JPH0982227A - Evacuation method and device for x-ray tube - Google Patents
Evacuation method and device for x-ray tubeInfo
- Publication number
- JPH0982227A JPH0982227A JP23032395A JP23032395A JPH0982227A JP H0982227 A JPH0982227 A JP H0982227A JP 23032395 A JP23032395 A JP 23032395A JP 23032395 A JP23032395 A JP 23032395A JP H0982227 A JPH0982227 A JP H0982227A
- Authority
- JP
- Japan
- Prior art keywords
- ray tube
- vacuum
- gas
- vacuum container
- exhaust
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Manufacture Of Electron Tubes, Discharge Lamp Vessels, Lead-In Wires, And The Like (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】この発明はX線管の排気方法
及び排気装置に係わり、特に排気時間の短縮に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for exhausting an X-ray tube, and more particularly to shortening exhaust time.
【0002】[0002]
【従来の技術】一般にX線管を初めとする真空管は、そ
の製造工程において、管球内の気体を真空ポンプ等を使
用して管球外部に排出する。これを排気工程と呼ぶ。し
かし、このとき管内には、真空ポンプだけでは排出出来
ない管内部品表面に吸着している気体、あるいは管内部
品の内部に含有される気体がある。2. Description of the Related Art Generally, in a vacuum tube such as an X-ray tube, the gas in the tube is discharged to the outside of the tube by using a vacuum pump or the like in the manufacturing process. This is called an exhaust process. However, at this time, in the pipe, there is a gas adsorbed on the surface of the pipe internal component that cannot be discharged only by the vacuum pump or a gas contained inside the pipe internal component.
【0003】X線管の動作時には、管内部品が最高1000
度以上になり、これら部品表面、あるいは内部の気体排
出が不十分であると、製造後の実使用時に高温になった
管内部品から気体が放出され、管内の真空度を悪化させ
る。When operating an X-ray tube, the maximum number of parts inside the tube is 1000.
If the discharge of gas from the surfaces of these parts or inside is insufficient, gas will be released from the parts inside the pipe that have reached a high temperature during actual use after manufacture, and the degree of vacuum inside the pipe will deteriorate.
【0004】これを防止するため、排気工程では実使用
条件以上に管内部品を加熱し、部品表面、あるいは部品
内部の気体を排出する。実際に気体が多く吸着・含有さ
れる部品は、管球容器、陰極フィラメント及び集束電極
からなる陰極、そして陽極タ−ゲットである。In order to prevent this, in the exhausting step, the parts inside the pipe are heated above the actual use conditions, and the gas on the surface of the parts or inside the parts is discharged. The components that actually adsorb and contain a large amount of gas are the tube container, the cathode consisting of the cathode filament and the focusing electrode, and the anode target.
【0005】従来の排気工程では、先ず管球容器をガス
炉、電気炉等の加熱炉で加熱し、真空度が下がり切るで
あろう時間まで排気する。次に、陰極はフィラメント通
電及び高周波加熱で加熱し、同様に真空度が下がり切る
であろう時間まで排気する。最後に陽極タ−ゲットはX
線管の自己加熱を利用し、最終的に必要な真空度になる
であろう時間まで排気している。In the conventional exhaust process, the tube container is first heated in a heating furnace such as a gas furnace or an electric furnace and exhausted until a time when the degree of vacuum will be lowered. Next, the cathode is heated by filament energization and high-frequency heating, and is similarly evacuated until the time when the degree of vacuum will be lowered. Finally the anode target is X
The self-heating of the wire tube is used to evacuate until the time when the required vacuum degree will be finally reached.
