KR850001435B1 - Detector of ion density - Google Patents

Detector of ion density Download PDF

Info

Publication number
KR850001435B1
KR850001435B1 KR8203828A KR820003828A KR850001435B1 KR 850001435 B1 KR850001435 B1 KR 850001435B1 KR 8203828 A KR8203828 A KR 8203828A KR 820003828 A KR820003828 A KR 820003828A KR 850001435 B1 KR850001435 B1 KR 850001435B1
Authority
KR
South Korea
Prior art keywords
electrodes
electrode
ion
internal resistance
voltage
Prior art date
Application number
KR8203828A
Other languages
Korean (ko)
Other versions
KR840001336A (en
Inventor
다이조오 야기
켄지 요시노
히로미 오오까와
Original Assignee
오오우라 마사히로
가부시기 가이샤 호리바 세이사구쇼
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 오오우라 마사히로, 가부시기 가이샤 호리바 세이사구쇼 filed Critical 오오우라 마사히로
Publication of KR840001336A publication Critical patent/KR840001336A/en
Application granted granted Critical
Publication of KR850001435B1 publication Critical patent/KR850001435B1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/4163Systems checking the operation of, or calibrating, the measuring apparatus
    • G01N27/4165Systems checking the operation of, or calibrating, the measuring apparatus for pH meters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/301Reference electrodes

Abstract

A ph meter for preventing the measuring error caused by the sensitive variation uses AC power with low frequency to prevent the polarization of electrodes and the interference between the power and measured singals. The DC voltage generated between two electrodes of an ion dection and a reference is superposed with the AC voltage of the power source. The EMF(electromotive force) between two electrodes are determined as an ion density by measuring the internal resistance of the AC voltage.

Description

이온농도계Ion concentration meter

제1도는 본 발명 실시예의 전체회로도.1 is an overall circuit diagram of an embodiment of the present invention.

제2도는 제1도에 있어서의 스위치(S1)를 오프, (S2)를 온했을 경우의 등가회로도.FIG. 2 is an equivalent circuit diagram when the switch S 1 in FIG. 1 is turned off and S 2 is turned on.

제3도는 본 발명의 다른 일실시예이며, 직류분전위에 교류분전위를 중첩한 성태를 펜식기록계에 그리게 한 도면.3 is another embodiment of the present invention, in which a pen type recorder depicts a state in which an AC potential is superimposed on a DC potential.

* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings

(1) : 이온전극 (2) : 비교전극(1): ion electrode (2): comparison electrode

(3) : 시료 (8) : 전원수단(3): sample (8): power supply means

본 발명은, 이온전극, 비교전극을 피검액중에 침지한체 전극의 내부저항이 정상인가의 여부를 점검할 수 있도록 한 이온농도계에 관한 것이다.The present invention relates to an ion densitometer for checking whether the internal resistance of a body electrode immersed in an test electrode and an ion electrode and a comparison electrode is normal.

이온농도, 예를 들면 pH값을 연속 측정할 경우, 유리전극에의 이물질 코오팅 혹은 유리응답막의 변질에 의한 감도변화등의 요인에 따라서 측정오차가 생긴다. 그때문에 정기적으로 전극세정작업을 행하거나, 계기의 고정작업을 실행하거나 할 필요가 있다.In the case of continuously measuring the ion concentration, for example, pH value, measurement errors occur depending on factors such as coating of foreign matter on the glass electrode or sensitivity change due to deterioration of the glass response membrane. For this reason, it is necessary to periodically perform electrode cleaning or to fix the instrument.

그러나, 피검액의 성질상태기 측정전극의 경시적 변화, 열화등 여러가지의 요인에 의해서 불규칙적, 돌반적으로 측정불량을 일으키는 일이 많기 때문에, 정기적인 세정이나 고정작업은 그 효과를 기대할 수가 없는 것이다. 이와같은 사정은 pH계 뿐만이 아니라 이온농도계 전반에 공통으로, 그 해결이 요망되고 있다.However, since irregularities and sudden defects often occur due to various factors such as change in time, deterioration, etc. of the measuring electrode during the state of the test liquid, periodic cleaning and fixing work cannot be expected. . Such a situation is common not only to a pH meter but also to an ion concentration meter generally, and the solution is desired.

