JPH0982594A - Depressurizing method for chamber in semiconductor manufacturing equipment - Google Patents

Depressurizing method for chamber in semiconductor manufacturing equipment

Info

Publication number
JPH0982594A
JPH0982594A JP26347995A JP26347995A JPH0982594A JP H0982594 A JPH0982594 A JP H0982594A JP 26347995 A JP26347995 A JP 26347995A JP 26347995 A JP26347995 A JP 26347995A JP H0982594 A JPH0982594 A JP H0982594A
Authority
JP
Japan
Prior art keywords
chamber
gas
pressure
semiconductor manufacturing
vacuum pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26347995A
Other languages
Japanese (ja)
Inventor
Noriyuki Fukumura
紀之 福村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kokusai Electric Corp
Original Assignee
Kokusai Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kokusai Electric Corp filed Critical Kokusai Electric Corp
Priority to JP26347995A priority Critical patent/JPH0982594A/en
Publication of JPH0982594A publication Critical patent/JPH0982594A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a depressurizing method wherein time it takes to reach a target pressure value is reduced and particles can be easily discharged from chambers. SOLUTION: To reduce the pressure in a process module PM1 from atmospheric pressure to 1000Pa, both an exhaust-side valve PV and a supply-side value V are opened, and while a vacuum pump VP is being operated, N2 gas is supplied from a gas controller 14. The process module PM1 is purged using N2 gas, and further is depressurized by means of the vacuum pump VP. In the process module PM1, a N2 gas flow going from the ceiling to the bottom is formed. As a result, oxygen and moisture in the process module PM1 due to atmospheric pressure is discharged by the N2 gas flow. Particles are also discharged. The flow rate of the N2 gas is controlled to 20 or so. The internal pressure is detected using a pressure sensor, and when the detected pressure reaches a target value, the valves V and PV are closed to stop purging. Then the operation of the vacuum pump VP is stopped.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は半導体製造装置に
おける室内減圧方法、詳しくは反応室、搬送室、カセッ
ト室、冷却室等の半導体ウェーハまたは基板を処理する
室での室内減圧方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an indoor depressurizing method in a semiconductor manufacturing apparatus, and more particularly to an indoor depressurizing method in a chamber for processing semiconductor wafers or substrates such as a reaction chamber, a transfer chamber, a cassette chamber and a cooling chamber.

【0002】[0002]

【従来技術】従来の枚葉式の拡散装置、CVD装置、P
VD装置等の半導体製造装置は以下のように構成されて
いた。すなわち、図3に示すように、この装置はクラス
タツール型に構成されており、カセットモジュール(カ
セット室)CM、トランスファモジュール(搬送室)T
M、プロセスモジュール(反応室・処理室)PMがそれ
らの隔壁のゲートバルブGVを介して連設されていた。
この構造の装置では、そのチャンバ容積を小さくするこ
とができるため、必要なガス等を少なくすることがで
き、付帯設備に対する負担を小さくしている。また、小
容積のためのガス置換等が手早く行え、プロセスの高機
能化に寄与している。
2. Description of the Related Art Conventional single-wafer type diffusion equipment, CVD equipment, P
A semiconductor manufacturing device such as a VD device was configured as follows. That is, as shown in FIG. 3, this device is configured as a cluster tool type, and includes a cassette module (cassette chamber) CM and a transfer module (transport chamber) T.
M and process modules (reaction chamber / treatment chamber) PM were connected in series through the gate valve GV of the partition walls.
In the apparatus of this structure, the volume of the chamber can be reduced, so that the amount of required gas and the like can be reduced and the burden on the incidental equipment can be reduced. Moreover, gas replacement for a small volume can be performed quickly, which contributes to higher process functionality.

【0003】ところで、このような半導体製造装置の反
応室PM等において、これらの室内を大気圧から例えば
1000Paまで減圧を行う場合、従来は、排気配管に
介設した真空ポンプのみで減圧を行っていた。すなわ
ち、ゲートバルブGVを閉止して当該反応室PMを他の
室と隔離し、配管バルブPVを開いて真空ポンプを駆動
して減圧を行っていた。
By the way, in the reaction chamber PM and the like of such a semiconductor manufacturing apparatus, when decompressing these chambers from atmospheric pressure to, for example, 1000 Pa, conventionally, decompression is performed only by a vacuum pump provided in an exhaust pipe. It was That is, the gate valve GV is closed to isolate the reaction chamber PM from other chambers, the piping valve PV is opened, and the vacuum pump is driven to reduce the pressure.