【0006】上記のような排気方法で使用する排気装置
は、従来、図3に示すように構成されている。即ち、符
号1は真空容器内に陰極3と陽極タ−ゲット2が対向配
設された未排気のX線管である。このX線管1に排気管
4を介して真空ポンプ6が接続され、排気管4の途中に
は真空計5が設置される。更にX線管1は、これを加熱
するために断熱構造の加熱炉11と、管内の陰極3を高
周波加熱するための高周波加熱コイル9のどちらかで覆
うことの出来る構造となっている。高周波加熱コイル9
は高周波加熱装置10に接続され、加熱炉11内部のヒ
ーター12は炉電源13に接続される。又、X線管1の
陰極3内フィラメントにはフィラメント電源14が接続
され、陽極タ−ゲット2には陰極3に対しプラスとなる
ように高電圧電源15が接続される。そして制御部8か
らは高周波加熱信号線16、炉制御信号線17、フィラ
メント電源制御信号線18、高電圧電源制御信号線19
がそれぞれの機器に接続される。図4は、上記の従来装
置で排気した場合の排気管内真空度の変化を示したもの
である。The exhaust device used in the exhaust method as described above is conventionally constructed as shown in FIG. That is, reference numeral 1 is an unexhausted X-ray tube in which a cathode 3 and an anode target 2 are arranged to face each other in a vacuum container. A vacuum pump 6 is connected to the X-ray tube 1 via an exhaust pipe 4, and a vacuum gauge 5 is installed in the middle of the exhaust pipe 4. Furthermore, the X-ray tube 1 has a structure that can be covered with either a heating furnace 11 having a heat insulating structure for heating the X-ray tube 1 or a high frequency heating coil 9 for high frequency heating the cathode 3 in the tube. High frequency heating coil 9
Is connected to the high-frequency heating device 10, and the heater 12 inside the heating furnace 11 is connected to the furnace power supply 13. A filament power source 14 is connected to the filament inside the cathode 3 of the X-ray tube 1, and a high voltage power source 15 is connected to the anode target 2 so as to be positive with respect to the cathode 3. From the control unit 8, the high frequency heating signal line 16, the furnace control signal line 17, the filament power supply control signal line 18, and the high voltage power supply control signal line 19 are supplied.
Is connected to each device. FIG. 4 shows changes in the degree of vacuum in the exhaust pipe when exhausted by the above-mentioned conventional device.
【0007】[0007]
【発明が解決しようとする課題】以上説明した従来技術
によると、次のような不都合がある。即ち、部品を加熱
しながら排気しても、真空計5の測定する真空度が下が
り切るまで排気するためには大変時間が必要であり、そ
れを各管内部品毎に行なうと膨大な時間を要する。又、
管内部品が吸着・含有している気体の量は、それまでの
製造工程で増減するが、当然、排気工程では最も吸着・
含有気体の多い場合を想定して排気時間を決定してい
る。The prior art described above has the following disadvantages. That is, even if the components are evacuated while being heated, it takes a very long time to evacuate until the degree of vacuum measured by the vacuum gauge 5 is completely reduced, and it takes an enormous amount of time to perform it for each in-pipe component. . or,
The amount of gas adsorbed / contained in the pipe parts increases / decreases in the manufacturing process up to that point, but of course the most adsorption / adsorption in the exhaust process.
The exhaust time is determined assuming a large amount of contained gas.
【0008】このため、比較的、吸着・含有気体の少な
い管内部品を使用したX線管の排気においても、同様の
排気時間を有しており、不必要な製造時間を発生し、製
造原価を増やす原因の一つとなっていた。For this reason, even when exhausting the X-ray tube using the in-tube parts with a relatively small amount of adsorbed and contained gas, it has the same exhaust time, resulting in unnecessary production time and production cost. It was one of the causes of increase.
【0009】この発明は上記事情に鑑みなされたもの
で、排気管内真空度を測定しながら管内部品の適切な加
熱手段を選定し、又、加熱エネルギを調節することで、
総合排気時間を短縮することが出来るX線管の排気方法
及び排気装置を提供する事を目的とする。The present invention has been made in view of the above circumstances, and by selecting an appropriate heating means for the pipe internal parts while measuring the degree of vacuum in the exhaust pipe, and adjusting the heating energy,
It is an object of the present invention to provide an X-ray tube exhaust method and an exhaust apparatus that can reduce the total exhaust time.