본 발명자들은, 이와 같은 사정하에 있어서, 전극에의 이물질 코오팅등의 전술한 오차요인이, 이온전극과 비교전극의 사이에 동가적으로 존재하는 기전력원의 내부저항과 광련되어 있다는 현상, 특히 측정오차나 측정불량이 생겼을 경우는 상기 기전력원의 내부저항에 변화가 보인다는 현상에 따라서, 이온전극과 비교전극간에 존재하는 기전력원의 내부저항을 이온농도의 측정동작에 폐해를 미치는 일없이 측정할 수 있도록 연구해서, 측정오차나 측정불량의 발생을 예기하고 효과적인 전극세정작업, 고정작업을 행하기 위한 도움이 되게 하려는 것이다.Under the circumstances, the present inventors have measured, in particular, that the above-described error factors such as coating of foreign matter on the electrode are related to the internal resistance of the electromotive force source which is present between the ion electrode and the comparative electrode. In the event of an error or measurement error, the internal resistance of the electromotive force existing between the ion electrode and the comparative electrode can be measured without adversely affecting the ion concentration measurement operation according to the phenomenon that the internal resistance of the electromotive force is seen. In order to anticipate the occurrence of measurement error or measurement error, it is helpful to carry out effective electrode cleaning and fixing work.

그래서, 본 발명은, 시료에 침지된 이온전극 및 비교전극과, 양 전극간 전위를 측정하는 회로계로 이루어진 이온농도계에 있어서, 저주파의 교류전류를 상기 양 전극간에 흐르게 하는 전원수단을 착설하고, 양 전극간의 기전력원에 의해서 발생하는 직류분전위에 상기 교류전류에 기인한 교류전위를 중첩시킴과 동시에, 이 교류분전위로부터 양 전극간에 있어서의 기전력원의 내부저항을 측정하도록 구성한 것을 요지로 하고 있다. 여기에 전원수단을 교류로 선택한 것은, 측정전극이 분구하는 것을 피하기 위해서 및 이온농도가 직류로 검출되므로, 그 농도신호와 서로 간섭하지 않게 하기 위해서이다. 또 그 주파수를 저주파로 선택한 것은 전극과 회로계가 시일드선으로 연결되어 있어서, 시일드선이 등가적으로 토우페스필터를 구성하고, 고주파신호는 감쇠가 심하다는 것, 및 회로계의 입력측에는 일반적으로 로우패스필터가 착설되어 있어서, 이것으로 인한 감쇠도 심하다는 것에 바탕을 두고 있다. 이 전원수단의 주파수를 구체적으로 어느정도의 주파수로 선택하는 가는 다음의 실시예중에서 설명한다.Therefore, in the ion concentration meter which consists of an ion electrode and a comparison electrode immersed in the sample, and a circuit system which measures the electric potential between both electrodes, the power supply means which makes a low-frequency alternating current flow between the said both electrodes is constructed It is designed to superimpose the AC potential caused by the AC current on the DC potential generated by the electromotive force source between the electrodes, and to measure the internal resistance of the electromotive force source between the two electrodes from this AC potential. The power supply means is selected as an alternating current in order to avoid dividing the measuring electrode and to prevent interference with the concentration signal because the ion concentration is detected by direct current. In addition, the frequency is selected as the low frequency because the electrode and the circuit system are connected by a shield wire, the shield wire is equivalently constituted a toefes filter, and the high frequency signal is attenuated severely, and is generally low on the input side of the circuit system. It is based on the fact that a pass filter has been installed and the attenuation caused by this is also severe. A specific frequency of selecting the frequency of this power supply means will be described in the following embodiments.