【0004】[0004]

【発明が解決しようとする課題】この場合、大気圧復帰
後の各モジュール(CM、TM、PM)内の酸素および
水分の影響で1000Paまで到達するのにかなり時間
がかかっていた。例えば目標が10分であるに対し、実
際には15分かかっていた。また、真空ポンプのみによ
る減圧では、各モジュール(チャンバ)の隅に残存する
パーティクルを排出することが困難であった。
In this case, it took a considerable time to reach 1000 Pa due to the effects of oxygen and water in each module (CM, TM, PM) after the atmospheric pressure was restored. For example, while the goal was 10 minutes, it actually took 15 minutes. Further, it is difficult to discharge the particles remaining in the corners of each module (chamber) by decompressing only with the vacuum pump.

【0005】そこで、この発明は、目標減圧値に到達す
るまでの時間を速めた室内減圧方法を提供することを、
その目的としている。また、この発明の目的は、チャン
バからのパーティクルの排出を容易とした半導体製造装
置における室内減圧方法を提供することである。
Therefore, the present invention provides a method for decompressing a room in which the time required to reach the target decompression value is shortened.
That is the purpose. Another object of the present invention is to provide an indoor depressurizing method in a semiconductor manufacturing apparatus that facilitates discharge of particles from a chamber.

【0006】[0006]

【課題を解決するための手段】請求項1に記載の発明で
は、半導体製造装置における反応室、搬送室、カセット
室等の処理対象基板を処理するための室内を減圧する方
法にあって、この室に不活性ガスを供給しながら、この
室内を減圧する半導体製造装置における室内減圧方法で
ある。
According to a first aspect of the present invention, there is provided a method for depressurizing a chamber for processing a substrate to be processed such as a reaction chamber, a transfer chamber and a cassette chamber in a semiconductor manufacturing apparatus. This is an indoor depressurizing method in a semiconductor manufacturing apparatus that depressurizes the chamber while supplying an inert gas to the chamber.

【0007】この発明に係る室内減圧方法にあっては、
不活性ガスである例えばN2ガス、Arガス等を室内に
供給しながらこの室の減圧を行う。例えば室内を真空ポ
ンプで真空に引きながら減圧する。この結果、不活性ガ
スの流れにより室内のパーティクル等は排除され、か
つ、速やかに目標値まで減圧される。
In the indoor pressure reducing method according to the present invention,
The pressure in the chamber is reduced while supplying an inert gas such as N2 gas or Ar gas into the chamber. For example, the inside of the chamber is evacuated by a vacuum pump to reduce the pressure. As a result, the particles and the like in the chamber are eliminated by the flow of the inert gas, and the pressure is quickly reduced to the target value.

【0008】[0008]

【発明の実施の形態】以下、この発明の実施例に係る半
導体製造装置を図面を参照して説明する。図1、図2に
はこの発明の一実施例に係る室内減圧方法を適用する半
導体製造装置を示している。このクラスタ型の半導体製
造装置では、トランスファモジュール(トランスファチ
ャンバ、搬送室)TMに対してその周囲に、プロセスモ
ジュール(プロセスチャンバ、反応室)PM1,PM2
と、カセットモジュール(カセットチャンバ、カセット
室)CM1,CM2とを連設している。これらのプロセ
スモジュールPM1,PM2およびカセットモジュール
CM1,CM2は、それらの間の隔壁にそれぞれ設けた
ゲートバルブGV1,GV2,GV3,GV4を介して
トランスファモジュールTMにそれぞれ連通可能に構成
されている。なお、トランスファモジュールTM内には
処理対象基板または半導体ウェーハの搬送用ロボットR
が収容されている。
DETAILED DESCRIPTION OF THE INVENTION A semiconductor manufacturing apparatus according to an embodiment of the present invention will be described below with reference to the drawings. 1 and 2 show a semiconductor manufacturing apparatus to which an indoor depressurizing method according to an embodiment of the present invention is applied. In this cluster type semiconductor manufacturing apparatus, process modules (process chambers, reaction chambers) PM1 and PM2 are provided around transfer modules (transfer chambers, transfer chambers) TM.
And cassette modules (cassette chamber, cassette chamber) CM1 and CM2 are connected in series. The process modules PM1 and PM2 and the cassette modules CM1 and CM2 are configured to be able to communicate with the transfer module TM via gate valves GV1, GV2, GV3, and GV4, which are provided on partition walls between them. The transfer module TM has a robot R for transferring a substrate or a semiconductor wafer to be processed.
Is housed.

