JPH0975896A - Method for stabilizing ash component produced by incineration of sludge from municipal sewage treatment plant - Google Patents

Method for stabilizing ash component produced by incineration of sludge from municipal sewage treatment plant

Info

Publication number
JPH0975896A
JPH0975896A JP7226096A JP7226096A JPH0975896A JP H0975896 A JPH0975896 A JP H0975896A JP 7226096 A JP7226096 A JP 7226096A JP 7226096 A JP7226096 A JP 7226096A JP H0975896 A JPH0975896 A JP H0975896A
Authority
JP
Japan
Prior art keywords
ash
incineration
sludge
aqueous binder
clay
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7226096A
Other languages
Japanese (ja)
Inventor
Jean Yves Cojan
イヴ コジャン ジャン
Abdelkrim Bouchelaghem
ブーシェラジャン アブデルクラン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SORU CO
Compagnie du Sol SARL
Original Assignee
SORU CO
Compagnie du Sol SARL
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SORU CO, Compagnie du Sol SARL filed Critical SORU CO
Publication of JPH0975896A publication Critical patent/JPH0975896A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/06Combustion residues, e.g. purification products of smoke, fumes or exhaust gases
    • C04B18/10Burned or pyrolised refuse
    • C04B18/105Gaseous combustion products or dusts collected from waste incineration, e.g. sludge resulting from the purification of gaseous combustion products of waste incineration
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/08Slag cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/0068Ingredients with a function or property not provided for elsewhere in C04B2103/00
    • C04B2103/0082Segregation-preventing agents; Sedimentation-preventing agents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00724Uses not provided for elsewhere in C04B2111/00 in mining operations, e.g. for backfilling; in making tunnels or galleries
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00732Uses not provided for elsewhere in C04B2111/00 for soil stabilisation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Environmental & Geological Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Civil Engineering (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a simple and economical method enabling the use of ash for a solving measure of a problem enhancing the value of ash generated as the result of the incineration of sewage sludge, that is, for the production of a non-contaminating product sufficiently solid in the use as a filler. SOLUTION: This ash stabilizing method contains a process for compounding ash formed by the incineration of the sludge from an urban sewage treatment plant with an aq. binder mainly formed from a power product based on blast furnace slag, magnesium line and clay.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、都市下水処理プラント
由来のスラッジの焼却により生成する灰分の安定化法に
関する。
TECHNICAL FIELD The present invention relates to a method for stabilizing ash produced by incineration of sludge derived from an urban sewage treatment plant.

【0002】[0002]

【従来技術】処理プラント中で都市下水を処理すること
は公知である。この処理において、下水は、この下水中
に含まれる有機物を消化し、かつ分解するための、複雑
な物理化学的および生物学的な処理にかけられる。この
処理の終了時点においてスラッジが得られるが、これは
重金属、例えば鉛、亜鉛、あるいはまたクロム、更には
砒素等の存在のために、依然として幾分かの汚染の可能
性を残している。これらスラッジの一部は、通常土地の
処理において利用されている。実際に、これらは有利な
肥沃化能力を有している。該スラッジの他の部分(その
トン数は絶え間なく増え続けている)は焼却されてい
る。しかしながら、これらスラッジの焼却は、該生成さ
れる排出物の質量並びに体積を減ずることを可能とする
処理解決策である一方で、生成される灰分中に該重金属
を濃縮する作用をも有する。更に、水性セメント懸濁
液、火力発電所由来の灰分および場合によりクレーをを
混合することによって得られる充填材も公知である。か
くして、この型の混合物で処理された部位の凝集力およ
び安定性が改善される。この種の用途において望ましい
圧縮強さは、一般的に90日後において2.5MPaである。
It is known to treat municipal sewage in treatment plants. In this treatment, the sewage is subjected to complex physicochemical and biological treatments to digest and decompose organic matter contained in the sewage. At the end of this process sludge is obtained, which still leaves some potential for contamination due to the presence of heavy metals such as lead, zinc, or also chromium and even arsenic. Some of these sludges are commonly used in land treatment. In fact, they have an advantageous fertility capacity. The other part of the sludge, whose tonnage is constantly increasing, is incinerated. However, while the incineration of these sludges is a treatment solution that makes it possible to reduce the mass as well as the volume of the effluent produced, it also has the effect of concentrating the heavy metals in the ash produced. Furthermore, fillers obtained by mixing an aqueous cement suspension, ash from a thermal power plant and optionally clay are also known. Thus, the cohesive strength and stability of sites treated with this type of mixture are improved. The desired compressive strength for this type of application is typically 2.5 MPa after 90 days.

