JPH0982929A - Semiconductor integrated circuit - Google Patents

Semiconductor integrated circuit

Info

Publication number
JPH0982929A
JPH0982929A JP24036595A JP24036595A JPH0982929A JP H0982929 A JPH0982929 A JP H0982929A JP 24036595 A JP24036595 A JP 24036595A JP 24036595 A JP24036595 A JP 24036595A JP H0982929 A JPH0982929 A JP H0982929A
Authority
JP
Japan
Prior art keywords
power supply
logic circuit
internal logic
potential
vdd1
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24036595A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Hirabayashi
義幸 平林
Hiromitsu Matsuda
裕充 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP24036595A priority Critical patent/JPH0982929A/en
Publication of JPH0982929A publication Critical patent/JPH0982929A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To arbitrarily set a plurality of power supply potentials in an internal logic circuit region, and enable commonly having a plurality of different power supply system circuits in each power supply system, by installing a plurality of power supply terminals which supply a common potential and different potentials, and a power supply changeover circuit which supplies a desired potential to an internal logic circuit out of the terminals. SOLUTION: In order to select power supplies of VDD1 and VDD2, an inverter 26 for control is put in the VDD1 side of a switching signal, and the power supplies VDD1 and VDD2 are selected. By the respective changeover switches 25 of VDD1 and VDD2, a selected power supply is inputted. In this case, in order to prevent a current from flowing from a high potential to a low potential, an input power supply is fed to an internal logic circuit from the output parts of diodes 27. By commonly having a plurality of different power supply system circuits in this manner, flexibility is imparted to a logic circuit, it is miniaturized, and application efficiency of the internal logic circuit can be improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は多電源の半導体集積回
路、特に多電源ゲートアレイ(G/A)に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multi-power semiconductor integrated circuit, and more particularly to a multi-power gate array (G / A).

【0002】[0002]

【従来の技術】従来の多電源集積回路のVDD1とVD
D2の2電源で動作する構成図を図7に示す。VDD1
系の電源とVDD2系の電源とVSS、内部論理回路な
どで構成されていた。VDD1系で論理動作する内部論
理回路、VDD2系で動作する内部論理回路など、動作
する電源電位により内部論理回路が完全に分かれていた
(簡略化するため共通電位であるグランド配線を省略し
てある)。そのために半導体集積回路内においてそれぞ
れの電源電位の変更は不可能であり、電源電位変更の際
には外部からの供給電源電位を変更していた。
2. Description of the Related Art VDD1 and VD of a conventional multi-power supply integrated circuit
FIG. 7 shows a configuration diagram in which the power source D2 is used. VDD1
It is composed of a system power supply, a VDD2 system power supply, VSS, an internal logic circuit, and the like. Internal logic circuits such as an internal logic circuit that logically operates in the VDD1 system and an internal logic circuit that operates in the VDD2 system are completely separated by the operating power supply potential (for simplification, the ground wiring, which is a common potential, is omitted. ). Therefore, it is impossible to change each power supply potential in the semiconductor integrated circuit, and the power supply potential supplied from the outside is changed when the power supply potential is changed.

【0003】また各内部論理回路内においての電源電位
は、1電位(VDD1)のみとなっている。そのために
各内部論理回路毎に電源電位を変更することは不可能で
あった。
The power supply potential in each internal logic circuit is only one potential (VDD1). Therefore, it is impossible to change the power supply potential for each internal logic circuit.

【0004】従来のG/Aの内部論理回路領域は図5の
ような構成で、VDD1及びVDD2の供給を行うNウ
ェル(WELL)とVSSの供給を行うPWELLがそ
れぞれ交互に配列されている。横方向のVDD1、VD
D2及びVSSの配線はWELL1列に付き1本を配線
し、縦方向のVDD1、VDD2及びVSSの配線は等
間隔に複数配線している。
A conventional G / A internal logic circuit area has a structure as shown in FIG. 5, in which N wells (WELL) for supplying VDD1 and VDD2 and PWELL for supplying VSS are alternately arranged. Lateral VDD1 and VD
One D2 and VSS wiring is provided for each WELL1 column, and a plurality of vertical VDD1, VDD2, and VSS wirings are provided at equal intervals.