【0009】そして、これらのトランスファモジュール
TM、プロセスモジュールPM1,PM2、カセットモ
ジュールCM1,CM2には、それぞれ、排気口11お
よびガス導入口12が設けられている。各排気口11は
各モジュールの底壁に形成されており、排気管の途中に
設けられたバルブPVを介して真空ポンプVPに接続さ
れている。各ガス導入口12は各モジュールの天井に形
成されており、配管に設けたバルブVを介してガスコン
トローラ14に接続されている。なお、ガスコントロー
ラ14は図外の不活性ガス供給源に接続してある。不活
性ガスとしては、例えば、窒素ガス、ヘリウムガス、ア
ルゴンガス等が用いられるが、半導体ウェーハ等のプロ
セス処理条件などに応じて種々の不活性ガスを選択して
用いることができる。
The transfer module TM, the process modules PM1 and PM2, and the cassette modules CM1 and CM2 are provided with an exhaust port 11 and a gas introduction port 12, respectively. Each exhaust port 11 is formed in the bottom wall of each module, and is connected to the vacuum pump VP via a valve PV provided in the middle of the exhaust pipe. Each gas inlet 12 is formed in the ceiling of each module and is connected to the gas controller 14 via a valve V provided in the pipe. The gas controller 14 is connected to an inert gas supply source (not shown). As the inert gas, for example, nitrogen gas, helium gas, argon gas, etc. are used, but various inert gases can be selected and used according to the process treatment conditions of the semiconductor wafer and the like.

【0010】また、これらのモジュールTM,PM1,
PM2,CM1,CM2にその内圧を検出する圧力セン
サを配設し、これらの圧力センサの検出結果に基づいて
バルブ開閉制御手段(図外)により各排気側バルブPV
および各供給側バルブVの開閉を制御するように構成し
てある。なお、上記各ガス導入口12の設置位置は各モ
ジュールの天井に限られず、側壁等に形成・設置しても
よい。
Further, these modules TM, PM1,
PM2, CM1, and CM2 are provided with pressure sensors for detecting their internal pressures, and based on the detection results of these pressure sensors, the valve opening / closing control means (not shown) controls each exhaust side valve PV.
Also, the opening and closing of each supply side valve V is controlled. The installation position of each gas introduction port 12 is not limited to the ceiling of each module, and may be formed and installed on a side wall or the like.

【0011】したがって、以上の構成に係る半導体製造
装置で各室(モジュール)をそれぞれ減圧する場合、例
えばプロセスモジュールPM1を大気圧から1000P
aまで減圧するには以下のようにして行う。まず、排気
側バルブPVおよび供給側バルブVをそれぞれ開き、真
空ポンプVPを駆動し、かつ、ガスコントローラ14よ
りN2ガスを供給する。すなわち、N2ガスによるパージ
を行いながら、真空ポンプVPによってプロセスモジュ
ールPM1内の減圧を行う。よって、図1に矢印で示す
ように、プロセスモジュールPM1内には天井側から底
壁に向かって流れるN2ガス流が生ずる。この結果、大
気圧に復帰していたプロセスモジュールPM1内の酸素
および水分を、最初の段階で、このN2ガス流により排
出することができる。この場合、例えばN2ガスの流量
は20 程度とする。
Therefore, when decompressing each chamber (module) in the semiconductor manufacturing apparatus having the above configuration, for example, the process module PM1 is heated to 1000 P from atmospheric pressure.
The pressure is reduced to a as follows. First, the exhaust side valve PV and the supply side valve V are opened, the vacuum pump VP is driven, and N2 gas is supplied from the gas controller 14. That is, the pressure in the process module PM1 is reduced by the vacuum pump VP while purging with N2 gas. Therefore, as indicated by an arrow in FIG. 1, an N2 gas flow flowing from the ceiling side to the bottom wall is generated in the process module PM1. As a result, the oxygen and moisture in the process module PM1 that have returned to atmospheric pressure can be discharged by this N2 gas flow in the first stage. In this case, for example, the flow rate of N2 gas is about 20.

