006-12-28 Denso Corp Controller for synchronous motor
JP2010252434A (en) * 2009-04-10 2010-11-04 Denso Corp Device for control of rotary machine
EP1971020A3 (en) * 2007-03-16 2011-09-21 Hitachi, Ltd. Semiconductor device for driving motor, three-phase motor and motor driving apparatus with the semiconductor device and fan motor
CN105958887A (en) * 2016-07-01 2016-09-21 范波 Inverter dead-time compensation system and compensation method applied to vector control
CN117318471A (en) * 2023-11-28 2023-12-29 深圳库马克科技有限公司 IGBT dead time compensation method, system, equipment and medium

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08256498A (en) * 1995-03-17 1996-10-01 Toyo Electric Mfg Co Ltd Pwm inverter with dead time correction function

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08256498A (en) * 1995-03-17 1996-10-01 Toyo Electric Mfg Co Ltd Pwm inverter with dead time correction function

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6362593B1 (en) 2001-01-05 2002-03-26 Samsung Electronics Co., Ltd. Apparatus and method for compensating dead time of motor
JP2006352957A (en) * 2005-06-13 2006-12-28 Denso Corp Controller for synchronous motor
JP4706344B2 (en) * 2005-06-13 2011-06-22 株式会社デンソー Control device for synchronous motor
EP1971020A3 (en) * 2007-03-16 2011-09-21 Hitachi, Ltd. Semiconductor device for driving motor, three-phase motor and motor driving apparatus with the semiconductor device and fan motor
JP2010252434A (en) * 2009-04-10 2010-11-04 Denso Corp Device for control of rotary machine
US8278854B2 (en) 2009-04-10 2012-10-02 Denso Corporation Control device for electric rotating machine
CN105958887A (en) * 2016-07-01 2016-09-21 范波 Inverter dead-time compensation system and compensation method applied to vector control
CN117318471A (en) * 2023-11-28 2023-12-29 深圳库马克科技有限公司 IGBT dead time compensation method, system, equipment and medium
CN117318471B (en) * 2023-11-28 2024-03-22 深圳库马克科技有限公司 IGBT dead time compensation method, system, equipment and medium

Similar Documents

Publication Publication Date Title
JP6566105B2 (en) Power converter
JP3178075B2 (en) Power converter control device and electric vehicle control device
US8084986B2 (en) Dead-time compensation apparatus of PWM inverter and method thereof
EP2528221A2 (en) Multi-phase active rectifier
WO2018135045A1 (en) Power conversion device and power conversion system
JP3892804B2 (en) Power converter and control method thereof
WO2012117642A1 (en) Electrical power conversion device, electrical power conversion system, and motor inverter
JP2002095262A (en) Dead time compensating method for voltage type pwm
JP4029284B2 (en) AC-AC power converter controller
JPWO2020105133A1 (en) Power converter
JP4019263B2 (en) AC-AC direct conversion power converter
JPH0984363A (en) Dead-time compensating method for inverter
JP3796881B2 (en) 3-level inverter control method and apparatus
JP2004222338A (en) Power conversion device
JP4407215B2 (en) AC-AC direct converter controller
JP7275404B2 (en) power converter
JP3262160B2 (en) Inverter control method and inverter device
JP3392939B2 (en) Voltage converter for power converter
JP5428744B2 (en) Power converter control method
JP4134625B2 (en) PWM power converter and conversion method
JP4797371B2 (en) Power converter control method
JP2020171135A (en) Power converter
JP3051844B2 (en) PWM method and apparatus for three-phase voltage source inverter
JP2017212869A (en) Control method for power conversion device, and power conversion device
JP2006014532A (en) Three-level power converting device