【0005】従来の2電源G/Aの場合、内部論理回路
領域中央部の領域53にVDD1の単一電源で動作する
論理回路を構成し、内部論理回路領域の上辺の領域51
と下辺の領域52にレベルシフタを構成している。
In the case of the conventional dual power supply G / A, a logic circuit operating with a single power supply of VDD1 is formed in a region 53 at the center of the internal logic circuit region, and a region 51 at the upper side of the internal logic circuit region is formed.
A level shifter is formed in the area 52 on the lower side.

【0006】通常ロジック回路は内部論理回路領域のN
WELLとPWELLの対を1ROWとしたROW単位
で構成する。
Normally, the logic circuit has N in the internal logic circuit area.
A pair of WELL and PWELL is configured in ROW units with 1 ROW.

【0007】レベルシフタはVDD1系のデータとVD
D2系のデータをインターフェースするもので、2電源
動作を行うために必要となるロジック回路である。通常
のロジック回路と違い、内部論理回路領域の上辺と下辺
の第2の電源系VDD2が供給されているNWELLを
使用し、VDD1系NWELL、VDD2系NWELL
及びPWELLで構成される。
The level shifter uses VDD1 data and VD
This is a logic circuit that interfaces D2 system data and is required to perform dual power supply operation. Unlike a normal logic circuit, the NWELL supplied with the second power supply system VDD2 on the upper and lower sides of the internal logic circuit area is used, and the VDD1 system NWELL and the VDD2 system NWELL are used.
And PWELL.

【0008】図6にVDD1とVDD2の2電源で動作
する従来のG/Aの構成図を示す。内部論理回路領域上
辺にレベルシフタ61、下辺にレベルシフタ62、およ
び中央部にユーザー回路63を構成し、電源配線64に
よるVDD1と電源配線65によりVDD2がレベルシ
フタ61及び62に供給され、ユーザー回路63には配
線64によりVDD1が供給されている。
FIG. 6 shows a configuration diagram of a conventional G / A that operates with two power supplies of VDD1 and VDD2. The level shifter 61 is provided on the upper side of the internal logic circuit area, the level shifter 62 is provided on the lower side, and the user circuit 63 is provided at the center. VDD1 by the power supply wiring 64 and VDD2 are supplied to the level shifters 61 and 62 by the power supply wiring 65. VDD1 is supplied by the wiring 64.

【0009】VDD1系のデータは直接G/A外部とユ
ーザー回路63の間で入出力を行い、VDD2系のデー
タはレベルシフタ61及び62でインターフェースし、
G/A外部とユーザー回路63の間で入出力を行う。
The VDD1 system data is directly input / output between the outside of the G / A and the user circuit 63, and the VDD2 system data is interfaced by the level shifters 61 and 62.
Input / output is performed between the outside of the G / A and the user circuit 63.

【0010】図7にVDD1とVDD2の2電源で動作
する従来のG/Aの全体図を示す。VDD1で動作する
内部論理回路、VDD2で動作する内部論理回路と完全
に動作電源電位毎に分かれて構成されている。
FIG. 7 shows an overall view of a conventional G / A which operates with two power supplies of VDD1 and VDD2. The internal logic circuit that operates at VDD1 and the internal logic circuit that operates at VDD2 are completely separated for each operating power supply potential.

【0011】[0011]

【発明が解決しようとする課題】しかし前述の従来技術
では、ユーザー回路は単一電源で構成され、レベルシフ
タによってG/A外部との異電源インターフェースを行
うだけで、内部論理回路領域内に異なる電源で動作する
ユーザー回路を構成する事ができなかった。
However, in the above-mentioned prior art, the user circuit is composed of a single power source, and the different power source is provided in the internal logic circuit area only by performing the different power source interface with the outside of the G / A by the level shifter. I couldn't configure a user circuit that works with.