【0003】[0003]

【発明が解決しようとする課題】本発明は、下水スラッ
ジの焼却の結果生ずる灰分の価値を高めるという問題の
解決策、即ち充填材として使用するのに十分に固く、か
つ非−汚染性の製品の製造のために、これらの灰分の使
用を可能とする簡単かつ経済的な方法を提供することを
提供することを目的とする。
SUMMARY OF THE INVENTION The present invention is a solution to the problem of increasing the value of ash resulting from the incineration of sewage sludge, that is, a product that is sufficiently hard and non-polluting to be used as a filler. It is an object of the invention to provide a simple and economical method which enables the use of these ash for the manufacture of.

【0004】[0004]

【課題を解決するための手段】即ち、本発明は、都市下
水処理プラントからのスラッジの焼却により生成する灰
分の安定化法を提供するものであり、該方法は高炉スラ
グ、マグネシウム石灰およびクレイを主成分とする粉末
製品によって主として形成される水性バインダー中に、
これらの灰分を配合する工程を含むことを特徴とする。
この方法は、硬化後に良好な機械的強度を示す、連続か
つ均一で緊密なマトリックスをもち、また例えば重金属
等の汚染物質を効率的に保持することのできる材料を与
えることができる。従って、この方法は高性能の充填材
の製造を可能とする。本発明による方法が下水スラッジ
の焼却により生成する該灰分の価値を高めることを可能
とするという事実に加えて、公知の充填材に対して、か
くして得られる生成物の示す利点の一つは、同一の性能
を達成する上で、本発明によって得られる該生成物は、
公知の充填材よりも、その製造が一般的により経済的で
あることにある。更に、未だ説明されてはいないが、こ
れらスラッジ焼却灰分を処理するためには、スラグおよ
びマグネシウム石灰との組み合わせが、KBFC、PBSCまた
はBSC 等の公知のセメントによっては達成し得ないレベ
ルの性能の達成を可能とすることが分かる。
That is, the present invention provides a method for stabilizing ash produced by incineration of sludge from an urban sewage treatment plant, the method comprising the steps of removing blast furnace slag, magnesium lime and clay. In an aqueous binder formed primarily by the powder product as the main component,
It is characterized by including a step of blending these ash contents.
This method can provide a material that has a continuous, uniform, and intimate matrix that exhibits good mechanical strength after curing and that is capable of efficiently retaining contaminants such as heavy metals. Thus, this method allows the production of high performance fillers. In addition to the fact that the process according to the invention makes it possible to increase the value of the ash produced by incineration of sewage sludge, one of the advantages of the products thus obtained over known fillers is: In achieving the same performance, the product obtained according to the invention is
Their production is generally more economical than the known fillers. Furthermore, although not yet explained, the combination of slag and magnesium lime to treat these sludge incinerated ash has a level of performance not achieved by known cements such as KBFC, PBSC or BSC. It turns out that it is possible to achieve.

【0005】事実、等量の灰分、バインダーおよび水に
対しては、スラグとマグネシウム石灰とを含むバインダ
ーから調製した混合物が、例えばKBFC45から調製した混
合物の圧縮強さの2倍に等しい、90日後の圧縮強さを示
す。本発明によれば、スラグ粉末とは、粉砕した高炉ス
ラグ、高炉スラグセメントまたは任意の他の粉末化し
た、高炉スラグを含有する製品を意味するものと理解さ
れる。本発明によれば、このスラグを主成分とする製品
は、有利には200 μm未満および好ましくは100 μm未
満の粒径をもつ。スラグ粉末の重量基準での割合は、有
利には乾燥された灰分に対して約5〜30% および好まし
くは10〜25% の範囲内にある。本発明によれば、該マグ
ネシウム石灰は、好ましくは約66重量%の酸化カルシウ
ム(CaO) および33重量%の酸化マグネシウム(MgO) を含
む。マグネシウム石灰の重量基準での割合は、有利には
該水性バインダーに対して5〜50% の範囲内にある。
In fact, for equal amounts of ash, binder and water, a mixture prepared from a binder containing slag and magnesium lime equals twice the compressive strength of a mixture prepared from, for example, KBFC45, after 90 days. Shows the compressive strength of. According to the invention, slag powder is understood to mean ground blast-furnace slag, blast-furnace slag cement or any other powdered product containing blast-furnace slag. According to the invention, the slag-based product advantageously has a particle size of less than 200 μm and preferably less than 100 μm. The proportion by weight of slag powder is advantageously in the range of about 5 to 30% and preferably 10 to 25%, based on the dried ash. According to the invention, the magnesium lime preferably comprises about 66% by weight calcium oxide (CaO) and 33% by weight magnesium oxide (MgO). The proportion by weight of magnesium lime is preferably in the range 5 to 50% with respect to the aqueous binder.

