JPH0980109A - Apparatus for monitoring leak current of arrester - Google Patents

Apparatus for monitoring leak current of arrester

Info

Publication number
JPH0980109A
JPH0980109A JP7237026A JP23702695A JPH0980109A JP H0980109 A JPH0980109 A JP H0980109A JP 7237026 A JP7237026 A JP 7237026A JP 23702695 A JP23702695 A JP 23702695A JP H0980109 A JPH0980109 A JP H0980109A
Authority
JP
Japan
Prior art keywords
leakage current
lightning arrester
pointer
monitoring device
current monitoring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7237026A
Other languages
Japanese (ja)
Other versions
JP3213685B2 (en
Inventor
Michihiro Tadokoro
通博 田所
Yoshihiko Yamamoto
吉彦 山本
Makoto Yamaguchi
誠 山口
Masato Yamada
正人 山田
Masahiro Hirose
昌弘 廣瀬
Masayuki Hatano
雅幸 畑野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electric Power Development Co Ltd
Kansai Electric Power Co Inc
Shikoku Electric Power Co Inc
Mitsubishi Electric Corp
Original Assignee
Electric Power Development Co Ltd
Kansai Electric Power Co Inc
Shikoku Electric Power Co Inc
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electric Power Development Co Ltd, Kansai Electric Power Co Inc, Shikoku Electric Power Co Inc, Mitsubishi Electric Corp filed Critical Electric Power Development Co Ltd
Priority to JP23702695A priority Critical patent/JP3213685B2/en
Publication of JPH0980109A publication Critical patent/JPH0980109A/en
Application granted granted Critical
Publication of JP3213685B2 publication Critical patent/JP3213685B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Thermistors And Varistors (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve detecting accuracy for detecting a deteriorated state of an arrester. SOLUTION: A resistor 14 and an ammeter 15 are connected in series to an arrester 13 to which a direct current voltage including an alternating current component is applied. A capacitor 16 is connected in parallel to a series circuit of the resistor and the ammeter. Time constants of the resistor and the capacitor are made larger than one cycle time of a commercial frequency. Accordingly, a leak current consequent to the deterioration of the arrester can be accurately detected.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、交流成分を含む
直流電圧が印加される避雷器の漏れ電流を検出する避雷
器の漏れ電流監視装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an arrester leakage current monitoring device for detecting a leakage current of an arrester to which a DC voltage containing an AC component is applied.

【0002】[0002]

【従来の技術】近年、長距離・大容量電力送電として直
流送電の開発が進められている。図15は交直変換所の
一般的な電気回路の構成図である。図15において、交
流系統1に接続した変換用変圧器2からバルブ3aで構
成した高圧側ブリッジ3とバルブ4aで構成した低圧側
ブリッジ4とで高電圧の直流に変換し、直流本線5及び
中性線6から出力する。そして、酸化亜鉛素子で構成し
た避雷器3b、4bを各バルブ3a、4aに並列接続す
る。このうち、高圧側のバルブ3a及び避雷器3bは大
地からの電位が高く空間的にも高い位置に絶縁して設置
される。さらに、電流計3c、4cは各避雷器3b、4
bと直列に接続して、避雷器3b、4bの漏れ電流を検
出する。なお、7は中性線用避雷器、8は3相ブリッジ
用避雷器及び9は6相ブリッジ用避雷器である。
2. Description of the Related Art In recent years, direct current power transmission has been developed as long-distance, large-capacity power transmission. FIG. 15 is a configuration diagram of a general electric circuit of an AC / DC converter. In FIG. 15, from the conversion transformer 2 connected to the AC system 1, the high voltage side bridge 3 composed of the valve 3a and the low voltage side bridge 4 composed of the valve 4a convert into high voltage DC, and the DC main line 5 and the middle Output from sex line 6. Then, the lightning arresters 3b, 4b composed of zinc oxide elements are connected in parallel to the valves 3a, 4a. Among these, the high-voltage side valve 3a and the lightning arrester 3b are installed insulated at positions where the potential from the ground is high and the space is also high. Further, the ammeters 3c and 4c are the lightning arresters 3b and 4c.
It is connected in series with b to detect the leakage current of the lightning arresters 3b, 4b. In addition, 7 is a neutral line arrester, 8 is a three-phase bridge arrester, and 9 is a 6-phase bridge arrester.

【0003】[0003]

【発明が解決しようとする課題】一般に避雷器の耐雷素
子として使用されている酸化亜鉛素子の等価回路は図1
6のように、電圧依存性を有する非直線抵抗10と容量
11との並列回路として表される。そして、酸化亜鉛素
子の劣化は、一定の条件での抵抗分の漏れ電流iRの増
大として表れる。この場合、酸化亜鉛素子の劣化検出に
は容量分の電流iCは無関係であるが、電流計3c、4
cには容量分の電流iCを含んだ漏れ電流iT=iR+iC
が流れるので、劣化の検出精度を向上させることが困難
であるという問題点があった。
An equivalent circuit of a zinc oxide element generally used as a lightning protection element of a lightning arrester is shown in FIG.
6 is represented as a parallel circuit of a non-linear resistance 10 having a voltage dependency and a capacitor 11. Then, the deterioration of the zinc oxide element appears as an increase in the leakage current i R of the resistance component under certain conditions. In this case, although the current i C for the capacitance is irrelevant for detecting the deterioration of the zinc oxide element, the ammeters 3c, 4
c is the leakage current i T = i R + i C including the current i C for the capacitance
Therefore, there is a problem that it is difficult to improve the detection accuracy of deterioration.

【0004】また、高圧側ブリッジ3は大地から高い位
置に絶縁されているので、地上側から電流計の指示を確
認することが困難であるという問題点があった。
Further, since the high voltage side bridge 3 is insulated at a high position from the ground, it is difficult to confirm the ammeter indication from the ground side.