【0010】[0010]
【課題を解決するための手段】この発明は、真空容器内
に陰極と陽極タ−ゲットを対向配設してなるX線管に真
空ポンプを接続し、真空容器内のガスを排気するX線管
の排気方法において、真空容器内のガス出しをして真空
ポンプ系の圧力が下がり始めたら高周波誘導加熱により
上記真空容器内の金属部品のガス出しを始め、その圧力
が下がり始めたら陽極タ−ゲットを電子衝撃してガス出
しをして排気を行なうX線管の排気方法である。SUMMARY OF THE INVENTION The present invention is an X-ray for exhausting gas in a vacuum container by connecting a vacuum pump to an X-ray tube in which a cathode and an anode target are arranged opposite to each other in the vacuum container. In the tube exhaust method, when gas is discharged from the vacuum container and the pressure of the vacuum pump system starts to decrease, high-frequency induction heating starts gas discharge of the metal parts in the vacuum container. This is a method of exhausting an X-ray tube in which a get is electron-impacted to degas and then exhaust.
【0011】又、この発明は、真空容器内に陰極フィラ
メントと集束電極とからなる陰極と陽極タ−ゲットとが
対向配設されたX線管のガスを排気するX線管の排気装
置において、X線管の真空容器に排気管を介して接続さ
れた真空ポンプと、排気管の途中に設けられた真空計
と、X線管の真空容器の外周を覆うように配設された高
周波加熱コイルを有する高周波加熱装置と、この高周波
加熱コイルとX線管とが収容される加熱炉と、X線管の
陰極フィラメントに接続されたフィラメント電源と、X
線管の陽極タ−ゲットに接続された高電圧電源と、真空
計の測定結果を読取り且つ高周波加熱装置,加熱炉,フ
ィラメント電源,高電圧電源を制御するコンピュ−タと
を具備するX線管の排気装置である。Further, the present invention relates to an X-ray tube exhaust device for exhausting gas from an X-ray tube in which a cathode composed of a cathode filament and a focusing electrode and an anode target are arranged to face each other in a vacuum container. A vacuum pump connected to the vacuum container of the X-ray tube via an exhaust pipe, a vacuum gauge provided in the middle of the exhaust pipe, and a high-frequency heating coil arranged so as to cover the outer circumference of the vacuum container of the X-ray tube. A high-frequency heating device having: a heating furnace in which the high-frequency heating coil and the X-ray tube are housed; a filament power source connected to a cathode filament of the X-ray tube;
X-ray tube equipped with a high-voltage power source connected to the anode target of the wire tube, and a computer for reading the measurement result of the vacuum gauge and controlling the high-frequency heating device, heating furnace, filament power source, and high-voltage power source Exhaust system.
【0012】[0012]
【発明の実施の形態】以下、図面を参照して、この発明
の一実施の形態を詳細に説明する。先ず、この発明によ
るX線管の排気方法で使用する排気装置は、図1に示す
ように構成され、従来例(図3)と同一箇所には同一符
号を付すことにする。即ち、符号1は真空容器内に陰極
3と陽極タ−ゲット2が対向配設された未排気のX線管
である。このX線管1に排気管4を介して真空ポンプ6
が接続される。排気管4の途中には真空計5が設置さ
れ、その測定出力7は制御部8に入力される。一方、X
線管1の周囲は管内の陽極タ−ゲット2と陰極3を高周
波加熱するための高周波加熱コイル9で囲まれ、更にそ
の周囲が断熱構造の加熱炉11で覆われる。高周波加熱
コイル9は高周波加熱装置10に接続され、加熱炉11
内部のヒーター12は炉電源13に接続される。又、X
線管1の陰極3内の陰極フィラメントにはフィラメント
電源14が接続され、陽極タ−ゲット2には陰極3に対
しプラスとなるように高電圧電源15が接続される。そ
して、制御部8からは高周波加熱信号線16、炉制御信
号線17、フィラメント電源制御信号線18、高電圧電
源制御信号線19がそれぞれの機器に接続される。An embodiment of the present invention will be described below in detail with reference to the drawings. First, the exhaust device used in the method for exhausting an X-ray tube according to the present invention is configured as shown in FIG. 1, and the same parts as those in the conventional example (FIG. 3) are designated by the same reference numerals. That is, reference numeral 1 is an unexhausted X-ray tube in which a cathode 3 and an anode target 2 are arranged to face each other in a vacuum container. A vacuum pump 6 is attached to the X-ray tube 1 via an exhaust pipe 4.