【0012】目標値まで達したら、圧力センサでこれを
検出し、その後、バルブVを閉じ、N2ガスでのパージ
を停止する。また、バルブPVを閉じ、真空ポンプVP
の運転を停止する。このときの減圧の目標値にまで達す
る時間は、標準的なモジュールでは例えば約3分に短縮
することができる。
When the target value is reached, this is detected by the pressure sensor, after which the valve V is closed and the purging with N2 gas is stopped. In addition, the valve PV is closed and the vacuum pump VP
Stop driving. The time required to reach the target value of the pressure reduction at this time can be shortened to, for example, about 3 minutes in the standard module.

【0013】なお、各モジュールを減圧する場合、各モ
ジュール間のゲートバルブGVは閉じられている。ま
た、各モジュールを同時に減圧する場合、各バルブP
V、Vを同時に開放して行うことができる。
When reducing the pressure of each module, the gate valve GV between the modules is closed. When decompressing each module at the same time, each valve P
V and V can be opened simultaneously.

【0014】[0014]

【発明の効果】この発明によれば、各室の減圧における
目標圧力までに到達する時間を短縮することができる。
また、各室(チャンバ)からパーティクルを排出するこ
とができる。このため、各室のクリーニング回数・メン
テナンス回数を従来に比べて大幅に減らすことができ
る。さらに、半導体製造装置としてのパーティクルを低
減することができる結果、その信頼性が高まる。
According to the present invention, it is possible to shorten the time required to reach the target pressure in the decompression of each chamber.
Also, particles can be discharged from each chamber. Therefore, the number of cleanings and maintenances of each chamber can be significantly reduced compared to the conventional case. Furthermore, as a result of being able to reduce particles as a semiconductor manufacturing apparatus, its reliability is enhanced.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例に係る半導体製造装置の概
略構成を示すその模式図である。
FIG. 1 is a schematic diagram showing a schematic configuration of a semiconductor manufacturing apparatus according to an embodiment of the present invention.

【図2】この発明の一実施例に係る半導体製造装置の概
略構成を示すその平面図である。
FIG. 2 is a plan view showing a schematic configuration of a semiconductor manufacturing apparatus according to an embodiment of the present invention.

【図3】従来の枚葉式半導体製造装置を示す側面図であ
る。
FIG. 3 is a side view showing a conventional single wafer type semiconductor manufacturing apparatus.

【符号の説明】[Explanation of symbols]

PM1,PM2・・・プロセスモジュール(反応室)、 TM・・・トランスファモジュール(搬送室)、 CM1,CM2・・・カセットモジュール(カセット
室)、 VP・・・真空ポンプ、 11・・・排気口、 12・・・ガス導入口、 14・・・ガスコントローラ、
PM1, PM2 ... Process module (reaction chamber), TM ... Transfer module (transfer chamber), CM1, CM2 ... Cassette module (cassette chamber), VP ... Vacuum pump, 11 ... Exhaust port , 12 ... Gas inlet, 14 ... Gas controller,

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 半導体製造装置における反応室、搬送
室、カセット室等の処理対象基板を処理するための室内
を減圧する方法にあって、 この室に不活性ガスを供給しながら、この室内を減圧す
る半導体製造装置における室内減圧方法。
1. A method of decompressing a chamber for processing a substrate to be processed such as a reaction chamber, a transfer chamber, a cassette chamber in a semiconductor manufacturing apparatus, wherein the chamber is supplied with an inert gas. An indoor decompression method in a semiconductor manufacturing apparatus for decompressing.
JP26347995A 1995-09-18 1995-09-18 Depressurizing method for chamber in semiconductor manufacturing equipment Pending JPH0982594A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26347995A JPH0982594A (en) 1995-09-18 1995-09-18 Depressurizing method for chamber in semiconductor manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26347995A JPH0982594A (en) 1995-09-18 1995-09-18 Depressurizing method for chamber in semiconductor manufacturing equipment

Publications (1)

Publication Number Publication Date
JPH0982594A true JPH0982594A (en) 1997-03-28

Family

ID=17390088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26347995A Pending JPH0982594A (en) 1995-09-18 1995-09-18 Depressurizing method for chamber in semiconductor manufacturing equipment

