JPH0982654A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH0982654A
JPH0982654A JP23832195A JP23832195A JPH0982654A JP H0982654 A JPH0982654 A JP H0982654A JP 23832195 A JP23832195 A JP 23832195A JP 23832195 A JP23832195 A JP 23832195A JP H0982654 A JPH0982654 A JP H0982654A
Authority
JP
Japan
Prior art keywords
gas
tube
diffused
oxygen gas
impurities
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23832195A
Other languages
Japanese (ja)
Inventor
Satoshi Yanagiya
諭 柳谷
Takahiro Kono
孝弘 河野
Takaaki Kuriyama
尊章 栗山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP23832195A priority Critical patent/JPH0982654A/en
Publication of JPH0982654A publication Critical patent/JPH0982654A/en
Pending legal-status Critical Current

Links

Landscapes

  • Formation Of Insulating Films (AREA)

Abstract

PROBLEM TO BE SOLVED: To diffuse the concentration of impurities, which are diffused in semiconductor wafers, in a high concentration uniformly from the surfaces of the wafers to the deep regions to enhance the gettering effect of contamination by a method wherein before diffused layers are respectively formed in the semiconductor substrates by an impurity thermal diffusion method, thin oxide films are respectively formed on the surfaces of the semiconductor substrates. SOLUTION: A quartz tube 3 is filled with oxygen gas by its introduction and a wafer mount boat 4 is inserted in the tube 4. While the oxygen gas is introduced in the tube 3, the interior of the tube 3 is heated by heating heaters 2 and after the interior of the tube 3 is made to heat up to a prescribed temperature, nitrogen gas and source gas are introduced in the tube 3 in addition to oxygen gas. A prescribed time of a heat treatment is performed in an atmosphere with these gases introduced therein and the heating of the interior of the tube 3 is stopped. By such an impurity thermal diffusion method, an oxygen gas atmosphere is made before impurities are diffused in semiconductor wafers and oxide films are respectively formed on the surfaces of the wafers. Thereby, a high impurity concentration can be diffused to the deep regions in the wafers in an even manner.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は半導体装置の製造方
法に係り、特に不純物拡散層の形成方法の改善に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a semiconductor device, and more particularly to improvement of a method of forming an impurity diffusion layer.

【0002】[0002]

【従来の技術】一般に半導体基板(半導体ウエハ)に不
純物を熱拡散して不純物拡散層を形成する場合には、図
2に示すような構成の熱拡散装置を用いている。この熱
拡散装置において、反応室となる石英管3と、石英管3
の開口部に合致するキャップ兼エレベタ7とで真空チャ
ンバを形成する。このキャップ兼エレベタ7上には、ボ
ート支持及び保温筒6と、複数の半導体ウエハを装填す
るウエハ載置ボート4とが設けられている。
2. Description of the Related Art In general, when an impurity diffusion layer is formed by thermally diffusing impurities in a semiconductor substrate (semiconductor wafer), a thermal diffusion device having a structure as shown in FIG. 2 is used. In this heat diffusion device, the quartz tube 3 serving as a reaction chamber, and the quartz tube 3
A vacuum chamber is formed with the cap / elevator 7 that matches the opening of the. On the cap / elevator 7, a boat support and heat retention cylinder 6 and a wafer mounting boat 4 for loading a plurality of semiconductor wafers are provided.

【0003】この真空チャンバには、外側を加熱ヒータ
2で覆われ、さらにガス導入口8とガス排気口9が設け
られ、ガス排気口9側には図示しない排気ポンプで構成
される排気系が設けられる。
This vacuum chamber is covered with a heater 2 on the outside, is further provided with a gas inlet 8 and a gas exhaust port 9, and an exhaust system composed of an exhaust pump (not shown) is provided on the gas exhaust port 9 side. It is provided.