Is connected. A vacuum gauge 5 is installed in the middle of the exhaust pipe 4, and its measurement output 7 is input to the control unit 8. On the other hand, X
The circumference of the wire tube 1 is surrounded by a high frequency heating coil 9 for high frequency heating the anode target 2 and the cathode 3 in the tube, and the circumference is covered with a heating furnace 11 having a heat insulating structure. The high-frequency heating coil 9 is connected to the high-frequency heating device 10, and the heating furnace 11
The internal heater 12 is connected to the furnace power supply 13. Also, X
A filament power supply 14 is connected to the cathode filament in the cathode 3 of the wire tube 1, and a high voltage power supply 15 is connected to the anode target 2 so as to be positive with respect to the cathode 3. The control unit 8 connects the high-frequency heating signal line 16, the furnace control signal line 17, the filament power supply control signal line 18, and the high-voltage power supply control signal line 19 to the respective devices.
【0013】次に、上記の排気装置を使用してこの発明
の排気方法について説明する。先ず、X線管1の管内部
品を加熱せずに真空ポンプ6を動作させ、管内の気体を
排出する。真空計5の測定値が図2に示すレベルAより
下がったら、炉電源13を動作させX線管1を加熱す
る。すると、X線管内壁の吸着気体、及び含有気体が放
出され、この量が真空ポンプ6の排気能力を上回ると、
真空計5の測定値は一時的に悪くなるが、レベルAより
僅かに真空度が良いレベルを保つように制御部8で炉内
温度を制御する。ここで、レベルAは管内金属部品の温
度が上昇しても、酸化しないレベルの真空度である。管
内部品の気体放出量が真空ポンプ6の能力を下回り始め
ると真空度は高くなるが、やはりレベルAを保つよう
に、炉内温度を上昇させる。炉内温度をX線管1に熱影
響を与えない最高温度は一般に約 500度であるが、これ
に達しても真空度がレベルAより高くなり始めたら、次
に陽極タ−ゲット2と陰極3の高周波加熱を行なう。こ
こでも炉制御時と同様に真空度がレベルAを維持するよ
うに高周波出力を調整し、少しずつ加熱出力を高める。
陰極3の許容温度は約 800度であるが、これに達しても
真空度がレベルBより高くなり始めたら、X線管1の自
己加熱に移る。尚、レベルBはX線管1に高電圧を掛け
ても管内放電しないレベルの真空度である。X線管1の
自己加熱では陽極タ−ゲット2を重点的に加熱するが、
陽極タ−ゲット2の許容温度約1000度を上回らずに、真
空度がレベルBを維持するようにフィラメント電源1
4、高電圧電源15を制御する。陽極タ−ゲット2の許
容温度に達しても、真空度が最終到達目的真空度レベル
Cに達した時点で、排気終了となる。Next, the exhaust method of the present invention using the above exhaust device will be described. First, the vacuum pump 6 is operated without heating the in-tube components of the X-ray tube 1 to discharge the gas in the tube. When the measured value of the vacuum gauge 5 falls below the level A shown in FIG. 2, the furnace power supply 13 is operated to heat the X-ray tube 1. Then, the adsorbed gas on the inner wall of the X-ray tube and the contained gas are released, and when this amount exceeds the exhaust capacity of the vacuum pump 6,
Although the measured value of the vacuum gauge 5 temporarily deteriorates, the temperature inside the furnace is controlled by the control unit 8 so that the vacuum degree is slightly better than the level A. Here, the level A is a vacuum level at which oxidation is not caused even if the temperature of the metal parts in the pipe rises. When the amount of gas released from the parts inside the tube starts to fall below the capacity of the vacuum pump 6, the degree of vacuum increases, but the temperature inside the furnace is raised so that the level A is maintained. The maximum temperature that does not have a thermal effect on the X-ray tube 1 is generally about 500 degrees, but if the vacuum level starts to rise above level A even after reaching this temperature, then the anode target 2 and the cathode 3. Perform high frequency heating in 3. Here, the high-frequency output is adjusted so that the degree of vacuum maintains the level A as in the case of controlling the furnace, and the heating output is gradually increased.