【0006】本発明によれば、該混合物中に、大量の水
を固定して該懸濁液を安定化し、かつ上澄み水の形成ま
たは「ブリーディング(bleeding)」の発生を防止するこ
とを可能とするクレー、例えばベントナイトまたは任意
の他のクレー化合物を配合することもできる。クレーの
割合は、有利には該混合物中に含まれる水の量に対し
て、5%未満および好ましくは0.5 〜4.5%の範囲内であ
る。ここで、該混合物は該灰分および該水性バインダー
を含む。最後に、要求およびその用途上の機能に応じ
て、該混合物には、スラグを主成分とするセメント用の
硬化剤を添加することができ、該硬化剤は当分野で公知
のもの、例えばCaCl2 、Li2CO3、Na2CO3、アルミン酸ナ
トリウムまたはシリケート等から選択される。該灰分お
よび該水性バインダーを含有する該混合物中の水の量に
対する、乾燥物の量の重量基準での比は、有利には1〜
1.35および好ましくは1.1 〜1.3 の範囲内にある。本発
明のもう一つの課題は、上記方法を利用することにより
得られた物質および該物質の充填材としての使用に関す
る。
According to the invention, it is possible to fix a large amount of water in the mixture to stabilize the suspension and prevent the formation of supernatant water or the occurrence of "bleeding". Clays such as bentonite or any other clay compound can also be incorporated. The proportion of clay is advantageously less than 5% and preferably in the range 0.5 to 4.5%, based on the amount of water contained in the mixture. Here, the mixture comprises the ash and the aqueous binder. Finally, depending on the requirements and the function of its application, the mixture can be added with a hardening agent for cements based on slag, which is known in the art, such as CaCl 2. 2 , Li 2 CO 3 , Na 2 CO 3 , sodium aluminate, silicate or the like. The ratio of the amount of dry matter on a weight basis to the amount of water in the mixture containing the ash and the aqueous binder is advantageously between 1 and
1.35 and preferably in the range 1.1 to 1.3. Another subject of the invention relates to the substances obtained by using the above process and their use as fillers.

【0007】[0007]

【実施例】本発明をより一層よく理解するために、本発
明の2つの実施例を以下に与えるが、これら実施例は本
発明を限定するために与えられるのではない。実施例1 498 kgの水と1002kgの乾燥物とを含み、および特に35.7
重量%のSiO2、9.63重量%のAl2O3 、20.99 重量%のCa
O 、3.14重量%のFe2O3 、15重量%のP2O5、2.08重量%
のSO3 、および乾燥物1kg当たり44mgのAs、2200mgのF
e、200 mgのCr、1000mgのPb、2900mgのZn、10mgのNi、1
0mgのCdおよび0.1 mg未満のHgを含有する1500kgの灰分
の価値を高めるために、これらを以下のような組成の混
合物中に配合した: スラグ粉末 225 kg マグネシウム石灰 75 kg クレー 15 kg 水 615 kg この得られた混合物は充填材として使用できる。この混
合物のテスト検体について測定を実施し、即ち経時でそ
の圧縮強さを追跡して、以下の結果を得た。 経過時間(日) CS (MPa) 28 1.46 45 1.72 60 2.13 90 2.53 一旦固化したこのテスト検体を、X31211標準に従って、
浸出テストにかけ、かくして得た浸出液の分析は、該テ
スト検体中に存在した重金属が該結合マトリックスによ
って完全に固定されていることを示した。実際に観測さ
れた濃度を以下の表1に与える。
EXAMPLES For a better understanding of the invention, two examples of the invention are given below, but these examples are not given to limit the invention. Example 1 Containing 498 kg of water and 1002 kg of dry matter, and especially 35.7
Wt% SiO 2 , 9.63 wt% Al 2 O 3 , 20.99 wt% Ca
O, 3.14 wt% Fe 2 O 3 , 15 wt% P 2 O 5 , 2.08 wt%
SO 3 and 44 mg As / kg dry matter, 2200 mg F
e, 200 mg Cr, 1000 mg Pb, 2900 mg Zn, 10 mg Ni, 1
To enhance the value of 1500 kg of ash containing 0 mg of Cd and less than 0.1 mg of Hg, these were compounded in a mixture with the following composition: slag powder 225 kg magnesium lime 75 kg clay 15 kg water 615 kg The resulting mixture can be used as a filler. Measurements were carried out on the test specimens of this mixture, that is to say their compressive strength was traced over time, with the following results. Elapsed time (days) CS (MPa) 28 1.46 45 1.72 60 2.13 90 2.53 This test sample once solidified was tested according to the X31211 standard.
An leaching test and analysis of the leachate thus obtained showed that the heavy metals present in the test specimen were completely immobilized by the binding matrix. The actual observed concentrations are given in Table 1 below.

【0008】[0008]

【表1】 金 属 検出量(mg/kg) As 0.15未満 Fe 検出されず Cr 0.6 Cr6+ 0.015 未満 Pb 3未満 Zn 0.15 Ni 0.9 Cd 0.3 未満 Hg 0.015 未満[Table 1] Detected amount of metal (mg / kg) As less than 0.15 Fe Not detected Cr 0.6 Cr 6+ less than 0.015 Pb less than 3 Zn 0.15 Ni 0.9 Cd less than 0.3 Hg less than 0.015

【0009】実施例2 実施例1のものと同様の組成をもつ灰分1500kgを、以下
の組成の混合物に配合した。 スラグ粉末 270 kg マグネシウム石灰 80 kg クレー 15 kg 水 615 kg この混合物から抜き取ったテスト検体について、経時で
その圧縮強さを追跡したところ、以下の結果を得た。 経過時間(日) CS (MPa) 28 2.42 45 3.3 60 3.85 90 4.55 この固化したテスト検体を、X31211標準に従って、浸出
テストにかけ、かくして得た浸出液の分析は、該テスト
検体中に存在した重金属が該結合マトリックスによって
完全に固定されていることを示した。実際に観測された
濃度を以下の表2に与える。
Example 2 1500 kg of ash having the same composition as in Example 1 was blended into a mixture having the following composition. Slag powder 270 kg Magnesium lime 80 kg Clay 15 kg Water 615 kg The compressive strength of the test sample extracted from this mixture was traced over time, and the following results were obtained. Elapsed time (days) CS (MPa) 28 2.42 45 3.3 60 3.85 90 4.55 This solidified test sample was subjected to a leaching test according to the X31211 standard, and the leachate thus obtained was analyzed for the heavy metals present in the test sample. It was shown to be completely fixed by the binding matrix. The actual observed concentrations are given in Table 2 below.

【0010】[0010]

【表2】 金 属 検出量(mg/kg) As 1.5 未満 Cr 0.3 未満 Cr6+ 0.15未満 Pb 1.5 未満 Zn 0.6 未満 Ni 0.3 未満 Cd 0.3 未満 Hg 0.15未満[Table 2] Detected amount of metal (mg / kg) As <1.5 Cr <0.3 0.3 Cr 6+ <0.15 Pb <1.5 Zn <0.6 0.6 Ni <0.3 Cd <0.3 Hg <0.15

【0011】比較例 比較のために、同じ灰分1500kgを、該スラグ粉末および
マグネシウム石灰の代わりに、KBFC 45 セメントを含有
する混合物と混合した。従って、この混合物は以下の組
成を有する。 灰分 1500 kg KBFC 45 300 kg クレー 15 kg 水 615 kg テスト検体について、経時でその圧縮強さを追跡したと
ころ、以下の結果を得た。 経過時間(日) CS (MPa) 28 1.11 45 1.19 60 1.30 90 1.38 実施例1におけるように、KBFCセメントをスラグおよび
マグネシウム石灰で置換したという事実によって、得ら
れる物質の機械的特性が著しく改善される。該スラグお
よびマグネシウム石灰を使用しない場合には、得られる
物質は、充填材を形成するのに十分に高い圧縮強さをも
たない。
Comparative Example For comparison, 1500 kg of the same ash was mixed with a mixture containing KBFC 45 cement instead of the slag powder and magnesium lime. Therefore, this mixture has the following composition: Ash 1500 kg KBFC 45 300 kg Clay 15 kg Water 615 kg The compressive strength of the test sample was traced over time, and the following results were obtained. Elapsed time (days) CS (MPa) 28 1.11 45 1.19 60 1.30 90 1.38 The fact that KBFC cement was replaced by slag and magnesium lime as in Example 1 significantly improves the mechanical properties of the resulting material. . If the slag and magnesium lime are not used, the resulting material will not have a compressive strength high enough to form a filler.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 都市下水処理プラントからのスラッジの
焼却により生成する灰分の安定化法において、高炉スラ
グ、マグネシウム石灰およびクレイを主成分とする粉末
製品によって主として形成される水性バインダー中に、
該灰分を配合する工程を含むことを特徴とする上記方
法。
1. A method for stabilizing ash produced by incineration of sludge from an municipal sewage treatment plant, in an aqueous binder formed primarily by powdered products based on blast furnace slag, magnesium lime and clay,
The above method, which comprises the step of blending the ash.
【請求項2】 該高炉スラグを主成分とする粉末製品
が、200 μm未満、好ましくは100 μm未満の粒径を有
する、請求項1記載の方法。
2. A process according to claim 1, wherein the powdered product based on blast furnace slag has a particle size of less than 200 μm, preferably less than 100 μm.
【請求項3】 該高炉スラグを主成分とする粉末製品
の、乾燥された該灰分に対する重量基準での割合が、約
5〜30% 、好ましくは10〜25% の範囲内にある、請求項
1記載の方法。
3. The weight ratio of the powdered product based on blast furnace slag to the dried ash is in the range of about 5 to 30%, preferably 10 to 25%. The method described in 1.
【請求項4】 該マグネシウム石灰の、該水性バインダ
ーに対する重量基準での割合が、5〜50% の範囲内にあ
る、請求項1記載の方法。
4. The method according to claim 1, wherein the proportion by weight of the magnesium lime to the aqueous binder is in the range of 5 to 50%.
【請求項5】 該クレーを、該残渣と該水性バインダー
とを含む混合物に、該混合物のブリーディングを防止す
る割合で添加する、請求項1記載の方法。
5. The method according to claim 1, wherein the clay is added to a mixture containing the residue and the aqueous binder in a proportion that prevents bleeding of the mixture.
【請求項6】 該クレーの、該灰分と該水性バインダー
とを含む該混合物中の水に対する重量基準での割合が、
5%未満、好ましくは0.5 〜4.5%の範囲にある、請求項5
記載の方法。
6. The weight ratio of the clay to water in the mixture containing the ash and the aqueous binder is
6. Less than 5%, preferably in the range 0.5-4.5%.
The described method.
【請求項7】 該灰分、該水性バインダーおよび場合に
より他の成分を含む該混合物が、1〜1.35および好まし
くは1.1 〜1.3 の、乾燥物の量対水の量の重量比を示
す、請求項1記載の方法。
7. The mixture comprising the ash, the aqueous binder and optionally other components exhibits a weight ratio of dry matter to water of 1-1.35 and preferably 1.1-1.3. The method described in 1.
【請求項8】 上記請求項1〜7の何れか1項に記載の
方法を利用して得られる物質。
8. A substance obtained by utilizing the method according to any one of claims 1 to 7.
【請求項9】 請求項8記載の物質の充填材としての使
用。
9. Use of the substance according to claim 8 as a filler.
JP7226096A 1995-03-27 1996-03-27 Method for stabilizing ash component produced by incineration of sludge from municipal sewage treatment plant Pending JPH0975896A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9503551 1995-03-27
FR9503551A FR2732249B1 (en) 1995-03-27 1995-03-27 METHODS FOR STABILIZING ASH RESULTING FROM THE INCINERATION OF SLUDGE FROM URBAN WATER TREATMENT PLANTS

Publications (1)

Publication Number Publication Date
JPH0975896A true JPH0975896A (en) 1997-03-25

Family

ID=9477438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7226096A Pending JPH0975896A (en) 1995-03-27 1996-03-27 Method for stabilizing ash component produced by incineration of sludge from municipal sewage treatment plant

Country Status (2)

Country Link
JP (1) JPH0975896A (en)
FR (1) FR2732249B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008237035A (en) * 2007-03-26 2008-10-09 Taiheiyo Cement Corp Method for collecting seedling of shellfish

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2453837A1 (en) * 1979-04-12 1980-11-07 Couturier Jean Hydraulic binder for road sub-grade construction - comprising slag, fly ash, and free lime
JPS61287980A (en) * 1985-06-14 1986-12-18 Mitsuru Sangyo:Kk Mixed soil stabilizer comprising sludge combustion ash and coal ash
US4762623A (en) * 1986-11-14 1988-08-09 Trident Engineering Associates, Inc. Landfill composition and method of producing the same
JP2820708B2 (en) * 1989-03-17 1998-11-05 常盤工業株式会社 Ground reinforcement and soil improvement materials
FR2685226A1 (en) * 1991-12-18 1993-06-25 Sol Cie METHOD FOR STABILIZING AND SOLIDIFYING DOMESTIC GARBAGE INCINERATION PRODUCTS, PRODUCTS RESULTING FROM THE PROCESS, AND PRODUCTS THEREOF FOR ITS IMPLEMENTATION
FR2703604B1 (en) * 1993-04-06 1995-05-19 Sol Cie Process and stabilization and solidification of polluting waste, products obtained by this process, and products for putting it into operation.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008237035A (en) * 2007-03-26 2008-10-09 Taiheiyo Cement Corp Method for collecting seedling of shellfish

Also Published As

Publication number Publication date
FR2732249A1 (en) 1996-10-04
FR2732249B1 (en) 1997-06-13

Similar Documents

Publication Publication Date Title
US4028130A (en) Disposal method and use of sewage sludge
Katsioti et al. The effect of bentonite/cement mortar for the stabilization/solidification of sewage sludge containing heavy metals
US4375986A (en) Process for treating liquids wastes possessing a strong acidity
KR100812828B1 (en) Solidifying agent for sewage or wastewater sludge and covering material for waste reclamation land prepared using this
JP4109017B2 (en) Solidification and insolubilization methods for contaminated soil
Chin et al. Characterization of sewage sludge ASH (SSA) in cement mortar
Wang et al. Sustainable and efficient stabilization/solidification of Pb, Cr, and Cd in lead-zinc tailings by using highly reactive pozzolanic solid waste
JP2005146275A (en) Agent for improving, solidifying, and stabilizing soil and its quality
Bankowski et al. Using inorganic polymer to reduce leach rates of metals from brown coal fly ash
US4504321A (en) Process for treating and stabilizing chromium ore waste
Poon et al. The stabilization of sewage sludge by pulverized fuel ash and related materials
JP2005232341A (en) Treatment agent of hexavalent chromium-containing soil
JP4209223B2 (en) Hexavalent chromium elution suppression method
JPH10137716A (en) Waste treating material and treatment of waste
KR20020015850A (en) The sanitary landfill cover use of seawage sludge and fly ash, and Prepared method thereof
KR100948658B1 (en) Method for solidifying sewage sludge
Saeed et al. Comparison of Compressibility Behaviour of Lime-Cement Stabilized Lateritic Clay Soil Contaminated by Heavy Metals
JPH0975896A (en) Method for stabilizing ash component produced by incineration of sludge from municipal sewage treatment plant
CN112495984B (en) Hazardous waste solidification/stabilization comprehensive treatment method
CN108298854A (en) Sludge solidification/stabilisation curing agent and its preparation method and application
JP2004051410A (en) Solidifier and process for cleaning contaminated soil using this
JP3877584B2 (en) Hexavalent chromium reducing agent
JPH10338564A (en) Elution preventing material of heavy metal from hardened body, and hardened body
CN110143733A (en) A kind of mud repair material and its preparation and application
GB1578098A (en) Hydraulic activated slag binder

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060220

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20060512

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20060517

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061023