【0004】また、ガス導入口8には、不純物を熱拡散
するための3系統のプロセスガスを導入するためのマス
フローコントローラ11やバルブ10やガス配管からな
るガス導入系が接続される。使用されるガス系は、例え
ば、ガスG1には不活性ガス(窒素ガス:N2 )、ガス
G2には酸化性ガス(酸素ガス:O2 )、ガスG3に
は、オキシ塩化リン等が入れられるボトル1をガス経路
中に設けて、ソースキャリアガス(N2 )にリンガス等
を混合させたソースガスが用いられている。
Further, the gas introduction port 8 is connected to a gas introduction system including a mass flow controller 11 for introducing a process gas of three systems for thermally diffusing impurities, a valve 10 and a gas pipe. The gas system used is, for example, an inert gas (nitrogen gas: N 2 ) for the gas G1, an oxidizing gas (oxygen gas: O 2 ) for the gas G2, and phosphorus oxychloride or the like for the gas G3. A bottle 1 is provided in the gas path, and a source gas in which phosphorus gas or the like is mixed with a source carrier gas (N 2 ) is used.

【0005】この様な熱拡散装置による不純物の拡散
は、図6に示すようなシーケンスにより行われる。この
工程は、ボート3に装填された半導体ウエハをキャップ
兼エレベタ7を上昇させて石英管3に挿入して合致す
る。その後、石英管3内に窒素ガス(ガスG1)のみを
導入して充満させる(t1)。この窒素ガス雰囲気中
で、加熱ヒータ2を加熱させて石英管3内を所定温度
(900〜1100℃)まで昇温させる(t2)。その
後、窒素ガスに加えて、酸素ガス(ガスG2)及びソー
スガスとなるリンガス(ガスG3)を導入した雰囲気中
で不純物の熱拡散を行う。
Diffusion of impurities by such a thermal diffusion device is carried out in the sequence shown in FIG. In this step, the semiconductor wafer loaded in the boat 3 is fitted by raising the cap / elevator 7 and inserting it into the quartz tube 3. After that, only the nitrogen gas (gas G1) is introduced into the quartz tube 3 to fill it (t1). In this nitrogen gas atmosphere, the heater 2 is heated to raise the temperature inside the quartz tube 3 to a predetermined temperature (900 to 1100 ° C.) (t2). After that, thermal diffusion of impurities is performed in an atmosphere in which oxygen gas (gas G2) and phosphorus gas (gas G3) serving as a source gas are introduced in addition to nitrogen gas.

【0006】このようなシーケンスにより、半導体ウエ
ハにリンの拡散層が形成される。例えば、図7に示すよ
うにP型基板(若しくはP型層)にリンゲッターを施す
場合には、P型基板の表面から熱拡散装置による不純物
の拡散を行い不純物拡散層を形成し、重金属等を引き付
けた後、その不純物拡散層を含む上部を除去する。
By such a sequence, a phosphorus diffusion layer is formed on the semiconductor wafer. For example, as shown in FIG. 7, when a ring getter is applied to a P-type substrate (or P-type layer), impurities are diffused from the surface of the P-type substrate by a thermal diffusion device to form an impurity diffusion layer, and a heavy metal or the like is formed. And the upper part including the impurity diffusion layer is removed.

【0007】[0007]

【発明が解決しようとする課題】前述した従来の形成方
法により形成された拡散層の深さ方向の不純物濃度のプ
ロファイルを図3の×印のプロットにより示す。図3
は、深さに対する不純物濃度の関係を示すものであり、
従来の形成方法によるもの(×印)は、基板表面の濃度
は高いが、深さ方向になだらかに不純物濃度が低くなる
特性を示している。つまり、深い領域での不純物濃度が
低いため、重金属汚染等のゲッター効果が弱く、ライフ
タイムが短いことが問題となっている。
The profile of the impurity concentration in the depth direction of the diffusion layer formed by the above-described conventional forming method is shown by the plot of X mark in FIG. FIG.
Indicates the relationship between the impurity concentration and the depth,
The conventional forming method (marked with X) has a characteristic that the concentration of the substrate surface is high, but the impurity concentration is gradually lowered in the depth direction. That is, since the impurity concentration in the deep region is low, there is a problem that the getter effect such as heavy metal contamination is weak and the lifetime is short.

【0008】従って、従来の不純物拡散では、重金属等
の除去が十分できなかった。そこで本発明は、深い領域
まで均一的に高い不純物濃度を拡散し、汚染のゲッター
効果を高める半導体装置の製造方法を提供することを目
的とする。
Therefore, the conventional impurity diffusion cannot sufficiently remove heavy metals and the like. Therefore, it is an object of the present invention to provide a method for manufacturing a semiconductor device in which a high impurity concentration is uniformly diffused to a deep region and a getter effect of contamination is enhanced.

【0009】[0009]

【課題を解決するための手段】本発明は上記目的を達成
するために、反応室内に装着した第1型の導電体からな
る半導体基板に第2型の導電体の拡散層を形成する半導
体装置の製造方法において、前記反応室に酸化性ガス若
しくは、酸化性ガスと不活性ガスとが任意の混合比の混
合ガスを導入し、酸化性ガス若しくは混合ガスの雰囲気
にされる該反応室に前記半導体基板を挿入し、不純物が
拡散されるまでの間に、該半導体基板の表面上に5×1
-2μm以下の酸化膜を形成し、第2型の拡散層の不純
物濃度が深さ方向に均一的なプロファイルになる半導体
装置の製造方法を提供する。
In order to achieve the above object, the present invention is a semiconductor device in which a diffusion layer of a second type conductor is formed on a semiconductor substrate made of a first type conductor which is mounted in a reaction chamber. In the manufacturing method of the above, an oxidizing gas or a mixed gas of an oxidizing gas and an inert gas having an arbitrary mixing ratio is introduced into the reaction chamber, and the reaction chamber is placed in an atmosphere of the oxidizing gas or the mixed gas. The semiconductor substrate is inserted and 5 × 1 is formed on the surface of the semiconductor substrate until the impurities are diffused.
Provided is a method for manufacturing a semiconductor device in which an oxide film having a thickness of 0 −2 μm or less is formed and an impurity concentration of a second type diffusion layer has a uniform profile in the depth direction.

【0010】以上のような構成の半導体装置の製造方法
により、不純物の熱拡散による拡散層の形成前に、半導
体基板の表面に薄い酸化膜を形成することにより、半導
体ウエハ内に拡散される不純物の濃度が表面から深い領
域まで均一的な高濃度で拡散され、この高濃度拡散層に
より、重金属汚染等のゲッター効果が高まり、重金属等
が除去される。
According to the method of manufacturing a semiconductor device having the above-described structure, a thin oxide film is formed on the surface of the semiconductor substrate before the diffusion layer is formed by thermal diffusion of impurities, so that the impurities diffused in the semiconductor wafer are formed. Is uniformly diffused from the surface to a deep region at a high concentration, and the high concentration diffusion layer enhances the gettering effect of heavy metal contamination and removes heavy metals and the like.

【0011】[0011]

【発明の実施の形態】以下、図面を参照して、本発明の
半導体装置の製造方法による不純物の熱拡散の第1実施
形態について説明する。この第1実施形態を実施するに
あたり、従来と同じ構成の図2に示す熱拡散装置を用い
る。この熱拡散装置による不純物の熱拡散について図1
に示す製造工程のシーケンスを参照して説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of thermal diffusion of impurities by the method for manufacturing a semiconductor device of the present invention will be described below with reference to the drawings. In carrying out the first embodiment, the heat diffusion device shown in FIG. 2 having the same configuration as the conventional one is used. Thermal diffusion of impurities by this thermal diffusion device Fig. 1
It will be described with reference to the sequence of manufacturing steps shown in FIG.

【0012】ここで、不純物を熱拡散するための3系統
のプロセスガスとして使用されるガスは、例えば、ガス
G1に不活性ガス(窒素ガス:N2 )、ガスG2に酸化
性ガス(酸素ガス:O2 )、ガスG3にオキシ塩化リン
ガス及びキャリアガス(N2)とする。
The gas used as the process gas of the three systems for thermally diffusing the impurities is, for example, an inert gas (nitrogen gas: N 2 ) for the gas G1 and an oxidizing gas (oxygen gas) for the gas G2. : O 2), and oxychloride Aer Lingus and carrier gas (N 2) gas G3.

【0013】まず、反応室となる石英管3内に、酸素ガ
ス(ガスG2)を導入して充満させ(t11)、その後、
半導体基板(半導体ウエハ)を装填したウエハ載置ボー
ト4を挿入する。つまり、キャップが下がって石英管3
が解放された状態(大気状態)の時に酸素ガスを導入し
て、石英管3内を酸素ガス雰囲気状態にする。
First, oxygen gas (gas G2) is introduced into the quartz tube 3 serving as a reaction chamber to fill it (t11), and thereafter,
A wafer mounting boat 4 loaded with a semiconductor substrate (semiconductor wafer) is inserted. That is, the cap is lowered and the quartz tube 3
Is released (atmospheric state), oxygen gas is introduced to bring the inside of the quartz tube 3 into an oxygen gas atmosphere state.

【0014】そして、酸素ガスを導入しつつ加熱ヒータ
2により石英管3内を加熱し、所定の温度(900〜1
100℃)に昇温させた後(t12)、酸素ガスに加え
て、ガスG1の窒素ガス及び、ガスG3のソースガス
(リン)を導入する。
Then, while introducing oxygen gas, the inside of the quartz tube 3 is heated by the heater 2 to a predetermined temperature (900-1).
After the temperature is raised to 100 ° C. (t12), in addition to oxygen gas, nitrogen gas of gas G1 and source gas (phosphorus) of gas G3 are introduced.

【0015】これらのガスが導入されている雰囲気中
で、所定時間の熱処理を行い(t13)、加熱を停止す
る。それと共に、ソースガス及び酸素ガスを導入を止め
る。そして、窒素ガス雰囲気中で半導体ウエハの冷却を
行い、所定の温度まで下がった後、取り出す(t14)。
In the atmosphere in which these gases are introduced, heat treatment is performed for a predetermined time (t13) and heating is stopped. At the same time, the introduction of source gas and oxygen gas is stopped. Then, the semiconductor wafer is cooled in a nitrogen gas atmosphere, cooled to a predetermined temperature, and then taken out (t14).

【0016】このような不純物の熱拡散方法により、不
純物を拡散する前に酸素ガス雰囲気を作り出すことによ
り、半導体ウエハの表面に酸化膜を形成する。この酸化
膜は、5×10-2μm以下の膜厚であり、1×10-2μ
m程度が好ましい。
By such a thermal diffusion method of impurities, an oxygen gas atmosphere is created before the impurities are diffused to form an oxide film on the surface of the semiconductor wafer. This oxide film has a film thickness of 5 × 10 -2 μm or less, and 1 × 10 -2 μm
About m is preferable.

【0017】従って、前記酸化膜の膜厚が形成できれば
よく、酸素ガスの流量や前述した工程(t11)と(t1
2)との間の時間を任意に設定してもよい。この不純物
の熱拡散方法により製造された半導体ウエハは、図3の
○印で示すような深さに対する不純物濃度の関係を持
ち、基板表面の不純物濃度1×1019(atoms/cm3 ) 台
の濃度で、2.5μm程度の深さまで均一的(ボックス
ライクなプロファイル)に不純物が拡散される。
Therefore, it suffices that the thickness of the oxide film be formed, and the flow rate of oxygen gas and the above-mentioned steps (t11) and (t1).
The time between 2) and may be set arbitrarily. The semiconductor wafer manufactured by this thermal diffusion method of impurities has a relationship of the impurity concentration with respect to the depth as shown by a circle in FIG. 3, and the impurity concentration on the substrate surface is 1 × 10 19 (atoms / cm 3 ) level. At a concentration, impurities are diffused uniformly (box-like profile) to a depth of about 2.5 μm.

【0018】また、図4に示すように、ライフタイムも
従来の製造方法では、100μsec程度であったもの
が、本発明の製造方法を用いることによって、220μ
sec程度に改善されている。
Further, as shown in FIG. 4, the lifetime was about 100 μsec in the conventional manufacturing method, but it was 220 μm by using the manufacturing method of the present invention.
It has been improved to about sec.

【0019】次に図5に示すような製造工程のシーケン
スを参照して、第2実施形態について説明する。この第
2実施形態においては、第1実施形態の実施する構成と
同様な熱拡散装置を用いる。
Next, the second embodiment will be described with reference to the sequence of manufacturing steps as shown in FIG. In the second embodiment, the same heat diffusion device as the configuration of the first embodiment is used.