【0005】[0005]

【課題を解決するための手段】請求項1の発明に係る避
雷器の漏れ電流監視装置は、交流成分を含んだ直流電圧
が印加される避雷器の漏れ電流を検出する避雷器の漏れ
電流監視装置において、避雷器に抵抗と電流計とを直列
接続して、抵抗と電流計との直列回路にコンデンサを並
列接続し、抵抗とコンデンサとの時定数を商用周波数の
1サイクル時間より大きくしたものである。
According to a first aspect of the present invention, there is provided a lightning arrester leakage current monitoring device for detecting a leakage current of an arrester to which a DC voltage including an AC component is applied. A resistance and an ammeter are connected in series to a lightning arrester, a capacitor is connected in parallel to a series circuit of the resistance and an ammeter, and a time constant between the resistance and the capacitor is made larger than one cycle time of a commercial frequency.

【0006】請求項2の発明に係る避雷器の漏れ電流監
視装置は、請求項1に記載の避雷器の漏れ電流監視装置
において、電流計を可動指針形として指針を発光手段と
伝送手段との間に配置し、指針の振れ角度に応じて指針
が発光手段からの光を遮光し、伝送手段により伝送され
た光信号を受光手段で電気信号に変換して、電気信号を
演算手段で演算して避雷器の漏れ電流を検出するように
構成したものである。
A leakage current monitoring device for a lightning arrester according to a second aspect of the present invention is the leakage current monitoring device for a lightning arrester according to the first aspect, wherein the ammeter is a movable pointer type and the pointer is provided between the light emitting means and the transmitting means. Arranged, the pointer shields the light from the light emitting means according to the deflection angle of the pointer, the light signal transmitted by the transmitting means is converted into an electric signal by the light receiving means, and the electric signal is calculated by the calculating means and the lightning arrester It is configured to detect the leakage current of.

【0007】請求項3の発明に係る避雷器の漏れ電流監
視装置は、請求項2に記載の避雷器の漏れ電流監視装置
において、電流計の指針と伝送手段との間に集光用のレ
ンズを配置したものである。
A lightning arrester leakage current monitoring device according to a third aspect of the present invention is the lightning arrester leakage current monitoring device according to the second aspect, wherein a condenser lens is arranged between the pointer of the ammeter and the transmission means. It was done.

【0008】請求項4の発明に係る避雷器の漏れ電流監
視装置は、請求項1に記載の避雷器の漏れ電流監視装置
において、発光手段が出力した光を第1の伝送手段で伝
送し、第1の伝送手段と所定の間隔をあけて第2の伝送
手段を対向させ、電流計を可動指針形として指針を両伝
送手段間に配置し、指針の振れ角度に応じて第2の伝送
手段へ入射する光を遮光し、第2の伝送手段を介して伝
送された光信号を受光手段で電気信号に変換して、電気
信号を演算手段で演算して避雷器の漏れ電流を検出する
ように構成したものである。
A lightning arrester leakage current monitoring device according to a fourth aspect of the present invention is the lightning arrester leakage current monitoring device according to the first aspect, wherein the light output from the light emitting means is transmitted by the first transmission means. The second transmission means is opposed to the second transmission means at a predetermined interval, the ammeter is a movable pointer type, and the pointer is disposed between both the transmission means, and the second transmission means is incident according to the deflection angle of the pointer. The light receiving device is configured to block the light to be transmitted, convert the optical signal transmitted through the second transmission means into an electric signal by the light receiving means, and calculate the electric signal by the arithmetic means to detect the leakage current of the lightning arrester. It is a thing.

【0009】請求項5の発明に係る避雷器の漏れ電流監
視装置は、請求項4に記載の避雷器の漏れ電流監視装置
において、第2の伝送手段を複数個とし、電流計の指針
が第2の伝送手段へ入射する光を順次遮光するようにし
たものである。
A lightning arrester leakage current monitoring device according to a fifth aspect of the present invention is the lightning arrester leakage current monitoring device according to the fourth aspect, wherein a plurality of second transmission means are provided and the ammeter pointer is second. The light incident on the transmission means is sequentially blocked.

【0010】請求項6の発明に係る避雷器の漏れ電流監
視装置は、請求項5に記載の避雷器の漏れ電流監視装置
において、電流計の指針の第1の振れ角度で第2の伝送
手段の第1番目を遮光し、第1の振れ角度より大きい第
2の振れ角度で第1番目の第2の伝送手段の遮光を解除
して、第2の伝送手段の第2番目を遮光するものであ
る。
A lightning arrester leakage current monitoring device according to a sixth aspect of the present invention is the lightning arrester leakage current monitoring device according to the fifth aspect, wherein the ammeter pointer has a first deflection angle and a second transmission means has a second deflection angle. The first light is shielded, the second transmission means, which is the first deflection means, is unshielded at a second deflection angle larger than the first deflection angle, and the second transmission means is shielded. .

【0011】請求項7の発明に係る避雷器の漏れ電流監
視装置は、請求項2から請求項6のいずれかに記載の避
雷器の漏れ電流監視装置において、発光手段、受光手段
及び演算手段を大地電位部に配置したものである。
A leakage current monitoring device for a lightning arrester according to a seventh aspect of the present invention is the leakage current monitoring device for a lightning arrester according to any one of the second to sixth aspects, in which the light emitting means, the light receiving means and the computing means are grounded. It is arranged in the section.