【0012】従来の技術では、内部論理回路内で電源電
位を変更することが出来ずに、1種類の電源電位となっ
ていた。そのために内部論理回路内で特定の回路ブロッ
クの動作速度を犠牲にして低電圧で動作させ、全体の消
費電流を低く抑えるか、逆に特定の回路ブロックの動作
速度を確保すると、全体の消費電流が大きくなってい
た。
In the prior art, the power supply potential could not be changed in the internal logic circuit, and there was only one type of power supply potential. Therefore, if the operating speed of a specific circuit block is sacrificed in the internal logic circuit to operate at a low voltage and the overall current consumption is kept low, or conversely, the operating speed of a specific circuit block is secured, the overall current consumption will decrease. Was getting bigger.

【0013】また、同一の集積回路を複数の用途、複数
の電源電位で使用するときには入力電源の切り替え回路
部が、複雑なものとなっていた。
Further, when the same integrated circuit is used for a plurality of purposes and a plurality of power supply potentials, the input power switching circuit section is complicated.

【0014】そこで本発明はこのような問題点を解決す
るもので、その目的とするところは、1チップ内に多電
源で動作する論理回路を構成できる多電源G/Aを提供
する事にある。
Therefore, the present invention solves such a problem, and an object of the present invention is to provide a multiple power source G / A capable of forming a logic circuit operating with multiple power sources in one chip. .

【0015】また本発明はこのよう問題点を解決するも
ので、1チップ内で電源電位を容易に変更可能な半導体
集積回路を提供することが目的である。
Another object of the present invention is to solve the above problems and to provide a semiconductor integrated circuit in which the power supply potential can be easily changed within one chip.

【0016】また本発明はこのよう問題点を解決するも
ので、各論理回路毎に電源電位を容易に変更可能な半導
体集積回路を提供することが目的である。
Another object of the present invention is to solve the above problems and to provide a semiconductor integrated circuit in which the power supply potential can be easily changed for each logic circuit.

【0017】[0017]

【課題を解決するための手段】本発明の半導体集積回路
は、内部論理回路領域において、論理回路を構成するR
OWと、複数の異なる電源系とからなり、ROW毎に供
給される電源系が異なる事を特徴とする。
In the semiconductor integrated circuit of the present invention, R constituting a logic circuit is formed in the internal logic circuit area.
It is characterized by comprising an OW and a plurality of different power supply systems, and the power supply system supplied for each ROW is different.

【0018】本発明の半導体集積回路は、内部論理回路
領域内において、ROWを構成するNWELLが複数に
分割されている事を特徴とする。
The semiconductor integrated circuit of the present invention is characterized in that the NWELL forming the ROW is divided into a plurality of parts in the internal logic circuit area.

【0019】本発明の半導体集積回路は、ROWへの電
源供給を、異なる電源の縦方向の電源配線から行う事を
特徴とする。
The semiconductor integrated circuit of the present invention is characterized in that power is supplied to the ROW from power supply lines of different power supplies in the vertical direction.

【0020】本発明の半導体集積回路は、入力電源回路
部において、複数の入力電源と、複数の切り替え信号と
からなり、前述の複数の入力電源を複数の切り替え信号
により内部に供給する入力電源を任意に選択することを
特徴とする。
In the semiconductor integrated circuit of the present invention, in the input power supply circuit section, the input power supply is composed of a plurality of input power supplies and a plurality of switching signals, and the above-mentioned plurality of input power supplies are internally supplied by the plurality of switching signals. It is characterized by being arbitrarily selected.

【0021】本発明の半導体集積回路は、各内部論理回
路において、前述の入力電源切り替え部を有しているこ
とを特徴とする。
The semiconductor integrated circuit of the present invention is characterized in that each of the internal logic circuits has the above-mentioned input power supply switching unit.

【0022】本発明の半導体集積回路は、前述の入力電
源切り替え部において、電流流れ込み防止回路を有して
いる事を特徴とする。
The semiconductor integrated circuit of the present invention is characterized in that the input power supply switching section has a current flow prevention circuit.