The allowable temperature of the cathode 3 is about 800 degrees, but if the degree of vacuum starts to rise above the level B even after reaching this temperature, self-heating of the X-ray tube 1 is started. The level B is the degree of vacuum that does not cause discharge in the tube even when a high voltage is applied to the X-ray tube 1. In the self heating of the X-ray tube 1, the anode target 2 is heated intensively,
Filament power supply 1 so that the vacuum degree maintains level B without exceeding the allowable temperature of the anode target 2 of about 1000 degrees.
4. Control the high voltage power supply 15. Even when the temperature of the anode target 2 reaches the allowable temperature, when the degree of vacuum reaches the final target vacuum degree level C, exhausting is completed.
【0014】尚、図2はこの発明の排気装置で排気した
場合の排気管内の真空度の推移であるが、常に許される
べき最悪の真空度を維持するように、各加熱機器が制御
される。しかし、この図2が示す面積はX線管1から排
出された気体の量を表す。つまり、最も効率の良い排気
方法を実行したこととなる。FIG. 2 shows the transition of the degree of vacuum in the exhaust pipe when exhausted by the exhaust device of the present invention. Each heating device is controlled so as to maintain the worst degree of vacuum that should always be allowed. . However, the area shown in FIG. 2 represents the amount of gas discharged from the X-ray tube 1. In other words, the most efficient exhaust method has been executed.
【0015】又、吸着・含有気体の少ない部品が使用さ
れたX線管1ならば、上記レベルA,B,Cに達する時
間は短く、必然的に排気完了時間は短くなる。上記の結
果、この一実施の形態によれば、管内部品の吸着・含有
気体を最も効率的に管外に排出することを可能として、
その結果、総合排気時間を短縮し、X線管の製造原価を
削減出来る。又、構造の異なる異装置間で排気データの
共用化が図れ、その利用価値は大なるものである。Further, in the case of the X-ray tube 1 in which a part having a small amount of adsorbed / containing gas is used, the time required to reach the above levels A, B, C is short, and the exhaust completion time is inevitably short. As a result of the above, according to this one embodiment, it is possible to most efficiently adsorb the gas adsorbed and contained in the pipe parts outside the pipe,
As a result, the total exhaust time can be shortened and the manufacturing cost of the X-ray tube can be reduced. Further, the exhaust data can be shared between different devices having different structures, and the utility value thereof is great.
【0016】[0016]
【発明の効果】以上説明したようにこの発明によれば、
真空容器内のガス出しをして真空ポンプ系の圧力が下が
り始めたら高周波誘導加熱により上記真空容器内の金属
部品のガス出しを始め、その圧力が下がり始めたら陽極
タ−ゲットを電子衝撃してガス出しをして排気を行なう
ので、管内部品の吸着・含有ガスを最も効率的に管外に
排出することが出来る。その結果、総合排気時間が短縮
され、X線管の製造原価が削減される。又、構造の異な
る異装置間で排気デ−タの共用化が図れ、その利用価値
は大きい。As described above, according to the present invention,
When gas is discharged from the vacuum container and the pressure of the vacuum pump system begins to drop, high-frequency induction heating begins to gas out the metal parts in the vacuum container, and when the pressure begins to drop, the anode target is bombarded with electrons. Since the gas is discharged and exhausted, the gas adsorbed by the components inside the pipe and contained gas can be most efficiently discharged outside the pipe. As a result, the total exhaust time is shortened and the manufacturing cost of the X-ray tube is reduced. Further, the exhaust data can be shared between different devices having different structures, and its utility value is great.
【図1】この発明の一実施の形態に係るX線管の排気装
置を示す概略構成図。FIG. 1 is a schematic configuration diagram showing an exhaust device for an X-ray tube according to an embodiment of the present invention.
【図2】この発明の一実施の形態に係るX線管の排気方
法でX線管を排気した場合の排気管の真空度の変化を示
す特性曲線図。FIG. 2 is a characteristic curve diagram showing changes in the degree of vacuum of the exhaust pipe when the X-ray tube is exhausted by the X-ray tube exhaust method according to the embodiment of the present invention.