【0012】[0012]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

実施の形態1.図1は実施の形態1の構成図である。図
1において、12は通流制御されるサイリスタで、交流
成分を含んだ直流電圧を出力する。13は一端をサイリ
スタ12のカソードK側に接続した避雷器で、酸化亜鉛
素子で構成している。14は一端を避雷器13の他端に
接続した抵抗、15は一端を抵抗14の他端に接続した
可動コイル形の電流計で、他端をサイリスタ12のアノ
ードA側に接続してある。16は抵抗14と電流計16
との直列回路に並列接続したコンデンサである。なお、
抵抗14とコンデンサ16とから決まる時定数は、商用
周波数の1サイクル時間より大きくなるように設定して
ある。即ち、商用周波数が60Hzの場合は、時定数τ
eを16.67msecより大きく設定する。さらに、
電流計16の機械的な時定数τmも時定数τeと同様に1
6.67msec以上のものを採用する。
Embodiment 1. FIG. 1 is a configuration diagram of the first embodiment. In FIG. 1, reference numeral 12 is a thyristor controlled to flow, and outputs a DC voltage containing an AC component. Reference numeral 13 is a lightning arrester having one end connected to the cathode K side of the thyristor 12, and is composed of a zinc oxide element. Reference numeral 14 is a resistor having one end connected to the other end of the lightning arrester 13, and 15 is a moving coil type ammeter having one end connected to the other end of the resistor 14, the other end of which is connected to the anode A side of the thyristor 12. 16 is a resistor 14 and an ammeter 16
Is a capacitor connected in parallel to the series circuit of. In addition,
The time constant determined by the resistor 14 and the capacitor 16 is set to be longer than one cycle time of the commercial frequency. That is, when the commercial frequency is 60 Hz, the time constant τ
Set e to be larger than 16.67 msec. further,
The mechanical time constant τ m of the ammeter 16 is 1 as well as the time constant τ e.
Use a speed of 6.67 msec or more.

【0013】なお、時定数τe、τmを16.67mse
c以上に設定したのは次の理由による。即ち、サイリス
タ12のA−K間には図2に示す波形の電圧が印加され
る。そして、避雷器13に流れる容量分電流は、印加電
圧波形の内の変動する成分により生じるので、電圧波形
の周波数成分の中で一番低い交流系統の基本周波数(例
えば60Hz)成分以上の変動による漏れ電流を除去で
きるように選定した。
The time constants τ e and τ m are set to 16.67 mse.
The reason for setting the value above c is as follows. That is, the voltage having the waveform shown in FIG. 2 is applied between A and K of the thyristor 12. Since the capacitive component current flowing through the lightning arrester 13 is generated by the fluctuating component of the applied voltage waveform, the leakage due to the fluctuation of the lowest fundamental frequency component (for example, 60 Hz) of the AC system among the frequency components of the voltage waveform. It was selected so that the current could be removed.

【0014】図3は上記構成において、時定数τe、τm
を0.1secにしたときの避雷器13の正常時及び劣
化時における漏れ電流をシミュレーションにより求めた
ものを示す説明図である。図3から判るように、図15
に示す従来のように避雷器3b、4bに電流計3c、4
cを接続した場合は、正常時と劣化時における検出電流
の変化が殆どない。また、サイリスタの運転制御角(コ
ンバータ運転時)により大きく電流値が変化する。これ
に対して、抵抗14とコンデンサ16との時定数τe
0.1secとしたときの漏れ電流は、劣化時には正常
時の1.2〜1.3倍に増加する。また、電流計15の
機械的な時定数τmも0.1secとしたときの漏れ電
流は、劣化時には正常時の2倍に増加する。そして、サ
イリスタの運転制御角による影響が少ない。
FIG. 3 shows the time constants τ e and τ m in the above configuration.
It is an explanatory view showing what asked for a leakage current at the time of normality and deterioration of lightning arrester 13 when it was set to 0.1 sec by simulation. As can be seen from FIG. 3, FIG.
As in the prior art shown in Fig. 3, the lightning arresters 3b, 4b have ammeters 3c, 4
When c is connected, there is almost no change in the detected current during normal operation and deterioration. In addition, the current value changes greatly depending on the operation control angle of the thyristor (during converter operation). On the other hand, when the time constant τ e of the resistor 14 and the capacitor 16 is set to 0.1 sec, the leakage current increases 1.2 to 1.3 times that in the normal state during deterioration. Further, when the mechanical time constant τ m of the ammeter 15 is also set to 0.1 sec, the leakage current increases twice as much as the normal state at the time of deterioration. Further, the influence of the operation control angle of the thyristor is small.

【0015】以上のように、抵抗14とコンデンサ16
との時定数を商用周波数の1サイクル時間より大きくし
たことにより、交流を含んだ直流電圧が印加される避雷
器13劣化にともなう漏れ電流を精度よく検出できる。
As described above, the resistor 14 and the capacitor 16
By setting the time constants of and to be larger than one cycle time of the commercial frequency, it is possible to accurately detect the leakage current due to the deterioration of the lightning arrester 13 to which a DC voltage including AC is applied.

【0016】実施の形態2.図4は実施の形態2の構成
図、図5は図4の要部を模式的に示す斜視図である。図
4及び図5において、12〜16は実施の形態1のもの
と同様のものである。なお、15aは電流計15の回転
軸、15bは電流計15の指針である。17、18は光
ファイバで構成した伝送手段で、各端部が指針15bに
対向するように所定の間隔で配置してある。19は光変
換手段で、伝送手段17、18と指針15bとで構成し
てある。20は発光手段、21は受光手段、22は演算
手段、23は出力手段である。なお、20〜23は大地
電位部に配置し、光変換手段19とは伝送手段17、1
8で絶縁してある。
Embodiment 2 4 is a configuration diagram of the second embodiment, and FIG. 5 is a perspective view schematically showing a main part of FIG. 4 and 5, 12 to 16 are the same as those in the first embodiment. In addition, 15 a is a rotating shaft of the ammeter 15, and 15 b is a pointer of the ammeter 15. Reference numerals 17 and 18 denote transmission means composed of optical fibers, which are arranged at predetermined intervals so that their ends face the pointer 15b. Reference numeral 19 denotes an optical conversion means, which is composed of transmission means 17 and 18 and a pointer 15b. 20 is a light emitting means, 21 is a light receiving means, 22 is a computing means, and 23 is an output means. 20 to 23 are arranged in the ground potential portion, and the light conversion means 19 are the transmission means 17 and 1
It is insulated with 8.