이하 도면에 따라 설명한다. 제1도는 본 발명의 일실시예를 나타내고 도면중, (1)은 이온전극으로서 예를 들면 유리전극, (2)는 비교전극, (3)은 이들 두 전극이 침지된 서로, (4)는 상기 두 전극(1)(2)사이의 직류분전위를 중폭하고, 지시등을 해서 측정하는 직류분 신호측정회로이다. 이 회로(4)와 상기 이온전극(1)과는 시일드선(5), 저항(R1)과 콘덴서(C1)로 이루어진 로우페스필터, 증폭율이 1이 되도록 접속된 연산중폭기(6) 및 교류분을 차단하는 필터(7)를 계재해서 접속되어 있다. (8)은 저주파의 교류전류를 상기 양 전극(1)(2)사이에 흐트게 하기 위한 전원수단이며, 저주파의 교류전압(ELF)을 발생하는 발생기(9)와, 직류전압(EPH)을 충전하는 콘덴서(C2)와, 상기 교류전압(ELF)을 콘덴서의 충전전압(EPH)에 중첩시켜서 출력하는 연산증폭기(10)와, 상기 콘덴서(C2)에 직류전압을 축전시키기 위한 스위치(S1)로서 이루어져 있다. 이 전원수단(8)의 연산증폭기(10)의 출력단은 스위치(S2) 및 저항(R2)을 계재해서 시일드선(5)의 출력단축에 접속되어 있다. 상기 스위치(S2)와 (S1)은 한쪽이 온일때는 다른쪽이 오프되도록 연동시키고 있다. 스위치(S1)가 온일때 콘덴서(C2)에 직류전압(EPH)이 충전되나, 이 전압은, 연산증폭기(6)의 증폭율이 1이므로 이온전극(1)과 비교전극(2)의 사이에 등가적으로 존재하는 기전력원의 전압과 같게 된다. 이와 같이 두 전극(1)(2)사이의 기전력과 같은 전압(EPH)을 콘덴서(C2)에 충전하고, 이 전압과 발생기(9)가 발생하는 교류전압(ELF)을 중첩한 전압이 전원수단(8)에서 출력하도록 한 것은, 이온전극(1)으로부터 전원수단(8)으로 향해서 이온농도측정신호인 직류전류가 흐트지 않게 하기 위해서이다. 이것에 의해서 스위치(S2)가 온이 되어 있어도 이온농도측정신호의 전부가 직류분신호 측정회로(4)에 입력된다. 상기 발생기(9)가 발생하는 교류전압의 주파수는, 시일드선(5) 및 저항(R1)과 콘덴서(C1)로 구성되는 로우페스필터에 의해서 대폭 감석되거나 통과저지되지 않는 주파수로 선택되어 있다. 이온전극으로서 유리전극을 사용했을 경우, 상기 주파수는 0.1~1Hz정도가 바람직하다. 도면중, (11)은 전극내부저항을 측정하여, 지시하기 위한 저항측정회로이다. 이 회로(11)의 입력측에는 직류분을 차단하고, 교류분만을 통과시키는 필터(12)가 착설되어 있다.It demonstrates according to drawing below. 1 shows an embodiment of the present invention, where (1) is an ion electrode, for example, a glass electrode, (2) a comparison electrode, (3) these two electrodes are immersed with each other, and (4) A direct current signal measuring circuit for measuring the direct current potential between two electrodes (1) and (2) with an indicator light. The circuit 4 and the ion electrode 1 are shielded wires 5, a low-pass filter consisting of a resistor R 1 and a capacitor C 1 , and an operational amplifier 6 connected so that an amplification factor is 1. And a filter 7 for blocking the alternating current. (8) is a power supply means for flowing low-frequency alternating current between the positive electrodes (1) and (2), a generator (9) for generating a low-frequency alternating voltage (E LF ), and a direct-current voltage (E PH). ) the capacitor charging (C 2) and, with the operational amplifier (10) for the AC voltage (E LF) output them together in the charge voltage (E PH) of the condenser, power storage for DC voltage in the capacitor (C 2) It is made as a switch (S 1 ) to make. The output terminal of the operational amplifier 10 of this power supply means 8 is connected to the output short-circuit of the shield wire 5 via a switch S 2 and a resistor R 2 . The switches S 2 and S 1 are interlocked so that when one side is on, the other side is off. When the switch S 1 is turned on, the capacitor C 2 is charged with the DC voltage E PH . However, since the amplification factor of the operational amplifier 6 is 1, the ion electrode 1 and the comparison electrode 2 are charged. It is equal to the voltage of the electromotive force source existing equivalently between and. In this manner, the capacitor C 2 is charged with the same voltage E PH as the electromotive force between the two electrodes 1 and 2 , and the voltage overlapping the alternating voltage E LF generated by the generator 9. The output from the power supply means 8 is to prevent the direct current from the ion electrode 1 from the ion electrode 1 toward the power supply means 8 from flowing. As a result, even if the switch S 2 is turned on, all of the ion concentration measurement signals are input to the DC-signal measurement circuit 4. The frequency of the alternating voltage generated by the generator 9 is selected by a shield wire 5 and a low pass filter composed of a resistor R 1 and a capacitor C 1 so as not to be largely attenuated or passed through. have. In the case where a glass electrode is used as the ion electrode, the frequency is preferably about 0.1 to 1 Hz. In the figure, reference numeral 11 denotes a resistance measurement circuit for measuring and indicating electrode internal resistance. On the input side of this circuit 11, a filter 12 is installed which cuts off the direct current component and passes only the alternating current component.