【図3】従来のX線管の排気装置を示す概略構成図。FIG. 3 is a schematic configuration diagram showing a conventional X-ray tube exhaust device.
【図4】従来のX線管の排気方法でX線管を排気した場
合の排気管の真空度の変化を示す特性曲線図。FIG. 4 is a characteristic curve diagram showing a change in the degree of vacuum of the exhaust pipe when the X-ray tube is exhausted by the conventional X-ray tube exhaust method.
1…X線管、2…陽極タ−ゲット、3…陰極、4…排気
管、5…真空計、6…真空ポンプ、7…測定出力、8…
制御部、9…高周波加熱コイル、10…高周波加熱装
置、11…加熱炉、12…ヒーター、13…炉電源、1
4…フィラメント電源…15…高電圧電源、16…高周
波加熱信号線、17…炉制御信号線、18…フィラメン
ト電源制御信号線、19…高電圧電源制御信号線。1 ... X-ray tube, 2 ... Anode target, 3 ... Cathode, 4 ... Exhaust tube, 5 ... Vacuum gauge, 6 ... Vacuum pump, 7 ... Measurement output, 8 ...
Control part, 9 ... High frequency heating coil, 10 ... High frequency heating device, 11 ... Heating furnace, 12 ... Heater, 13 ... Furnace power source, 1
4 ... Filament power supply ... 15 ... High voltage power supply, 16 ... High frequency heating signal line, 17 ... Furnace control signal line, 18 ... Filament power supply control signal line, 19 ... High voltage power supply control signal line.
Claims (2)
向配設してなるX線管に真空ポンプを接続し、上記真空
容器内のガスを排気するX線管の排気方法において、 上記真空容器内のガス出しをして上記真空ポンプ系の圧
力が下がり始めたら高周波誘導加熱により上記真空容器
内の金属部品のガス出しを始め、その圧力が下がり始め
たら上記陽極タ−ゲットを電子衝撃してガス出しをして
排気を行なうことを特徴とするX線管の排気方法。1. A method of exhausting an X-ray tube, wherein a vacuum pump is connected to an X-ray tube in which a cathode and an anode target are opposed to each other in a vacuum container, and gas in the vacuum container is exhausted. When gas is discharged from the vacuum container and the pressure of the vacuum pump system starts to drop, high-frequency induction heating starts gas discharge of the metal parts in the vacuum container, and when the pressure starts to drop, the anode target is electron-impacted. A method of exhausting an X-ray tube, characterized in that the gas is discharged and then exhausted.
極とからなる陰極と陽極タ−ゲットとが対向配設された
X線管のガスを排気するX線管の排気装置において、 上記X線管の真空容器に排気管を介して接続された真空
ポンプと、上記排気管の途中に設けられた真空計と、上
記X線管の真空容器の外周を覆うように配設された高周
波加熱コイルを有する高周波加熱装置と、この高周波加
熱コイルと上記X線管とが収容される加熱炉と、上記X
線管の陰極フィラメントに接続されたフィラメント電源
と、上記X線管の陽極タ−ゲットに接続された高電圧電
源と、上記真空計の測定結果を読取り且つ上記高周波加
熱装置,上記加熱炉,上記フィラメント電源,上記高電
圧電源を制御するコンピュ−タとを具備することを特徴
とするX線管の排気装置。2. An X-ray tube exhaust device for exhausting gas from an X-ray tube, in which a cathode composed of a cathode filament and a focusing electrode and an anode target are arranged to face each other in a vacuum container. A vacuum pump connected to the vacuum container via an exhaust pipe, a vacuum gauge provided in the middle of the exhaust pipe, and a high-frequency heating coil arranged to cover the outer circumference of the vacuum container of the X-ray tube. A high-frequency heating device having the same; a heating furnace accommodating the high-frequency heating coil and the X-ray tube;
The filament power source connected to the cathode filament of the X-ray tube, the high voltage power source connected to the anode target of the X-ray tube, the measurement result of the vacuum gauge, and the high-frequency heating device, the heating furnace, the above An X-ray tube exhaust device comprising a filament power supply and a computer for controlling the high voltage power supply.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23032395A JPH0982227A (en) | 1995-09-07 | 1995-09-07 | Evacuation method and device for x-ray tube |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23032395A JPH0982227A (en) | 1995-09-07 | 1995-09-07 | Evacuation method and device for x-ray tube |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0982227A true JPH0982227A (en) | 1997-03-28 |
Family