【0017】上記構成において、電流計15に抵抗分の
漏れ電流iRが流れて回転軸15aを介して指針15b
が振れると、伝送手段17、18間のギャップで発光手
段20からの光を指針15bが遮光する。この場合、指
針15bの振れ角θと伝送手段18への透過光量との関
係は、図6に示すようにデジタル的に変化する。この透
過光量の変化を受光手段21で電気信号として出力し、
演算手段22が透過光量の変化に応じて避雷器13の耐
雷素子の劣化を検出して、表示灯、ブザー、指示計等の
出力手段23から出力する。
In the above structure, the resistance leakage current i R flows through the ammeter 15 and the pointer 15b passes through the rotary shaft 15a.
When oscillates, the pointer 15b blocks the light from the light emitting means 20 in the gap between the transmission means 17 and 18. In this case, the relationship between the deflection angle θ of the pointer 15b and the amount of light transmitted to the transmission means 18 changes digitally as shown in FIG. The light receiving means 21 outputs the change in the transmitted light amount as an electric signal,
The calculation means 22 detects the deterioration of the lightning protection element of the lightning arrester 13 according to the change in the amount of transmitted light, and outputs it from the output means 23 such as an indicator lamp, a buzzer, and an indicator.

【0018】以上のように、避雷器13の耐雷素子の劣
化による漏れ電流iRが徐々に増加するが、出力の透過
光量をデジタル的に変化させることにより、劣化検出が
容易にできる。また、耐雷素子の正常時に常時「出力あ
り」の状態にすることにより、発光手段20等に異常が
発生した場合に耐雷素子が「正常」であるという認識が
されないようなフェイルセーフになっている。しかし、
逆に正常時に発光手段20からの光を指針15bが遮光
するように構成してもよい。
As described above, the leakage current i R gradually increases due to deterioration of the lightning protection element of the lightning arrester 13, but deterioration can be easily detected by digitally changing the amount of transmitted light of the output. In addition, the lightning protection element is always in the “output enabled” state when it is normal, so that the lightning protection element is not recognized as being “normal” when an abnormality occurs in the light emitting means 20 or the like, thereby providing a failsafe. . But,
On the contrary, the pointer 15b may be configured to shield the light from the light emitting means 20 in a normal state.

【0019】実施の形態3.図7は実施の形態3の構成
図、図8は図7の要部を模式的に示した斜視図である。
図7及び図8において、12〜16は実施の形態1のも
のと同様であり、17、18、20〜23は実施の形態
2のものと同様である。24、25は光ファイバで構成
した伝送手段で、各端部が指針15bに対向するように
所定の間隔で配置してある。なお、指針15bが各伝送
手段17、18、24、25と対向する部分は図9に示
すように形成してある。即ち、指針15bの振れ角θが
小さい場合は、図9(a)のように伝送手段17、18
間及び伝送手段24、25間ともに遮光しない。振れ角
θが大きくなると、図9(b)のように伝送手段17、
18間を遮光し、伝送手段24、25間は開放してい
る。そして、振れ角がさらに大きくなると、図9(c)
のように伝送手段17、18間が開放し、伝送手段2
4、25間を遮光する。26は光変換手段で、伝送手段
17、18、24、25と指針15bとで構成してい
る。
Embodiment 3 FIG. 7 is a configuration diagram of the third embodiment, and FIG. 8 is a perspective view schematically showing a main part of FIG.
7 and 8, 12 to 16 are the same as those in the first embodiment, and 17, 18, 20 to 23 are the same as those in the second embodiment. Numerals 24 and 25 are transmission means composed of optical fibers, which are arranged at a predetermined interval so that each end faces the pointer 15b. The portion where the pointer 15b faces the respective transmission means 17, 18, 24, 25 is formed as shown in FIG. That is, when the deflection angle θ of the pointer 15b is small, as shown in FIG.
No light is blocked between the transmission means and the transmission means 24, 25. When the deflection angle θ becomes large, as shown in FIG.
18 is shielded from light, and transmission means 24 and 25 are opened. Then, when the deflection angle is further increased, FIG.
The transmission means 17 and 18 are opened as shown in FIG.
Shield between 4 and 25. Reference numeral 26 is an optical conversion means, which is composed of transmission means 17, 18, 24, 25 and a pointer 15b.

【0020】上記構成において、電流計15に抵抗分の
漏れ電流iRが流れて回転軸15aを介して指針15b
が振れると、振れ角θに応じて伝送手段17、18間は
図10(a)のように透過光量が変化する。そして、伝
送手段24、25間は図10(b)のように透過光量が
変化する。図9及び図10において、指針15bの振れ
角θが小、中及び大に対して、各伝送手段18、25に
光が到達する状態を“1”、到達しない状態を“0”と
して、図7の演算手段22の出力を3、2、1として対
応づけると図11のように表すことができる。即ち、演
算手段22の出力が“3”のときは耐雷素子が正常、
“2”のときは正常ではあるが、注意が必要である状
態、“1”のときは耐雷素子が劣化している状態であ
る。
In the above structure, the leakage current i R of the resistance component flows through the ammeter 15 and the pointer 15b passes through the rotary shaft 15a.
When is shaken, the amount of transmitted light between the transmission means 17 and 18 changes according to the shake angle θ as shown in FIG. Then, the amount of transmitted light changes between the transmission means 24 and 25 as shown in FIG. In FIG. 9 and FIG. 10, when the deflection angle θ of the pointer 15b is small, medium and large, the state where light reaches each transmission means 18 and 25 is set to “1”, and the state where light does not reach is set to “0”. When the outputs of the calculation means 22 of No. 7 are associated with 3, 2, 1 as shown in FIG. That is, when the output of the computing means 22 is "3", the lightning protection device is normal,
When it is "2", it is normal, but caution is required, and when it is "1", the lightning protection element is in a deteriorated state.