이 구성에 의하면, 이온전극(1)과 비교전극(2)간에 발생된 직류분전위에 의한 전류가 시일드선(5), 로우패스필터, 연산증폭기(6), 필터(7)를 통해서 직류분 신호측정회로(4)에 입력되고, 이 회로내에서 증폭되고, 교정되는 등해서 이온농도신호로서 측정된다. 이때 스위치(S1)가 온이 되어 있으면, 콘덴서(C2)에 상기 양극(1)(2)사이에 발생한 직류분전위(EPH)가 충전되어 있다.According to this configuration, the current caused by the DC potential generated between the ion electrode 1 and the comparison electrode 2 is transmitted through the shield line 5, the low pass filter, the operational amplifier 6, and the filter 7 through the DC signal. It is input to the measuring circuit 4, amplified and calibrated in this circuit, and measured as an ion concentration signal. At this time, when the switch S 1 is turned on, the direct current potential E PH generated between the anodes 1 and 2 is charged in the capacitor C 2 .

다음에 스위치(S2)를 온으로 하면, 콘덴서(C2)에 충전된 직류전압(EPH)과 발생기(9)가 발생하는 교류전압(ELF)이 중첩된 전압(EPH+ELF)이 전원수단(8)으로부터 출력되고, 두 전극(1)(2)사이에 교류전류를 흐르게 한다. 이렇게 되면, 두 전극간에 있어서의 기전력원의 내부저항과 상기 교류전류에 의해서 두 전극(1)(2)사이에 교류분전위를 발생한다. 이 교류분전위는, 두 전극간의 기전력원에 의한 직류분전위(이온농도신호)와 중첩된 상태로 시일드선(5), 로우패스필터를 거쳐서 연산증폭기(6)에서 출력된다. 이 출력전압을 구하기 위해서 스위치(S2)를 온으로 한 경우의 제1도와 등가인 회로를 제2도에 표시한다. 도면중, RG는 두 전극(1)(2)간의 기전력원의 내부저항, EPH는 이 기전력의 전압이다. EO를 구해야할 전압이라고 하면,Next, when the switch S 2 is turned on, the voltage (E PH + E LF ) in which the DC voltage E PH charged in the capacitor C 2 and the AC voltage E LF generated by the generator 9 are superimposed. ) Is output from the power supply means 8, and causes an alternating current to flow between the two electrodes (1) (2). In this case, an alternating current potential is generated between the two electrodes 1 and 2 by the internal resistance of the electromotive force source between the two electrodes and the alternating current. The AC potential is output from the operational amplifier 6 via the shield line 5 and the low pass filter in a state overlapping with the DC potential (ion concentration signal) by the electromotive force source between the two electrodes. To obtain this output voltage, a circuit equivalent to that of FIG. 1 when the switch S 2 is turned on is shown in FIG. In the figure, R G is the internal resistance of the electromotive force source between the two electrodes 1, 2, and E PH is the voltage of this electromotive force. If E O is the voltage to be calculated,