ID=16906036
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23032395A Pending JPH0982227A (en) | 1995-09-07 | 1995-09-07 | Evacuation method and device for x-ray tube |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0982227A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007280958A (en) * | 2006-04-05 | 2007-10-25 | Korea Electrotechnology Research Inst | Radiation tube system of carbon nanotube substrate separation type for electron beam generation of micro focusing level |
CN109637916A (en) * | 2018-12-29 | 2019-04-16 | 珠海瑞能真空电子有限公司 | A kind of exhaust equipment and technique |
CN113643948A (en) * | 2021-07-26 | 2021-11-12 | 无锡日联科技股份有限公司 | High-frequency vacuum degassing device for microfocus X-ray tube |
CN116224893A (en) * | 2022-09-16 | 2023-06-06 | 珠海瑞能真空电子有限公司 | Control system of exhaust equipment for X-ray tube processing |
-
1995
- 1995-09-07 JP JP23032395A patent/JPH0982227A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007280958A (en) * | 2006-04-05 | 2007-10-25 | Korea Electrotechnology Research Inst | Radiation tube system of carbon nanotube substrate separation type for electron beam generation of micro focusing level |
CN109637916A (en) * | 2018-12-29 | 2019-04-16 | 珠海瑞能真空电子有限公司 | A kind of exhaust equipment and technique |
CN109637916B (en) * | 2018-12-29 | 2024-07-23 | 珠海瑞能医疗设备有限公司 | Exhaust equipment and process |
CN113643948A (en) * | 2021-07-26 | 2021-11-12 | 无锡日联科技股份有限公司 | High-frequency vacuum degassing device for microfocus X-ray tube |
CN116224893A (en) * | 2022-09-16 | 2023-06-06 | 珠海瑞能真空电子有限公司 | Control system of exhaust equipment for X-ray tube processing |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2001274149A (en) | Plasma processing system, member for generating and introducing plasma and dielectric | |
JP4359521B2 (en) | Plasma processing apparatus and control method thereof | |
JP2010084169A (en) | Evacuation method, evacuation program, and vacuum treatment apparatus | |
JPH0982227A (en) | Evacuation method and device for x-ray tube | |
JPH04208512A (en) | Manufacture of solid electrolytic capacitor | |
KR20230116668A (en) | Substrate processing apparatus, method of manufacturing semiconductor device and program | |
US4310781A (en) | Controllable hydrogen source with gettering effect for electronic tubes | |
KR101057572B1 (en) | Method for controlling x-ray tube | |
JP3406199B2 (en) | Particle beam apparatus equipped with a field emission type electron gun and its heating degassing method | |
RU2168793C1 (en) | Compensating cathode | |
JPH11149996A (en) | Plasma reactor | |
KR20210102179A (en) | Plasma treatment apparatus and plasma treatment method | |
US3218113A (en) | Method for fabricating discharge device | |
JPH1064488A (en) | Baking method for insulation container | |
JPH0727552Y2 (en) | Charged particle beam generator | |
JP7458292B2 (en) | Plasma Processing Equipment | |
JP3317634B2 (en) | Method for manufacturing cathode ray tube and exhaust device | |
JP2005129511A (en) | Heat treatment device, heat treatment method, and manufacturing method of image display device | |
JPH06196443A (en) | Susceptor temperature control method | |
JPH11102829A (en) | Drying for winding of induction electrical equipment | |
JPH0629411A (en) | Method and apparatus for manufacturing semiconductor device | |
JPH08236150A (en) | Baking method for heat insulating vessel | |
KR19980070355A (en) | Manufacturing apparatus of an electron tube and manufacturing method thereof | |
JPS63214337A (en) | Method and apparatus for surface treatment under vacuum | |
JPS5833009B2 (en) | Vacuum chamber gas venting device |