【0021】以上のように、伝送手段17、18及び2
4、25を2系統にして2進数処理することにより、耐
雷素子の「正常」、「注意要」及び「劣化」の3状態を
判別することができる。さらに、伝送手段をn系統にす
ることにより(2n−1)の状態を判別することができ
る。
As described above, the transmission means 17, 18 and 2
It is possible to determine the three states of the lightning protection element, which are "normal", "requiring attention", and "deterioration", by processing the binary numbers 4 and 25 into two systems. Furthermore, the state of (2 n -1) can be discriminated by setting the transmission means to n systems.

【0022】実施の形態4.図12は実施の形態4の構
成図、図13は図12の要部を模式的に示す斜視図であ
る。図12及び図13において、12〜16は実施の形
態1のものと同様であり、17、18、20、21は実
施の形態2のものと同様である。27は指針15bと伝
送手段18の端部との間に配置したレンズで、伝送手段
17の端面と伝送手段18の端面とが共役点になるよう
にしてある。28は光変換手段で、伝送手段17、1
8、レンズ28及び指針15bで構成している。29は
演算手段、30は出力手段である。
Embodiment 4 12 is a configuration diagram of the fourth embodiment, and FIG. 13 is a perspective view schematically showing a main part of FIG. 12 and 13, 12 to 16 are the same as those in the first embodiment, and 17, 18, 20, and 21 are the same as those in the second embodiment. Reference numeral 27 denotes a lens arranged between the pointer 15b and the end of the transmission means 18 so that the end surface of the transmission means 17 and the end surface of the transmission means 18 are conjugate points. 28 is an optical conversion means, which is a transmission means 17, 1
8, lens 28 and pointer 15b. Reference numeral 29 is a calculation means, and 30 is an output means.

【0023】上記構成において、光ファイバで構成した
伝送手段17から出た光は開口数NA=0.3程度の発
散光となるが、レンズ27により伝送手段18の光ファ
イバのコア部18aに導かれる。また、避雷器13の耐
雷素子の劣化にしたがって指針15bが徐々に振れるの
で、伝送手段17から出た光が指針15bにより少しず
つ遮光され、図14に示すように伝送手段18に到達す
る透過光量が指針15bの振れ角θが大きくなるにつれ
て減少する。この場合、透過光量が変化する指針15b
の振れ角θの範囲は、レンズ27の開口(有効入射瞳
径)で決まる。伝送手段18で伝送された光信号を受光
手段21で電気信号に変換し、図14に示す判定レベル
に達したら演算手段29が「耐雷素子の劣化」として判
定し、出力手段30で報知する。
In the above structure, the light emitted from the transmission means 17 formed of an optical fiber becomes a divergent light with a numerical aperture NA = 0.3, but is guided to the core portion 18a of the optical fiber of the transmission means 18 by the lens 27. Get burned. Further, since the pointer 15b gradually shakes as the lightning protection element of the lightning arrester 13 deteriorates, the light emitted from the transmission means 17 is gradually shielded by the pointer 15b, and the transmitted light amount reaching the transmission means 18 as shown in FIG. It decreases as the deflection angle θ of the pointer 15b increases. In this case, the pointer 15b in which the amount of transmitted light changes
The range of the deflection angle θ of is determined by the aperture of the lens 27 (effective entrance pupil diameter). The optical signal transmitted by the transmitting means 18 is converted into an electric signal by the light receiving means 21, and when the judgment level shown in FIG. 14 is reached, the calculating means 29 judges as “deterioration of the lightning protection element”, and the output means 30 notifies it.

【0024】以上のように、伝送手段17から出た発散
光をレンズ27により伝送手段18のコア部18aに導
くことにより、漏れ電流の増加を連続的に監視できる。
また、判定レベル以上の透過光量があったときに正常と
しているので、発光手段等に異常があって光が消滅した
場合には耐雷素子の劣化として検出するためフェイルセ
ーフになっている。なお、耐雷素子の劣化時に光出力が
得られるようにしてもよい。
As described above, by guiding the divergent light emitted from the transmission means 17 to the core portion 18a of the transmission means 18 by the lens 27, the increase of the leakage current can be continuously monitored.
Further, since it is considered normal when there is an amount of transmitted light equal to or higher than the determination level, when the light is extinguished due to an abnormality in the light emitting means or the like, it is detected as deterioration of the lightning protection element, which is fail safe. The light output may be obtained when the lightning protection element deteriorates.

【0025】上記実施の形態2〜4において、指針15
bで発光手段20からの光を遮光するものについて説明
したが、指針15bと連動するようにした遮光板を使用
しても同様の効果が期待できる。
In the above second to fourth embodiments, the pointer 15
Although the light blocking means for blocking the light from the light emitting means 20 has been described with reference to b, the same effect can be expected by using a light blocking plate that is linked with the pointer 15b.

【0026】上記実施の形態2〜4において、発光手段
20を各光変換手段19、26、28に配置しても同様
の効果が期待できる。
In the above second to fourth embodiments, the same effect can be expected even if the light emitting means 20 is arranged in each of the light converting means 19, 26 and 28.

【0027】[0027]

【発明の効果】請求項1の発明によれば、避雷器に接続
した抵抗とコンデンサとの時定数を商用周波数の1サイ
クル時間より大きくしたことにより、避雷器の劣化にと
もなう漏れ電流を精度よく検出できる。
According to the invention of claim 1, the time constant of the resistor and the capacitor connected to the arrester is made larger than one cycle time of the commercial frequency, so that the leakage current due to the deterioration of the arrester can be accurately detected. .