Country Status (1)

Country Link
JP (1) JPH0982594A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11204508A (en) * 1998-01-09 1999-07-30 Toshiba Corp Method and device for manufacturing semiconductor device
JP2001144020A (en) * 1999-08-31 2001-05-25 Nippon Sanso Corp Cvd device and purging method therefor
JP2001345279A (en) * 2000-03-29 2001-12-14 Hitachi Kokusai Electric Inc Method of manufacturing semiconductor, method of processing substrate, and semiconductor manufacturing apparatus
JP2002025890A (en) * 2000-07-06 2002-01-25 Canon Inc Vacuum processor, semiconductor manufacturing device and device-manufacturing method
WO2003034483A1 (en) * 2001-10-16 2003-04-24 Tokyo Electron Limited Treatment subject elevating mechanism, and treating device using the same
JP2005064526A (en) * 2000-03-29 2005-03-10 Hitachi Kokusai Electric Inc Method of manufacturing semiconductor, method of processing substrate, and semiconductor manufacturing apparatus

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11204508A (en) * 1998-01-09 1999-07-30 Toshiba Corp Method and device for manufacturing semiconductor device
JP2001144020A (en) * 1999-08-31 2001-05-25 Nippon Sanso Corp Cvd device and purging method therefor
JP2001345279A (en) * 2000-03-29 2001-12-14 Hitachi Kokusai Electric Inc Method of manufacturing semiconductor, method of processing substrate, and semiconductor manufacturing apparatus
JP2005064526A (en) * 2000-03-29 2005-03-10 Hitachi Kokusai Electric Inc Method of manufacturing semiconductor, method of processing substrate, and semiconductor manufacturing apparatus
JP4669257B2 (en) * 2000-03-29 2011-04-13 株式会社日立国際電気 Semiconductor manufacturing method, substrate processing method, and substrate processing apparatus
JP2002025890A (en) * 2000-07-06 2002-01-25 Canon Inc Vacuum processor, semiconductor manufacturing device and device-manufacturing method
JP4560182B2 (en) * 2000-07-06 2010-10-13 キヤノン株式会社 Decompression processing apparatus, semiconductor manufacturing apparatus, and device manufacturing method
WO2003034483A1 (en) * 2001-10-16 2003-04-24 Tokyo Electron Limited Treatment subject elevating mechanism, and treating device using the same
CN1331208C (en) * 2001-10-16 2007-08-08 东京毅力科创株式会社 Treatment subject elevating mechanism, and treating device using the same

Similar Documents

Publication Publication Date Title
JP3486821B2 (en) Processing apparatus and method of transporting object to be processed in processing apparatus
TWI544168B (en) A gate valve device, a substrate processing device, and a substrate processing method
JP3403181B2 (en) Heat treatment apparatus and heat treatment method
JP4916140B2 (en) Vacuum processing system
JPH0864578A (en) Semiconductor manufacturing device and cleaning of semiconductor manufacturing device
JP2013526062A (en) Twin chamber processing system with common vacuum pump
JP2006310561A (en) Vacuum processing device and method therefor
JP4298025B2 (en) Vacuum pressure control system
US8794896B2 (en) Vacuum processing apparatus and zonal airflow generating unit
JP2007149948A (en) Vacuum treatment device
US8051870B2 (en) Pressure reduction process device, pressure reduction process method, and pressure regulation valve
JPH0982594A (en) Depressurizing method for chamber in semiconductor manufacturing equipment
JP2007142284A (en) Substrate treatment apparatus
WO2005001925A1 (en) Vacuum processing device operating method
JPH05304099A (en) Flow-rate control device
WO2012008439A1 (en) Substrate processing method and substrate processing system
KR100560772B1 (en) Reaction Chamber System Having Gas Supply Apparatus
JP2006086186A (en) Substrate processing apparatus
JP2000306838A (en) Treatment method and apparatus for semiconductor substrate
JP2003218098A (en) Processing method and processing system
JP2004072112A (en) Semiconductor device production equipment
JPH0783011B2 (en) Decompression treatment method and device
JP3470701B2 (en) Load lock device and its operation method
JPH08321446A (en) Exhaust controlling system for processing chamber of multiple semiconductor manufacturing system
JP2005015820A (en) Sputtering apparatus