【0023】本発明の半導体集積回路は、内部論理回路
領域内において、異なる複数の電源を縦または横の方向
から供給することを特徴とする。
The semiconductor integrated circuit of the present invention is characterized in that a plurality of different power supplies are supplied in the vertical or horizontal direction within the internal logic circuit area.

【0024】本発明の半導体集積回路は、内部論理回路
領域内において、異なる複数の電源を縦かつ横の方向か
ら供給する事を特徴とする。
The semiconductor integrated circuit of the present invention is characterized in that a plurality of different power supplies are supplied in the vertical and horizontal directions within the internal logic circuit area.

【0025】[0025]

【実施例】本発明の第1の実施例を図1に示す。図1に
おいては、内部論理回路領域にROW単位でVDD1系
のユーザー回路11、VDD2系のユーザー回路12、
およびレベルシフタ13を構成し、電源配線14により
VDD1をユーザー回路11とレベルシフタ13に供給
し、電源配線15によりVDD2をユーザー回路12と
レベルシフタ13に供給している。
FIG. 1 shows a first embodiment of the present invention. In FIG. 1, a VDD1 system user circuit 11 and a VDD2 system user circuit 12 are provided in ROW units in the internal logic circuit area.
Also, the level shifter 13 is configured so that the power supply wiring 14 supplies VDD1 to the user circuit 11 and the level shifter 13, and the power supply wiring 15 supplies VDD2 to the user circuit 12 and the level shifter 13.

【0026】ユーザー回路11及びユーザー回路12
は、内部論理回路領域の上辺及び下辺に構成し、G/A
外部のVDD1系データとVDD2系データの入出力を
行う。
User circuit 11 and user circuit 12
Are arranged on the upper and lower sides of the internal logic circuit area, and G / A
Input and output of external VDD1 system data and VDD2 system data.

【0027】レベルシフタ13はユーザー回路11とユ
ーザー回路12の中間に構成し、VDD1系データとV
DD2系データのインターフェースを行う。
The level shifter 13 is arranged in the middle of the user circuit 11 and the user circuit 12, and has VDD1 system data and V1.
Interfaces with DD2 data.

【0028】配線14及び配線15を内部論理回路領域
内に縦横に配線する事により、ユーザー回路11とユー
ザー回路12を個別に構成し、2電源が必要なレベルシ
フタ13を内部論理回路内のどこにでも配置できるよう
になった。
The user circuit 11 and the user circuit 12 are individually configured by wiring the wiring 14 and the wiring 15 vertically and horizontally in the internal logic circuit area, and the level shifter 13 requiring two power supplies can be arranged anywhere in the internal logic circuit. Can be placed.

【0029】また図1は、図2に示すように内部論理回
路領域の各ROWのNWELLにVDD1またはVDD
2の電源配線をどちらでも自由に配線できる構成であ
る。そのため、各ROWに供給する電源を自由に選択す
る事により、内部論理回路領域内に異なる電源系の回路
を混在する事ができる。
In FIG. 1, VDD1 or VDD is added to the NWELL of each ROW in the internal logic circuit area as shown in FIG.
This is a configuration in which the two power supply wirings can be freely wired. Therefore, by freely selecting the power supply to each ROW, it is possible to mix circuits of different power supply systems in the internal logic circuit area.

【0030】また図1に於いて、ユーザー回路11とユ
ーザー回路12は同じ電源系の回路を1つにまとめた
が、これは同電源系の回路をROW単位で分割し別々の
場所に配置した場合でも同様に対応する。レベルシフタ
13に付いても内部論理回路領域内に自由に配置でき
る。
In FIG. 1, the user circuit 11 and the user circuit 12 have the same power supply system circuit integrated into one, but the same power supply system circuit is divided into ROW units and arranged in different locations. The same applies in the case. Even the level shifter 13 can be freely arranged in the internal logic circuit area.