【0028】請求項2の発明によれば、電流計の指針で
遮光することにより徐々に変化する避雷器の漏れ電流を
デジタル的な変化に変換するので、漏れ電流の検出精度
を向上できる。また、電流計と受光手段との間を光を伝
送する伝送手段で接続することにより、受光手段から出
力した電気信号を演算する演算手段を大地電位側に設置
できるので、避雷器の漏れ電流の監視が容易にできる。
According to the second aspect of the present invention, the leakage current of the lightning arrester, which gradually changes by shading with the pointer of the ammeter, is converted into a digital change, so that the detection accuracy of the leakage current can be improved. Further, by connecting the ammeter and the light receiving means with a transmitting means for transmitting light, a calculating means for calculating the electric signal output from the light receiving means can be installed on the ground potential side, so that the leakage current of the lightning arrester is monitored. Can be done easily.

【0029】請求項3の発明によれば、請求項2に記載
の避雷器の漏れ電流監視装置において、電流計の指針と
伝送手段との間に集光用レンズを配置したことにより、
避雷器の漏れ電流を連続的に監視できる。
According to the third aspect of the present invention, in the leakage current monitoring device for the lightning arrester according to the second aspect, the condenser lens is arranged between the pointer of the ammeter and the transmitting means.
The leakage current of the arrester can be continuously monitored.

【0030】請求項4の発明によれば、電流計の指針で
遮光することにより徐々に変化する避雷器の漏れ電流を
デジタル的な変化に変換するので、漏れ電流の検出精度
を向上できる。また、電流計と発光手段及び受光手段と
の間を光を伝送する伝送手段で接続することにより、演
算手段を大地電位側に設置できるので、避雷器の漏れ電
流の監視が容易にできる。
According to the fourth aspect of the present invention, the leakage current of the arrester, which gradually changes by shading with the pointer of the ammeter, is converted into a digital change, so that the detection accuracy of the leakage current can be improved. Further, by connecting the ammeter to the light emitting means and the light receiving means by the transmitting means for transmitting light, the arithmetic means can be installed on the ground potential side, so that the leakage current of the arrester can be easily monitored.

【0031】請求項5の発明によれば、請求項4に記載
の避雷器の漏れ電流監視装置において、伝送手段を2系
統にして得られた光信号を演算することにより、避雷器
の劣化状態を段階ごとに監視することができる。
According to the fifth aspect of the present invention, in the lightning arrester leakage current monitoring apparatus according to the fourth aspect, the optical signal obtained by using two transmission means is operated to calculate the deterioration state of the lightning arrester. Can be monitored for each.

【0032】請求項6の発明によれば、請求項5に記載
の避雷器の漏れ電流監視装置において、各伝送手段を順
次2進数的に遮光することにより、避雷器の劣化状態を
段階ごとに監視することができる。
According to the sixth aspect of the invention, in the lightning arrester leakage current monitoring device according to the fifth aspect, the deterioration state of the lightning arrester is monitored step by step by sequentially shielding each transmission means in binary. be able to.

【0033】請求項7の発明によれば、請求項2から請
求項6のいずれかに記載の避雷器の漏れ電流監視装置に
おいて、発光手段、受光手段及び演算手段を大地電位部
に配置したことにより、高電圧側の電流計で検出した漏
れ電流を大地電位部で演算手段の出力値により確認する
ことができる。
According to the invention of claim 7, in the leakage current monitor for a lightning arrester according to any one of claims 2 to 6, the light emitting means, the light receiving means and the computing means are arranged in the ground potential section. The leakage current detected by the high voltage side ammeter can be confirmed by the output value of the calculation means in the ground potential section.

【図面の簡単な説明】[Brief description of drawings]

【図1】 実施の形態1の発明の構成図である。FIG. 1 is a configuration diagram of an invention according to a first embodiment.

【図2】 図1のサイリスタのA−K間の電圧波形を示
す説明図である。
FIG. 2 is an explanatory diagram showing a voltage waveform between AK of the thyristor of FIG.

【図3】 避雷器の正常時及び劣化時における漏れ電流
の比較を示す説明図である。
FIG. 3 is an explanatory diagram showing a comparison of leakage current when the lightning arrester is normal and when it is deteriorated.

【図4】 実施の形態2の発明の構成図である。FIG. 4 is a configuration diagram of an invention according to a second embodiment.

【図5】 図4の要部を模式的に示した斜視図である。5 is a perspective view schematically showing a main part of FIG.

【図6】 指針の振れ角と透過光量との関係を示す説明
図である。
FIG. 6 is an explanatory diagram showing a relationship between a deflection angle of a pointer and an amount of transmitted light.

【図7】 実施の形態3の発明の構成図である。FIG. 7 is a configuration diagram of an invention according to a third embodiment.

【図8】 図7の要部を模式的に示した斜視図である。FIG. 8 is a perspective view schematically showing a main part of FIG.

【図9】 指針の振れ角と伝送手段との関係を示す説明
図である。
FIG. 9 is an explanatory diagram showing the relationship between the deflection angle of the pointer and the transmission means.

【図10】 指針の振れ角と透過光量との関係を示す説
明図である。
FIG. 10 is an explanatory diagram showing the relationship between the deflection angle of the pointer and the amount of transmitted light.

【図11】 指針の振れ角と耐雷素子の状態との関係を
示す説明図である。
FIG. 11 is an explanatory diagram showing the relationship between the deflection angle of the pointer and the state of the lightning protection element.

【図12】 実施の形態4の発明の構成図である。FIG. 12 is a configuration diagram of the invention of the fourth embodiment.