【0020】まず、反応室の石英管3内に半導体ウエハ
を装填したウエハ載置ボート4を挿入する。その後、石
英管3内を排気しつつ、窒素ガス(ガスG1)及び酸素
ガス(ガスG2)を導入して、充満させる(t21) 。窒
素ガスと酸素ガスの混合比は、90:10程度が好まし
い。
First, the wafer mounting boat 4 loaded with semiconductor wafers is inserted into the quartz tube 3 of the reaction chamber. Then, while exhausting the inside of the quartz tube 3, nitrogen gas (gas G1) and oxygen gas (gas G2) are introduced and filled (t21). The mixing ratio of nitrogen gas and oxygen gas is preferably about 90:10.

【0021】そして、窒素ガス及び酸素ガスを導入しつ
つ、加熱ヒータ2により石英管3内を加熱して、所定の
温度(900〜1100℃)に昇温させた後(t22)、
窒素ガス及び酸素ガスに加えて、ソースガスとなるリン
ガス(ガスG3)を導入する。これらのガスが導入され
ている雰囲気中で、所定の時間熱処理を行い、加熱を停
止する(t23)。それと共に、ソースガス及び酸素ガス
を導入を止める。そして、窒素ガス雰囲気中で半導体ウ
エハの冷却を行い、所定の温度まで下がった後、取り出
す(t24)。
Then, while introducing nitrogen gas and oxygen gas, the inside of the quartz tube 3 is heated by the heater 2 to raise the temperature to a predetermined temperature (900 to 1100 ° C.) (t22).
In addition to nitrogen gas and oxygen gas, phosphorus gas (gas G3) serving as a source gas is introduced. Heat treatment is performed for a predetermined time in an atmosphere in which these gases are introduced, and heating is stopped (t23). At the same time, the introduction of source gas and oxygen gas is stopped. Then, the semiconductor wafer is cooled in a nitrogen gas atmosphere, cooled to a predetermined temperature, and then taken out (t24).

【0022】この第2実施形態により不純物拡散前に形
成される酸化膜は、前述した第1実施形態と同様の膜厚
が好ましい。よって、前記酸化膜は、所望の膜厚が得ら
れればよく、この酸化膜の成膜条件は、前述した工程
(t21)と(t22)との間の時間や、窒素ガスと酸素ガ
スの混合比を任意に設定してもよい。
The oxide film formed before the impurity diffusion according to the second embodiment preferably has the same film thickness as that of the first embodiment. Therefore, it is sufficient that the oxide film has a desired film thickness, and the conditions for forming the oxide film are the time between the steps (t21) and (t22) described above and the mixture of nitrogen gas and oxygen gas. The ratio may be set arbitrarily.

【0023】このような第2実施形態により、前述した
第1実施形態と同様の効果を得ることができる。次に第
3実施形態について説明する。
According to the second embodiment as described above, the same effect as that of the first embodiment can be obtained. Next, a third embodiment will be described.

【0024】前述した第1,第2実施形態では、熱拡散
装置に装着した後、熱拡散装置の石英管2内で酸素ガス
雰囲気を作り出し、酸化膜を形成していたが、この第3
実施形態では、熱拡散装置に装着前に前述した5×10
-2μm以下の酸化膜を形成する。
In the above-described first and second embodiments, after mounting on the heat diffusion device, an oxygen gas atmosphere was created in the quartz tube 2 of the heat diffusion device to form an oxide film.
In the embodiment, the above-mentioned 5 × 10 5 before being attached to the heat diffusion device.
Form an oxide film of -2 μm or less.

【0025】従って、表面に前記酸化膜が形成された半
導体ウエハを熱拡散装置に装着して、図6で示した従来
の熱拡散方法を用いて、不純物の拡散を行う。つまり、
窒素ガスの雰囲気中で加熱ヒータ2を所定の温度まで加
熱し、不純物拡散工程に移行する。この第3実施形態に
よれば、第1実施形態の効果と同等の効果を得ることが
できる。
Therefore, the semiconductor wafer having the oxide film formed on the surface thereof is mounted in a thermal diffusion apparatus, and impurities are diffused by the conventional thermal diffusion method shown in FIG. That is,
The heater 2 is heated to a predetermined temperature in a nitrogen gas atmosphere, and the impurity diffusion step is performed. According to the third embodiment, the same effect as that of the first embodiment can be obtained.

【0026】以上説明したように、本発明の半導体製造
方法による不純物の熱拡散方法を用いることによって、
半導体ウエハ内に拡散される不純物濃度が、表面から深
い領域まで均一的な高濃度で拡散される。
As described above, by using the impurity thermal diffusion method according to the semiconductor manufacturing method of the present invention,
The impurity concentration diffused in the semiconductor wafer is uniformly diffused from the surface to the deep region at a high concentration.

【0027】よって、深い領域までの均一的な高濃度拡
散層により、重金属汚染等のゲッター効果が高くなり、
重金属等の除去が十分でき、ライフタイムが従来の2倍
以上に長くすることができる。
Therefore, the gettering effect such as heavy metal contamination is enhanced by the uniform high-concentration diffusion layer down to the deep region,
Heavy metals and the like can be removed sufficiently, and the lifetime can be doubled or longer than before.

【0028】[0028]

【発明の効果】以上詳述したように本発明によれば、深
い領域まで均一的に高い不純物濃度を拡散し、汚染のゲ
ッター効果を高める半導体装置の製造方法を提供するこ
とができる。
As described in detail above, according to the present invention, it is possible to provide a method for manufacturing a semiconductor device in which a high impurity concentration is uniformly diffused into a deep region to enhance the gettering effect of contamination.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1実施形態としての熱拡散装置による本発明
の不純物の拡散工程を示す図である。
FIG. 1 is a diagram showing an impurity diffusion process of the present invention by a thermal diffusion device as a first embodiment.

【図2】不純物を熱拡散して不純物層を形成する熱拡散
装置の構成を示す図である。
FIG. 2 is a diagram showing a configuration of a thermal diffusion device that thermally diffuses impurities to form an impurity layer.

【図3】半導体ウエハに形成された不純物の拡散層の深
さと不純物濃度との関係を示す図である。
FIG. 3 is a diagram showing a relationship between a depth of an impurity diffusion layer formed on a semiconductor wafer and an impurity concentration.

【図4】従来の製造方法と本発明の製造方法によるライ
フタイムを比較するための図である。
FIG. 4 is a diagram for comparing the lifetimes of the conventional manufacturing method and the manufacturing method of the present invention.

【図5】第2実施形態としての熱拡散装置による本発明
の不純物の拡散工程を示す図である。
FIG. 5 is a diagram showing an impurity diffusion process of the present invention by a thermal diffusion device as a second embodiment.

【図6】熱拡散装置による従来の不純物の拡散工程を示
す図である。
FIG. 6 is a diagram showing a conventional impurity diffusion process using a thermal diffusion device.

【図7】熱拡散装置による不純物の拡散層が形成された
半導体ウエハの断面を示す図である。
FIG. 7 is a view showing a cross section of a semiconductor wafer on which an impurity diffusion layer is formed by a thermal diffusion device.

【符号の説明】[Explanation of symbols]

1…ボトル、2…加熱ヒータ、3…石英管、4…ウエハ
載置ボート、5…、6…ボート支持及び保温筒、7…キ
ャップ兼エレベタ、8…ガス導入口、9…ガス排気口、
ガスG1…不活性ガス(窒素ガス:N2 )、ガスG2…
酸化性ガス(酸素ガス:O2 )、ガスG3…ソースキャ
リアガス(N2 )。
DESCRIPTION OF SYMBOLS 1 ... Bottle, 2 ... Heater, 3 ... Quartz tube, 4 ... Wafer mounting boat, 5 ..., 6 ... Boat support and heat insulation cylinder, 7 ... Cap and elevator, 8 ... Gas inlet, 9 ... Gas exhaust,
Gas G1 ... inert gas (nitrogen gas: N 2), gas G2 ...
Oxidizing gas (oxygen gas: O 2 ), gas G3 ... Source carrier gas (N 2 ).

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 反応室内に装着した第1型の導電体から
なる半導体基板に第2型の導電体の拡散層を形成する半
導体装置の製造方法において、 前記反応室に酸化性ガスを導入し、酸化性ガス雰囲気の
該反応室内に前記半導体基板を挿入し、不純物が拡散さ
れるまでの間に、該半導体基板の表面上に酸化膜を形成
し、第2型の拡散層の不純物濃度が深さ方向に均一的な
プロファイルになることを特徴とする半導体装置の製造
方法。
1. A method of manufacturing a semiconductor device, wherein a diffusion layer of a second type conductor is formed on a semiconductor substrate made of a first type conductor mounted in a reaction chamber, wherein an oxidizing gas is introduced into the reaction chamber. The semiconductor substrate is inserted into the reaction chamber in an oxidizing gas atmosphere, an oxide film is formed on the surface of the semiconductor substrate until impurities are diffused, and the impurity concentration of the second type diffusion layer is A method for manufacturing a semiconductor device, which has a uniform profile in the depth direction.
【請求項2】 反応室内に装着した第1型の半導体基板
に第2型の拡散層を形成する半導体装置の製造方法にお
いて、 前記反応室に酸化性ガスと不活性ガスとが任意の混合比
の混合ガスを導入し、混合ガス雰囲気にされる該反応室
に前記半導体基板を挿入し、不純物が拡散されるまでの
間に、該半導体基板の表面上に酸化膜を形成し、第2型
の拡散層の不純物濃度が深さ方向に均一的なプロファイ
ルになることを特徴とする半導体装置の製造方法。
2. A method of manufacturing a semiconductor device in which a second type diffusion layer is formed on a first type semiconductor substrate mounted in a reaction chamber, wherein an oxidizing gas and an inert gas are mixed in the reaction chamber at an arbitrary mixing ratio. Is introduced into the reaction chamber, and the semiconductor substrate is inserted into the reaction chamber in a mixed gas atmosphere, and an oxide film is formed on the surface of the semiconductor substrate until impurities are diffused. The method for manufacturing a semiconductor device, wherein the impurity concentration of the diffusion layer has a uniform profile in the depth direction.
【請求項3】 前記半導体基板上に形成される前記酸化
膜が、5×10-2μm以下であることを特徴とする請求
項1及び請求項2記載の半導体装置の製造方法。
3. The method of manufacturing a semiconductor device according to claim 1, wherein the oxide film formed on the semiconductor substrate has a thickness of 5 × 10 −2 μm or less.
JP23832195A 1995-09-18 1995-09-18 Manufacture of semiconductor device Pending JPH0982654A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23832195A JPH0982654A (en) 1995-09-18 1995-09-18 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23832195A JPH0982654A (en) 1995-09-18 1995-09-18 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH0982654A true JPH0982654A (en) 1997-03-28

Family

ID=17028479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23832195A Pending JPH0982654A (en) 1995-09-18 1995-09-18 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH0982654A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004356361A (en) * 2003-05-29 2004-12-16 Sony Corp Method of manufacturing semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004356361A (en) * 2003-05-29 2004-12-16 Sony Corp Method of manufacturing semiconductor device

Similar Documents

Publication Publication Date Title
US5279973A (en) Rapid thermal annealing for semiconductor substrate by using incoherent light
JPH08500938A (en) Vapor phase doping of semiconductor materials under reduced pressure in a radiantly heated cold wall reactor
JPH10107018A (en) Semiconductor wafer heat treatment apparatus
JPS63166219A (en) Manufacture of semiconductor device
JP2002176052A (en) Method of oxidizing member to be treated and oxidizing equipment
JPS63166220A (en) Manufacture of semiconductor device
US5242859A (en) Highly doped semiconductor material and method of fabrication thereof
KR970008326B1 (en) Method for treating semiconductor substrates
JPH0982654A (en) Manufacture of semiconductor device
JPH05251357A (en) Formation method of film
US5244831A (en) Method of doping a polysilicon layer on a semiconductor wafer
US6593253B1 (en) Method of manufacturing semiconductor device
US5874352A (en) Method of producing MIS transistors having a gate electrode of matched conductivity type
JPS6224630A (en) Formation of thermal oxidation film and device therefor
US5532185A (en) Impurity doping method with adsorbed diffusion source
JP3177152B2 (en) Heat treatment film forming method
JPS63110632A (en) Diffusion of impurity
JPS5817614A (en) Vapor phase grown film forming device
JP2613555B2 (en) Low temperature impurity diffusion method and low temperature impurity diffusion device
JPH0845852A (en) Vapor-phase growth method and apparatus
JPS5935426A (en) Diffusing method for impurity at high concentration of semiconductor device
JPH04333239A (en) Formation method of impurity diffused region
JPH0160932B2 (en)
JPH07130676A (en) Boron diffusion into semiconductor wafer
JPH04284624A (en) Diffusion method of impurities to semiconductor substrate