【0031】また図1に於いて、VDD1、VDD2の
2つの電源を用いたが、これは3電源以上の電源供給を
行う場合に於いても同様に対応する。
Further, in FIG. 1, two power sources VDD1 and VDD2 are used, but this also applies to the case where three or more power sources are supplied.

【0032】本発明の第2の実施例を図3に示す。これ
は1つのROWのNWELLを2つに分割した構成で、
VDD1系のユーザー回路31を内部論理回路領域の左
上に、鍵状のVDD2系のユーザー回路32を内部論理
回路領域の下側に、レベルシフタ33を内部論理回路領
域の右上に各々構成されている。
A second embodiment of the present invention is shown in FIG. This is a configuration in which one ROW NWELL is divided into two,
The VDD1 system user circuit 31 is arranged in the upper left of the internal logic circuit region, the key VDD2 system user circuit 32 is arranged in the lower side of the internal logic circuit region, and the level shifter 33 is arranged in the upper right region of the internal logic circuit region.

【0033】分割されたNWELL単位でVDD1とV
DD2の電源供給が可能であるため、内部論理回路領域
の使用効率を上げる事ができる。
VDD1 and V in units of divided NWELL
Since the power of the DD2 can be supplied, the use efficiency of the internal logic circuit area can be improved.

【0034】また図3の構成図は、1つのROW内にユ
ーザー回路31とユーザー回路32の異電源系の回路が
混在する部分があるため、VDD1とVDD2の両方の
電源を横方向に配線するよりも、縦方向に配線し電源の
供給をする方が効率よく電源の供給を行える。
Further, in the configuration diagram of FIG. 3, since there are portions in which different power supply circuits of the user circuit 31 and the user circuit 32 are mixed in one ROW, both power supplies of VDD1 and VDD2 are wired in the horizontal direction. Rather than wiring in the vertical direction to supply power, power can be supplied more efficiently.

【0035】また図3のNWELLは図4に示すように
3つ以上に分割する事が可能であり、NWELLを3つ
以上に分割した場合であっても同様に対応する。よって
内部論理回路領域の使用効率が上がり、縦方向の電源配
線が有効になる。
The NWELL of FIG. 3 can be divided into three or more as shown in FIG. 4, and the same applies when the NWELL is divided into three or more. Therefore, the use efficiency of the internal logic circuit area is improved, and the vertical power supply wiring becomes effective.

【0036】図8において、2電源G/Aの構成図を示
す。本実施例では、VDD1、VDD2と2種類の電源
系のみ述べているが、2種類以上の電源でも同様であ
る。
FIG. 8 shows a configuration diagram of the dual power source G / A. In this embodiment, only two types of power supply systems, VDD1 and VDD2, are described, but the same applies to two or more types of power supplies.

【0037】電源入力VDD1と電源入力VDD2、そ
のどちらかを選択する切り替え信号とから構成される。
切り替え信号の電位を任意に変更する事により、VDD
1、VDD2のどちらが選択され集積回路内部に供給さ
れる。
It is composed of a power input VDD1 and a power input VDD2, and a switching signal for selecting one of them.
By arbitrarily changing the potential of the switching signal, VDD
Either 1 or VDD2 is selected and supplied to the inside of the integrated circuit.

【0038】図9は、図8の入力電源回路部の詳細図で
ある。VDD1とVDD2の電源を選択するために、切
り替え信号のVDD1側に制御用インバーター26がは
いっている。この制御用インバーター26により、VD
D1とVDD2の電源が選択される。またVDD1、V
DD2のそれぞれには切り替えスイッチ25を入れてあ
り、VDD1、VDD2電源入力の選択が可能となって
いる。
FIG. 9 is a detailed view of the input power supply circuit section of FIG. In order to select the power source of VDD1 and VDD2, the control inverter 26 is provided on the VDD1 side of the switching signal. With this control inverter 26, VD
The power supplies for D1 and VDD2 are selected. Also VDD1, V
A changeover switch 25 is inserted in each of the DD2s, and VDD1 and VDD2 power supply inputs can be selected.

【0039】VDD1またはVDD2の入力電源が、選
択された場合に高電位から低電位にたいして電流が流れ
込まないようにダイオード27を接続させている。その
ダイオード27の出力部からの入力電源を内部論理回路
に供給している。
A diode 27 is connected so that a current does not flow from a high potential to a low potential when the VDD1 or VDD2 input power source is selected. The input power from the output of the diode 27 is supplied to the internal logic circuit.

【0040】図10は、図9の電源回路部を各論理回路
部に入れた詳細図である。前記図9と同様な電源回路部
を有している。その電源回路部から出力された、電源を
論理回路に供給する構成となっている。
FIG. 10 is a detailed diagram in which the power supply circuit section of FIG. 9 is put in each logic circuit section. It has a power supply circuit unit similar to that shown in FIG. The power output from the power supply circuit section is supplied to the logic circuit.

【0041】[0041]

【発明の効果】以上述べたように本発明によれば、供給
する複数の電源電位を内部論理回路領域内で任意に設定
できるため、各電源系で動作する複数の異電源系回路を
共有できるという効果がある。また、そのため論理回路
を柔軟性をもたせて構成する事が可能であり、論理回路
の小型化、及び内部論理回路の使用効率を上げるという
効果もある。
As described above, according to the present invention, since a plurality of power supply potentials to be supplied can be arbitrarily set in the internal logic circuit area, a plurality of different power supply system circuits operating in each power supply system can be shared. There is an effect. Therefore, the logic circuit can be configured with flexibility, and there is an effect that the logic circuit is downsized and the use efficiency of the internal logic circuit is improved.

【0042】また、速度を要求される論理回路部のみ高
電位、電流消費量の多い論理回路部のみ低電位を与える
ことが容易にできる効果がある。使用用途に従い速度、
電流消費料のどちらに重点を置くかにより、電源電位の
変更が可能となる効果がある。 半導体集積回路の動作
時、半動作時などの半導体集積回路の消費電流の違い
を、電源電位任意に変更出来るので、低消費電力型集積
回路の作成が可能になる効果がある。
Further, there is an effect that it is possible to easily give a high potential only to a logic circuit portion requiring a high speed and a low potential only to a logic circuit portion which consumes a large amount of current. Speed according to the intended use,
There is an effect that the power supply potential can be changed depending on which one of the current consumption charges is emphasized. Since the difference in current consumption of the semiconductor integrated circuit during operation or half operation of the semiconductor integrated circuit can be arbitrarily changed to the power supply potential, there is an effect that a low power consumption type integrated circuit can be produced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例を示す2電源G/Aの構
成図。
FIG. 1 is a configuration diagram of a dual power supply G / A showing a first embodiment of the present invention.

【図2】本発明の第1の実施例に於けるWELLの構成
図。
FIG. 2 is a configuration diagram of a WELL according to the first embodiment of the present invention.

【図3】本発明の第2の実施例を示す2電源G/Aの構
成図。
FIG. 3 is a configuration diagram of a dual power source G / A showing a second embodiment of the present invention.

【図4】本発明の第2の実施例に於けるWELLの構成
図。
FIG. 4 is a configuration diagram of a WELL according to a second embodiment of the present invention.

【図5】従来例を示すWELLの構成図。FIG. 5 is a configuration diagram of a WELL showing a conventional example.

【図6】従来例を示す2電源G/Aの構成図。FIG. 6 is a configuration diagram of a dual power source G / A showing a conventional example.

【図7】従来例を示す2電源G/Aの構成図。FIG. 7 is a configuration diagram of a dual power source G / A showing a conventional example.

【図8】本発明の第3の実施例を示す2電源G/Aの構
成図。
FIG. 8 is a configuration diagram of a dual power source G / A showing a third embodiment of the present invention.

【図9】本発明の第4の実施例を示す2電源G/Aの電
源回路図。
FIG. 9 is a power supply circuit diagram of a dual power supply G / A showing a fourth embodiment of the present invention.

【図10】本発明の第5の実施例を示す2電源G/Aの
内部論理回路図。
FIG. 10 is an internal logic circuit diagram of a dual power supply G / A showing a fifth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

11、12、31、32、63 ユーザー回路 13、33、61、62 レベルシフタ 14、15、34、35、64、65 配線 51、52、53 領域 20 VDD1 21 VDD2 22 内部論理回路部 23 VSS 24 電源切り替え信号 25 切り替えスイッチ 26 制御用インバータ 27 電流流れ防止ダイオード 28 電源回路部 29 論理回路部 11, 12, 31, 32, 63 User circuit 13, 33, 61, 62 Level shifter 14, 15, 34, 35, 64, 65 Wiring 51, 52, 53 Area 20 VDD1 21 VDD2 22 Internal logic circuit section 23 VSS 24 Power supply Changeover signal 25 Changeover switch 26 Control inverter 27 Current flow prevention diode 28 Power supply circuit section 29 Logic circuit section

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】共通電位と各々異なる電位が供給される複
数の電源端子と、前記複数の電源端子のうちから所望の
電位を内部論理回路に供給する電源切換え選択回路とを
備えたことを特徴とする半導体集積回路。
1. A plurality of power supply terminals, each of which is supplied with a potential different from a common potential, and a power supply switching selection circuit which supplies a desired potential from the plurality of power supply terminals to an internal logic circuit. Semiconductor integrated circuit.
【請求項2】前記内部論理回路は複数のベーシックセル
が列状に配列された第1のベーシックセル列と、複数の
ベーシックセルが列状に配列された第2のベーシックセ
ル列とを備え、前記内部論理回路領域に前記電源切換え
回路を配置したことを特徴とする請求項1記載の半導体
集積回路。
2. The internal logic circuit includes a first basic cell row in which a plurality of basic cells are arranged in a row, and a second basic cell row in which a plurality of basic cells is arranged in a row. 2. The semiconductor integrated circuit according to claim 1, wherein the power supply switching circuit is arranged in the internal logic circuit area.
【請求項3】前記電源切り替え回路は、前記複数の電源
端子間に逆流防止ダイオードを備えることを特徴とする
請求項1または2いずれか記載の半導体集積回路。
3. The semiconductor integrated circuit according to claim 1, wherein the power supply switching circuit includes a backflow prevention diode between the plurality of power supply terminals.
【請求項4】前記第1のベーシックセル列と、前記第2
のベーシックセル列とはそれぞれ異なる電源切換え回路
を備え、前記第1のベーシックセル列と、前記第2のベ
ーシックセル列とはそれぞれ異なる電位を供給されるこ
とを特徴とする請求項3記載の半導体集積回路。
4. The first basic cell array and the second basic cell array.
4. The semiconductor device according to claim 3, further comprising a power supply switching circuit different from that of the basic cell column of claim 1, and being supplied with different potentials from the first basic cell column and the second basic cell column, respectively. Integrated circuit.
【請求項5】前記第1のベーシックセル列と、前記第2
のベーシックセル列とはそれぞれ異なるウェルに形成さ
れていることを特徴とする請求項4記載の半導体集積回
路。
5. The first basic cell array and the second basic cell array.
5. The semiconductor integrated circuit according to claim 4, wherein the well is formed in a well different from that of the basic cell column.
【請求項6】前記第1のベーシックセル列に前記共通電
位と異なる第1の電位を供給する第1の電源配線と、前
記第2のベーシックセル列に前記共通電位と異なる第2
の電位を供給する第2の電源配線とを備え、前記第1の
電源配線と前記第2の電源配線とは直行して配置されて
いることを特徴とする請求項5記載の半導体集積回路。
6. A first power supply line that supplies a first potential different from the common potential to the first basic cell column, and a second power line that differs from the common potential to the second basic cell column.
6. The semiconductor integrated circuit according to claim 5, further comprising: a second power supply line for supplying the potential of 1., wherein the first power supply line and the second power supply line are arranged orthogonal to each other.
【請求項7】前記第1のベーシックセル列に前記共通電
位と異なる第1の電位を供給する第1の電源配線と、前
記第2のベーシックセル列に前記共通電位と異なる第2
の電位を供給する第2の電源配線とを備え、前記第1の
電源配線と前記第2の電源配線とは略平行に配置されて
いることを特徴とする請求項6記載の半導体集積回路。
7. A first power supply line that supplies a first potential different from the common potential to the first basic cell column, and a second power line that differs from the common potential to the second basic cell column.
7. The semiconductor integrated circuit according to claim 6, further comprising a second power supply line for supplying the potential of 1., wherein the first power supply line and the second power supply line are arranged substantially parallel to each other.
JP24036595A 1995-09-19 1995-09-19 Semiconductor integrated circuit Pending JPH0982929A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24036595A JPH0982929A (en) 1995-09-19 1995-09-19 Semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24036595A JPH0982929A (en) 1995-09-19 1995-09-19 Semiconductor integrated circuit

Publications (1)

Publication Number Publication Date
JPH0982929A true JPH0982929A (en) 1997-03-28

Family

ID=17058416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24036595A Pending JPH0982929A (en) 1995-09-19 1995-09-19 Semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JPH0982929A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001047019A1 (en) 1999-12-20 2001-06-28 Infineon Technologies Ag Non-volatile nor semiconductor memory device and method for the programming thereof
US6501671B2 (en) 2000-06-30 2002-12-31 Mitsubishi Denki Kabushiki Kaisha Semiconductor memory device enabling selective production of different semiconductor memory devices operating at different external power-supply voltages
WO2004075295A1 (en) * 2003-02-19 2004-09-02 Hitachi, Ltd. Semiconductor integrated circuit device
JP2006313893A (en) * 2005-04-08 2006-11-16 Toshiba Corp Semiconductor integrated circuit and method of testing delay thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001047019A1 (en) 1999-12-20 2001-06-28 Infineon Technologies Ag Non-volatile nor semiconductor memory device and method for the programming thereof
US6501671B2 (en) 2000-06-30 2002-12-31 Mitsubishi Denki Kabushiki Kaisha Semiconductor memory device enabling selective production of different semiconductor memory devices operating at different external power-supply voltages
WO2004075295A1 (en) * 2003-02-19 2004-09-02 Hitachi, Ltd. Semiconductor integrated circuit device
JP2006313893A (en) * 2005-04-08 2006-11-16 Toshiba Corp Semiconductor integrated circuit and method of testing delay thereof

Similar Documents

Publication Publication Date Title
US4682202A (en) Master slice IC device
US4651190A (en) Semiconductor integrated circuit
USRE48694E1 (en) Semiconductor integrated circuit
US6888395B2 (en) Semiconductor integrated circuit device
US20060158219A1 (en) Programmable logic and routing blocks with dedicated lines
US5327023A (en) Programmable logic device
JPH0529551A (en) Semiconductor integrated circuit
US20010028257A1 (en) Block symmetrization in a field programmable gate array
JPH05343648A (en) Master slice system semiconductor integrated circuit device
JPH0982929A (en) Semiconductor integrated circuit
US20230411379A1 (en) Semiconductor integrated circuit device
US4395646A (en) Logic performing cell for use in array structures
US5780881A (en) Gate array driven by source voltages and electronic equipment using the same
US4771284A (en) Logic array with programmable element output generation
US20070210829A1 (en) Block symmetrization in a field programmable gate array
EP0278463B1 (en) Gate array having transistor buried in interconnection region
EP0289035B1 (en) MOS Gate array device
JPH09148443A (en) Multipower gate array
JPH023279A (en) Standard cell of complementary mis master slice lsi
JPH09153551A (en) Semiconductor device
US8354696B2 (en) Semiconductor device and layout design apparatus of semiconductor device
JPH10150175A (en) Semiconductor integrated circuit and its manufacture
JPH03194965A (en) Semiconductor integrated circuit device
JP2002305439A (en) Programmable logic circuit and semiconductor device
KR0152354B1 (en) Layout method for mixed input output cell