【図13】 図12の要部を模式的に示した斜視図であ
る。
FIG. 13 is a perspective view schematically showing a main part of FIG.

【図14】 指針の振れ角と透過光量との関係を示した
説明図である。
FIG. 14 is an explanatory diagram showing the relationship between the deflection angle of the pointer and the amount of transmitted light.

【図15】 交直変換所の一般的な電気回路の構成図で
ある。
FIG. 15 is a configuration diagram of a general electric circuit of an AC / DC converter.

【図16】 一般に避雷器の耐雷素子として使用される
酸化亜鉛素子の等価回路を示す説明図である。
FIG. 16 is an explanatory diagram showing an equivalent circuit of a zinc oxide element generally used as a lightning protection element of a lightning arrester.

【符号の説明】[Explanation of symbols]

13 避雷器、14 抵抗、15 電流計、15b 指
針、16 コンデンサ、17,18,24,25 伝送
手段、20 発光手段、21 受光手段、22,29
演算手段、27 レンズ。
13 lightning arrester, 14 resistance, 15 ammeter, 15b pointer, 16 condenser, 17, 18, 24, 25 transmitting means, 20 light emitting means, 21 light receiving means, 22, 29
Arithmetic means, 27 lenses.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田所 通博 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 (72)発明者 山本 吉彦 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 (72)発明者 山口 誠 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 (72)発明者 山田 正人 大阪府大阪市北区中之島3丁目3番22号 関西電力株式会社内 (72)発明者 廣瀬 昌弘 香川県高松市丸の内2番5号 四国電力株 式会社内 (72)発明者 畑野 雅幸 東京都中央区銀座六丁目15番1号 電源開 発株式会社内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Tomohiro Tadokoro 2-3-3 Marunouchi, Chiyoda-ku, Tokyo Sanryo Electric Co., Ltd. (72) Yoshihiko Yamamoto 2-3-2 Marunouchi, Chiyoda-ku, Tokyo Sanryo Electric Co., Ltd. (72) Inventor Makoto Yamaguchi 2-3-3 Marunouchi, Chiyoda-ku, Tokyo Sanryo Electric Co., Ltd. (72) Masato Yamada 3-322, Nakanoshima, Kita-ku, Osaka City, Osaka Prefecture Kansai Electric Power Co., Inc. (72) Inventor Masahiro Hirose 2-5 Marunouchi, Takamatsu, Kagawa Shikoku Electric Power Company (72) Inventor Masayuki Hatano 6-15-1, Ginza, Chuo-ku, Tokyo Power source development Co., Ltd. Within

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 交流成分を含んだ直流電圧が印加される
避雷器の漏れ電流を検出する避雷器の漏れ電流監視装置
において、上記避雷器に抵抗と電流計とを直列接続し
て、上記抵抗と上記電流計との直列回路にコンデンサを
並列接続し、上記抵抗と上記コンデンサとの時定数を商
用周波数の1サイクル時間より大きくしたことを特徴と
する避雷器の漏れ電流監視装置。
1. A leakage current monitoring device for a lightning arrester for detecting a leakage current of a lightning arrester to which a DC voltage containing an AC component is applied, wherein a resistor and an ammeter are connected in series to the lightning arrester, and the resistance and the current are connected. A leakage current monitoring device for a lightning arrester, wherein a capacitor is connected in parallel to a series circuit with a meter, and a time constant of the resistor and the capacitor is set to be larger than one cycle time of a commercial frequency.
【請求項2】 請求項1に記載の避雷器の漏れ電流監視
装置において、電流計を可動指針形として指針を発光手
段と伝送手段との間に配置し、上記指針の振れ角度に応
じて上記指針が上記発光手段からの光を遮光し、上記伝
送手段により伝送された光信号を受光手段で電気信号に
変換して、上記電気信号を演算手段で演算して避雷器の
漏れ電流を検出するように構成したことを特徴とする避
雷器の漏れ電流監視装置。
2. The lightning arrester leakage current monitoring device according to claim 1, wherein the ammeter is a movable pointer type, the pointer is arranged between the light emitting means and the transmitting means, and the pointer is arranged according to the deflection angle of the pointer. Shuts off the light from the light emitting means, converts the optical signal transmitted by the transmitting means into an electric signal by the light receiving means, calculates the electric signal by the arithmetic means, and detects the leakage current of the lightning arrester. A lightning arrester leakage current monitoring device characterized by being configured.
【請求項3】 請求項2に記載の避雷器の漏れ電流監視
装置において、電流計の指針と伝送手段との間に集光用
のレンズを配置したことを特徴とする避雷器の漏れ電流
監視装置。
3. The leakage current monitoring device for a lightning arrester according to claim 2, wherein a condenser lens is arranged between the pointer of the ammeter and the transmitting means.
【請求項4】 請求項1に記載の避雷器の漏れ電流監視
装置において、発光手段が出力した光を第1の伝送手段
で伝送し、上記第1の伝送手段と所定の間隔をあけて第
2の伝送手段を対向させ、電流計を可動指針形として指
針を上記両伝送手段間に配置し、上記指針の振れ角度に
応じて上記第2の伝送手段へ入射する上記光を遮光し、
上記第2の伝送手段を介して伝送された光信号を受光手
段で電気信号に変換して、上記電気信号を演算手段で演
算して避雷器の漏れ電流を検出するように構成したこと
を特徴とする避雷器の漏れ電流監視装置。
4. The lightning arrester leakage current monitoring device according to claim 1, wherein the light output from the light emitting means is transmitted by the first transmission means, and the light is emitted from the first transmission means at a predetermined distance from the second transmission means. And a pointer is arranged between the two transmitting means with the ammeter as a movable pointer type to shield the light incident on the second transmitting means according to the deflection angle of the pointer,
The optical signal transmitted through the second transmission means is converted into an electric signal by the light receiving means, and the electric signal is calculated by the arithmetic means to detect the leakage current of the lightning arrester. Lightning arrester leakage current monitoring device.
【請求項5】 請求項4に記載の避雷器の漏れ電流監視
装置において、第2の伝送手段を複数個とし、電流計の
指針が上記第2の伝送手段へ入射する光を順次遮光する
ようにしたことを特徴とする避雷器の漏れ電流監視装
置。
5. The lightning arrester leakage current monitoring device according to claim 4, wherein a plurality of second transmission means are provided, and the pointer of the ammeter sequentially blocks the light incident on the second transmission means. A leakage current monitoring device for a lightning arrester characterized by the above.
【請求項6】 請求項5に記載の避雷器の漏れ電流監視
装置において、電流計の指針の第1の振れ角度で第2の
伝送手段の第1番目を遮光し、上記第1の振れ角度より
大きい第2の振れ角度で上記第1番目の上記第2の伝送
手段の遮光を解除して、上記第2の伝送手段の第2番目
を遮光することを特徴とする避雷器の漏れ電流監視装
置。
6. The lightning arrester leakage current monitoring apparatus according to claim 5, wherein the first deflection angle of the pointer of the ammeter shields the first of the second transmission means from the first deflection angle. A leakage current monitoring device for a lightning arrester, characterized in that the light shielding of the first transmission means of the first transmission is canceled at a large second deflection angle to shield the second transmission means of the second transmission transmission.
【請求項7】 請求項2から請求項6のいずれかに記載
の避雷器の漏れ電流監視装置において、発光手段、受光
手段及び演算手段を大地電位部に配置したことを特徴と
する避雷器の漏れ電流監視装置。
7. The leakage current monitoring device for a lightning arrester according to claim 2, wherein the light emitting means, the light receiving means and the computing means are arranged in a ground potential portion. Monitoring equipment.
JP23702695A 1995-09-14 1995-09-14 Lightning arrester leakage current monitoring device Expired - Fee Related JP3213685B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23702695A JP3213685B2 (en) 1995-09-14 1995-09-14 Lightning arrester leakage current monitoring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23702695A JP3213685B2 (en) 1995-09-14 1995-09-14 Lightning arrester leakage current monitoring device