Figure kpo00001
〔1〕
Figure kpo00001
〔One〕

여기서 발생기(9)의 주파수가 충분히 낮게

Figure kpo00002
로 하면 위식은Where the frequency of the generator 9 is sufficiently low
Figure kpo00002
If you use common sense

Figure kpo00003
〔2〕
Figure kpo00003
〔2〕

가 된다. 이식에 있어서의 제1항(EPH)는 직류분전위이기 때문에 필터(7)를 통해서 직류분신호측정회로(4)에 선택적으로 입력되어, 이온농도로서 측정된다. 한편, 제2항

Figure kpo00004
은 교류분전위이므로 필터(12)를 통해서 저항측정회로(11)에 선택적으로 입력되어 내부저항 RG으로서 측정된다.Becomes Since the first term E PH in the implantation is a DC potential, it is selectively input to the DC signal measuring circuit 4 through the filter 7 and measured as an ion concentration. Meanwhile, paragraph 2
Figure kpo00004
Since is an AC potential, it is selectively input to the resistance measuring circuit 11 through the filter 12 and measured as the internal resistance R G.

이렇게 하여, 이 내부저항의 측정을 1일에 1회, 2회와 같이 정기적으로 행하므로서 내부저항의 저항치의 변화를 강시하고, 측정불량등이 생길만한 경우의 대체적인 예측이 가능해진다.In this way, the measurement of the internal resistance is carried out regularly, such as once or twice a day, so that the change in the resistance value of the internal resistance can be observed, and an alternative prediction can be made when a measurement failure or the like may occur.

또한, 도시예에서는 이온농도를 측정하기 위한 회로(4)와 내부저항을 측정하기 위한 회로(11)를 별개로 착설하고 있으나, 전원수단(8)의 교류는 저주파이므로, 1대의 펜식레코오디에 직류분전위의 위에 교류분전위가 중첩된 상태〔제3도 참조. 또한 도면중, A는 통상의 측정시, B는 내부저항점검중(내부저항소), C는 내부저항점검중(내부저항대)를 각각 나타냄]로 그리게 하고, 그 기류치로부터 내부저항 RG의 변화를 감시할 수도 있다.In addition, although the circuit 4 for measuring ion concentration and the circuit 11 for measuring internal resistance are separately installed in the example of illustration, since the alternating current of the power supply means 8 is low frequency, one pen-type audio recorder is used. The alternating current potential is superimposed on the direct current potential [see Fig. 3]. In addition, in the figure, A is the conventional measurement, B is the internal resistance check of the (internal resistance small), C represents, respectively (internal jeohangdae) of the internal check resistance] drawn into, and of the internal resistance R G from the gas flow value You can also watch for changes.

본 발명에 광한 이온농도계는 상술한 바와 같이 구성하였기 때문에 다음과 같은 효과가 있다.Since the ion concentration meter widespread in this invention was comprised as mentioned above, it has the following effects.

ⓛ 불규칙적, 돌발적인 측정불량도, 내부저항의 변화를 감시하므로서 예기할 수가 있고, 그때문에, 전극세정작업이나 계기의 고정작업을 효과적으로 행할 수 있다. 특히, 표준액에 의한 고정에 덧붙여서 본 발명에 의한 내부저항의 측정을 점검항목에 추가하므로서 이온농도계의 보수점검이 보다 계획적으로 할 수 있다.Irregular and unexpected measurement failures can also be anticipated by monitoring changes in the internal resistance, which makes it possible to effectively carry out electrode cleaning or fixing of the instrument. In particular, the maintenance check of the ion densitometer can be more planned by adding the measurement of the internal resistance according to the present invention to the inspection item in addition to the fixation by the standard solution.

② 이온전극이 유리전극 혹은 얇은 막과 같이 깨어지기 쉬운 재료 또는 구조의 것일 경우, 내부저항이 극도로 저하하는 현상을 포착하므로서 상기 이온절극의 파괴를 조기발견할 수 있고, 따라서 본 발명에 의하면 이온전극의 파괴를 알게되는 것이 늦어져, 모처럼의 장기 데이터를 상실해버린다는 사례를 미연에 방지할 수 있다.(2) When the ion electrode is made of a fragile material or structure such as a glass electrode or a thin film, it is possible to catch the phenomenon that the internal resistance is extremely lowered and to early detect the breakage of the ion electrode, and accordingly, according to the present invention, The delay in knowing electrode breakage can be prevented, resulting in the loss of long-term data.

③ 내부저항의 측정을 교류전류를 흐르게 하므로서 행하고 있게 때문에, 이온농도신호인 직류분신호와 간섭함이 없어, 그때문에 이온농도의 측정시에 동시에 내부저항을 측정할 수가 있어 매우 편리한다.(3) Since the internal resistance is measured by flowing an alternating current, it does not interfere with the direct current signal, which is an ion concentration signal. Therefore, the internal resistance can be measured simultaneously when measuring the ion concentration, which is very convenient.

④ 전원수단으로부터 전극에 흐르게 하는 교류전류로서 저주파의 전류를 사용하고 있으므로, 전극과 전극간 전위를 측정하는 회로계약의 사이의 시일드선이나 로우패스필터등에 의해서 교류분전위가 차단되는 일이 없고, 그때문에 신호량이 비교적 크므로 별도로 앰프등이 필요없게 되며, 간이한 구성으로 내부저항의 측정을 행할 수 있다.(4) Since a low frequency current is used as the alternating current flowing from the power supply means to the electrode, the alternating current potential is not interrupted by a shield wire or a low pass filter between the electrode and the circuit contract for measuring the potential between the electrodes. Therefore, since the signal amount is relatively large, no amplifier or the like is required, and the internal resistance can be measured with a simple configuration.

Claims (1)

시료에 침지된 이온전극 및 비교전극과, 두 전극간 전위를 측정하는 회로계로 이루어진 이온농도계에 있어서, 저주파의 교류전류를 상기 두 전극간에 흐르게 하는 전원수단을 설정하고, 두 전극간의 기전력원에 의해서 발생하는 직류분전위에 상기 교류전류에 기인한 교류분전위를 중첩시킴과 동시에, 이 교류분전위로부터 두 전극간에 있어서의 기전력원의 내부저항을 측정하도록 구성한 것을 특징으로 하는 이온농도계.In an ion densitometer consisting of an ion electrode and a comparison electrode immersed in a sample, and a circuit system for measuring the potential between the two electrodes, a power supply means for flowing a low-frequency alternating current between the two electrodes is set, and by means of an electromotive force source between the two electrodes. An ion densitometer configured to superimpose an alternating current potential resulting from the alternating current potential into a generated direct current potential and to measure the internal resistance of the electromotive force source between the two electrodes from the alternating current potential.
KR8203828A 1981-11-11 1982-08-25 Detector of ion density KR850001435B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP181583 1981-11-11
JP56181583A JPS5892854A (en) 1981-11-11 1981-11-11 Ion concentration analyser
JP56-181583 1981-11-11

Publications (2)

Publication Number Publication Date
KR840001336A KR840001336A (en) 1984-04-30
KR850001435B1 true KR850001435B1 (en) 1985-10-02

Family

ID=16103339

Family Applications (1)

Application Number Title Priority Date Filing Date
KR8203828A KR850001435B1 (en) 1981-11-11 1982-08-25 Detector of ion density

Country Status (3)

Country Link
JP (1) JPS5892854A (en)
KR (1) KR850001435B1 (en)
DE (1) DE3239572A1 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60205345A (en) * 1984-03-30 1985-10-16 Yokogawa Hokushin Electric Corp Ph meter with self-diagnosing function
JPH01219425A (en) * 1988-02-29 1989-09-01 Matsushita Electric Ind Co Ltd Microwave oven with piezoelectric element sensor
GB2226412B (en) * 1988-12-21 1993-04-28 Forex Neptune Sa Monitoring drilling mud compositions using flowing liquid junction electrodes
DE59105178D1 (en) * 1991-01-28 1995-05-18 Knick Elektronische Mesgeraete Method and circuit arrangement for monitoring ion or redox potential sensitive measuring chains.
US5469070A (en) * 1992-10-16 1995-11-21 Rosemount Analytical Inc. Circuit for measuring source resistance of a sensor
US5421189A (en) * 1994-01-21 1995-06-06 Ciba Corning Diagnostics Corp. Electrical connection system for electrochemical sensors
DE19743979A1 (en) * 1997-10-06 1999-04-08 Conducta Endress & Hauser Operation of electrochemical sensor, especially an amperometric gas sensor
GB9815248D0 (en) * 1998-07-15 1998-09-09 Johnson Matthey Plc Apparatus
EP1456637A2 (en) 2001-12-14 2004-09-15 Rosemount Analytical Inc. A pH SENSOR WITH INTERNAL SOLUTION GROUND
JP4530203B2 (en) * 2004-05-21 2010-08-25 株式会社タニタ Redox potentiometer
DE102005048273A1 (en) * 2005-10-08 2007-04-19 Knick Elektronische Messgeräte GmbH & Co. KG Measuring device for electrochemical measured variables in liquids, in particular pH or redox potential measuring device, and method for measuring such electrochemical measured variables
EP1936367A1 (en) * 2006-12-22 2008-06-25 Mettler-Toledo AG Method and device for monitoring and/or determining the status of a measuring probe
GB2566463A (en) * 2017-09-13 2019-03-20 Univ Southampton pH Sensor and Calibration method
CN114614781A (en) * 2020-12-04 2022-06-10 梅特勒-托利多仪器(上海)有限公司 PH signal conditioning circuit

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4189367A (en) * 1978-10-19 1980-02-19 Leeds & Northrup Company Method for testing ion selective electrodes in continuous measuring systems

Also Published As

Publication number Publication date
JPS5892854A (en) 1983-06-02
DE3239572A1 (en) 1983-05-26
KR840001336A (en) 1984-04-30
JPS6316706B2 (en) 1988-04-11

Similar Documents

Publication Publication Date Title
KR850001435B1 (en) Detector of ion density
US4777444A (en) Method and apparatus for testing the integrity of an electrode in a potentiometric measuring electrode system
US4851104A (en) Instrument for potentiometric electrochemical measurements
JP3104247B2 (en) Electrochemical detector
EP0609334B1 (en) SELF DIAGNOSTIC pH SENSOR
US5266899A (en) Salt analyzer switchably capable of employing contact and non-contact conductivity probes
US5144247A (en) Method and apparatus for reducing IR error in cathodic protection measurements
SE426525B (en) SET ON MONITORING OF A NEUTRON DETECTOR AND NEUTRON DETECTOR MONITOR FOR IMPLEMENTATION OF THE SET
JPH0418264B2 (en)
JP2707762B2 (en) Electromagnetic flow meter
CN115792353A (en) Self-checking feedback method of three-phase electric meter
US3909709A (en) Conductivity measuring apparatus
EP0280230B1 (en) Instrument for potentiometric electrochemical measurements in an electrolyte solution
SU1700455A1 (en) Probe meter of current of charged particles
JPS5899745A (en) Ion density measuring appatatus
JP2009092414A (en) Ion concentration measuring apparatus
SU1100579A1 (en) Device for measuring and checking resistance of electric network insulation
SU1020782A1 (en) Device for remote measuring of resistor resistance radiation change
SU1318902A1 (en) Feed-through potentiometric cell
JPS61155887A (en) Radiation measuring instrument
JPH0415551A (en) Device for diagnosing deterioration of insulting material
JPS5914759Y2 (en) Diaphragm type electrode device
SU924676A1 (en) Device for testing relay working life
SU1185271A1 (en) Apparatus for measuring current follower gain factor
SU894522A1 (en) Conductometric device