Publications (2)

Publication Number Publication Date
JPH0980109A true JPH0980109A (en) 1997-03-28
JP3213685B2 JP3213685B2 (en) 2001-10-02

Family

ID=17009299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23702695A Expired - Fee Related JP3213685B2 (en) 1995-09-14 1995-09-14 Lightning arrester leakage current monitoring device

Country Status (1)

Country Link
JP (1) JP3213685B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103809016A (en) * 2014-02-18 2014-05-21 上海零线电气有限公司 Leakage current sampling circuit checking method for electrical fire monitoring
JP2015219237A (en) * 2014-05-13 2015-12-07 エルエス産電株式会社Lsis Co., Ltd. Arrestor verification device and method of high voltage dc power transmission system
CN111445665A (en) * 2020-04-20 2020-07-24 国网山东省电力公司滨州市沾化区供电公司 Electric measuring instrument anti-electric shock alarm device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103809016A (en) * 2014-02-18 2014-05-21 上海零线电气有限公司 Leakage current sampling circuit checking method for electrical fire monitoring
JP2015219237A (en) * 2014-05-13 2015-12-07 エルエス産電株式会社Lsis Co., Ltd. Arrestor verification device and method of high voltage dc power transmission system
CN111445665A (en) * 2020-04-20 2020-07-24 国网山东省电力公司滨州市沾化区供电公司 Electric measuring instrument anti-electric shock alarm device

Also Published As

Publication number Publication date
JP3213685B2 (en) 2001-10-02

Similar Documents

Publication Publication Date Title
JP2617269B2 (en) Device for measuring current in overhead high-voltage lines
NO173076B (en) PROCEDURE AND DEVICE FOR LOCATING EARTH CIRCULATION OF A THREE PHASE NET WORKER
KR850001435B1 (en) Detector of ion density
JPH0980109A (en) Apparatus for monitoring leak current of arrester
KR100538081B1 (en) Lightning arrester analyzer and analyzing method
JPH03206976A (en) Diagnosis of insulation
JPS62207974A (en) Monitoring system for lightning insulator
CN109283436A (en) A kind of overvoltage deduction prediction technique and device based on voltage waveform decaying
CN115792708A (en) SPD online aging monitoring system and method
US4543524A (en) Biased reactor maintenance termination unit
US5646410A (en) System and method for validating the detection signal of a measuring chain with a wide band of nuclear radiations
KR102405877B1 (en) Apparatus and method for detecting secondary failure of MOF
JPH02119526A (en) Earth accident detection for underground transmission line and its detector
JP3802028B2 (en) Protective relay using photocurrent sensor
JPH08255666A (en) Arrester deterioration monitoring device
Nakamura et al. Development of fault section detecting system for gas insulated transmission lines
CN117825862B (en) Service life prediction system based on lightning arrester detection
RU2803647C1 (en) Method for detecting compensation mismatch in ground fault mode for controlling protective resistor in compensated networks
JPH02129881A (en) Monitoring system for deterioration of zinc oxide type arrester
CN203690906U (en) Photon differential protection apparatus
RU2669542C1 (en) System of selective blocking of automatic reclosing on combined aerial cable transmission lines
KR102469558B1 (en) Method of monitoring leakage and insulation resistance of photovoltaic power generation system
JP7015000B2 (en) Ionization chamber type radiation detector
JPS6373165A (en) Fault section detector for electric power equipment
JP4065243B2 (en) Optical CT with failure judgment function

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070719

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080719

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090719

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100719

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100719

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110719

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110719

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120719

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees