JP2820708B2 - Ground reinforcement and soil improvement materials - Google Patents

Ground reinforcement and soil improvement materials

Info

Publication number
JP2820708B2
JP2820708B2 JP1063777A JP6377789A JP2820708B2 JP 2820708 B2 JP2820708 B2 JP 2820708B2 JP 1063777 A JP1063777 A JP 1063777A JP 6377789 A JP6377789 A JP 6377789A JP 2820708 B2 JP2820708 B2 JP 2820708B2
Authority
JP
Japan
Prior art keywords
soil
ground
strengthening
added
gypsum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1063777A
Other languages
Japanese (ja)
Other versions
JPH02245088A (en
Inventor
幸盛 志田
Original Assignee
常盤工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 常盤工業株式会社 filed Critical 常盤工業株式会社
Priority to JP1063777A priority Critical patent/JP2820708B2/en
Publication of JPH02245088A publication Critical patent/JPH02245088A/en
Priority to US08/274,824 priority patent/US5501719A/en
Application granted granted Critical
Publication of JP2820708B2 publication Critical patent/JP2820708B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/14Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing calcium sulfate cements

Description

【発明の詳細な説明】 <産業上の利用分野> この発明は、産業廃棄物を活用した地盤強化・土質改
良材に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial application field> The present invention relates to a ground reinforcement / soil improvement material utilizing industrial waste.

<従来の技術> 海辺部、低地、湿地帯その他の軟弱地盤地域を整備し
そこに道路や構築物を築造するために、従来より各種の
地盤強化材や土質改良材(以下地盤強化・土質改良材と
称す)が使用されているが、これらの殆どはセメント類
を基材とし、これに石膏その他の水硬性無機物・有機物
を配合したものである。また水ガラスを基材としこれに
各種水硬性物質を配合したものも知られている。
<Conventional technology> Various types of soil reinforcement and soil improvement materials (hereinafter referred to as soil reinforcement and soil improvement materials) have been used to construct seaside areas, lowlands, wetlands, and other soft ground areas and build roads and structures there. ) Are used, but most of them are based on cements and mixed with gypsum or other hydraulic inorganic or organic substances. Further, there is also known a material obtained by mixing water glass as a base material with various hydraulic substances.

一方、産業廃棄物は量的に年々増加しているがその処
理としては埋め立てに利用したり海洋に投棄したりして
いるのが現状である。
On the other hand, the amount of industrial waste is increasing year by year, but at present it is used for landfill or dumped in the ocean.

しかしながら、従来の地盤強化・土質改良材は石灰岩
の産地より岩石を採取し破砕機に掛けた上、工場に運ん
で焼成したセメント類を基材とするのでコスト的に必ず
しも有利とは言えないものであり、また産業廃棄物は単
に投棄されているだけでそれ程有効利用されていないも
のである。
However, conventional soil strengthening and soil improvement materials are not necessarily cost-effective because they use rocks collected from limestone producing areas, crushed, transported to factories, and fired as base materials. In addition, industrial waste is simply dumped and is not used very effectively.

そこで、本出願人は産業廃棄物の組成に注目してその
化学組成を分析検討したところ、地盤強化・土質改良材
の有効成分として活用できそうなものをかなり多くの量
含有していることを知見として得たので、さきに「各種
工場排出物を利用した地盤強化改良材」を提案した(日
本特許公開、特開昭61−218684号公報参照)。この地盤
強化改良材はCaO、Al2O3、Fe2O3及びSiO2を主成分とし
て含有する産業廃棄物の焼成物を基材とし、これに、水
硬性物質の少なくとも1種を配合してSiO2、Al2O3、Fe2
O3、CaO、MgO、Na2O及びK2Oを組成分として含有するよ
うにしたものである。
Therefore, the present applicant has analyzed and studied the chemical composition of industrial waste, paying attention to the composition, and found that the waste contained a considerable amount of material that could be used as an active ingredient of soil reinforcement and soil improvement materials. Since it was obtained as knowledge, we proposed "ground improvement material using various factory wastes" (Japanese Patent Publication, JP-A-61-218684). This ground reinforcement material is based on a calcined product of industrial waste containing CaO, Al 2 O 3 , Fe 2 O 3 and SiO 2 as main components, and blended with at least one hydraulic substance. SiO 2 , Al 2 O 3 , Fe 2
It contains O 3 , CaO, MgO, Na 2 O and K 2 O as components.

<発明が解決しようとする課題> 先に提案した、地盤強化改良材は各種工場排出物を有
効利用する点で当初の目的を達成することができたが、
この種の地盤強化・土質改良材は多く量に使用されるも
のなのでより一層コストを下げたいという要望があっ
た。更に膨張率を上げて地盤強化・土質改良材の特性を
向上させたいという要望があった。
<Problems to be solved by the invention> Although the soil reinforcement improving material proposed earlier was able to achieve its original purpose in terms of effectively utilizing various factory emissions,
Since this kind of ground reinforcement / soil improvement material is used in a large amount, there has been a demand to further reduce the cost. There has been a demand for increasing the expansion rate to improve the properties of the ground reinforcement / soil improvement material.

そして、その後の研究によれば、焼成物としての基材
を得るに際し、セメント類を使用せずに粘土鉱物を用い
てCaO、Al2O3、SiO2、Fe2O3等を補えばその分他の材料
の使用量を下げられ、更に組成成分としてアルミナを加
えてやれば膨張率が上がり地盤強化・土質改良材として
の特質を向上させられることが判明した。
And, according to subsequent research, when obtaining a base material as a fired product, CaO, Al 2 O 3 , SiO 2 , Fe 2 O 3 etc. It has been found that the amount of other materials used can be reduced, and if alumina is further added as a component, the expansion rate increases and the characteristics as a ground strengthening / soil improving material can be improved.

<課題を解決するための手段> そして、この発明では、CaO、Al2O3、SiO2Fe2O3を主
成分として多く含有する産業廃棄物と、粘土鉱物とを混
合・焼成した焼成物を基材とし、この基材に石膏を加え
て地盤強化・土質改良材とした〔請求項(1)〕。更
に、上記の焼成物を、微粉砕して基材とし、これに半水
石膏を加えて地盤強化・土質改良材とした〔請求項
(2)〕。そして更に、上記の焼成物の水硬率〔CaO/
(Al2O3+SiO2+Fe2O3)〕が1.7ないし2.4の範囲になる
よう主成分の組成を予め調整して地盤強化・土質改良材
とした〔請求項(3)〕。そしてまた、組成成分として
アルミナを更に10%ないし20%(wt)前後加えて地盤強
化・土質改良材とした〔請求項(4)〕。
<Means for Solving the Problems> According to the present invention, a fired product obtained by mixing and firing an industrial waste mainly containing CaO, Al 2 O 3 , and SiO 2 Fe 2 O 3 as a main component, and a clay mineral. Is used as a base material, and gypsum is added to the base material to form a ground strengthening / soil improving material [claim (1)]. Further, the fired product was finely pulverized into a base material, and hemihydrate gypsum was added to the base material to obtain a ground strengthening / soil improving material (claim (2)). And further, the hydraulic coefficient of the calcined product [CaO /
(Al 2 O 3 + SiO 2 + Fe 2 O 3 )] is in the range of 1.7 to 2.4, and the composition of the main component is adjusted in advance to obtain a ground strengthening / soil improving material [claim (3)]. Further, alumina is added as a composition component to about 10% to 20% (wt) to obtain a soil strengthening / soil improving material [claim (4)].

<作用> 精糖工場で粗糖を精製する際に発生する汚泥ケーキ、
製紙工場から排出される焼却灰、鉄工場で排出される鉄
サビを除去した後の鉄サビ汚泥や鉄鋼スラグ類、アルミ
製造過程の圧延スラグ、ビールろ過汚泥等の産業廃棄物
はCaO、Al2O3、SiO2、Fe2O3を含むものが多いので、こ
れらのうちCaO、Al2O3、SiO2、Fe2O3を主成分として多
く含むものを選択し、選択した産業廃棄物と粘土鉱物と
を混合し、1200ないし1600℃位の温度で焼成した焼成物
を基材とするものである。
<Action> Sludge cake generated when crude sugar is refined at a sugar refinery,
Industrial waste such as incinerated ash discharged from paper mills, iron rust sludge and steel slag after removing iron rust discharged from iron mills, rolled slag in the aluminum manufacturing process, and beer filtration sludge is CaO, Al 2 Many of them contain O 3 , SiO 2 , and Fe 2 O 3, and among them, those containing CaO, Al 2 O 3 , SiO 2 , and Fe 2 O 3 as main components were selected, and the selected industrial waste was selected. And a clay mineral, and a fired product obtained by firing at a temperature of about 1200 to 1600 ° C. is used as a base material.

産業廃棄物の例としては、以下の表1に示す如きもの
がある。尚、重金属を含まぬものを使用することは言う
までもない。そしてこれらに混合する粘土鉱物の例とし
ては以下の表2に示す如きものがある。
Examples of industrial waste include those shown in Table 1 below. Needless to say, a material containing no heavy metal is used. Examples of clay minerals mixed with these are as shown in Table 2 below.

表1及び表2に示す如く産業廃棄物と粘土鉱物の主成
分は品種により異なるが、いずれでも有機物を焼却して
取り除くと無機物が得られるし、これを本発明に利用出
来るものである。
As shown in Tables 1 and 2, the main components of the industrial waste and the clay mineral differ depending on the cultivar. In any case, when the organic matter is incinerated and removed, an inorganic substance is obtained, which can be used in the present invention.

ところで、上記焼成物はいわゆるセメントクリンカー
でありその凝固時間を調整させるために石膏を「凝結遅
緩材」として基材に添加するが、石膏の添加は不足成分
を補う上でも有益である。この時、焼成物(セメントク
リンカー)を微粉砕して基材にすると、粘性が上がり吸
水率が上がるので硬化性を向上でき有利である。そして
石膏の内でも半水石膏は使い易い。即ち半水石膏は通常
使われる二水石膏に比べ含水率が少ないのでその分、吸
着水による凝固が少ないから使い易い。また焼成物の水
硬率を1.7ないし2.4に調整すれば普通ポルトランドセメ
ントに要求される凝固の度合いを充分満たし且つそれ以
上の凝固性を期待できる。水硬率を調整する上でカルシ
ウム不足の場合、経済性も考えて炭酸カルシウムを添加
すると良い。更に対象とする土壌が有機物を含む土質や
フミン、アミン酸を含むような土質(例えば腐食土)に
は水硬率を変え、それに合わせ組成成分の配合を行うよ
うにするものである。そしてまた組成成分としてアルミ
ナを10%ないし20%(wt)前後加えると約0.5ないし10
%体積が膨張して地盤の中の圧密現象で地盤の凝結硬化
がより好ましく成る。
By the way, the calcined product is a so-called cement clinker, and gypsum is added to a substrate as a "setting retarder" in order to adjust the solidification time, but the addition of gypsum is also useful for compensating for the insufficient components. At this time, if the fired product (cement clinker) is finely pulverized into a base material, the viscosity is increased and the water absorption is increased, so that the curability can be improved, which is advantageous. And among gypsum, hemihydrate gypsum is easy to use. In other words, hemihydrate gypsum has a lower moisture content than commonly used dihydrate gypsum, and accordingly is less likely to coagulate due to adsorbed water and is therefore easier to use. When the hydraulic modulus of the calcined product is adjusted to 1.7 to 2.4, the degree of solidification required for ordinary Portland cement can be sufficiently satisfied, and further solidification can be expected. If calcium is insufficient in adjusting the hydraulic coefficient, it is advisable to add calcium carbonate in consideration of economy. Furthermore, the hydraulic property is changed for soils containing organic matter or soils containing humin or amine acid (for example, corroded soils), and the components are blended accordingly. Also, when about 10% to 20% (wt) of alumina is added as a composition component, about 0.5 to 10%
% Volume is expanded, and the consolidation phenomenon in the ground makes the setting hardening of the ground more preferable.

<実施例及び効果> 産業廃棄物として、精糖汚泥、製紙焼却灰、鉄サビ汚
泥、アルミ圧延スラグを選択使用し且つ粘土鉱物として
関東ロームを選び、これらを配合した焼成物を得、これ
を微粉砕して基材とした。尚、カルシウムとして炭酸カ
ルシウムを加えて意図する水硬率に合わせ組成成分を調
整した。そして、半水石膏を加えて地盤強化・土質改良
材とした。その全体の組成成分は次表3の通りであっ
た。
<Examples and effects> As industrial waste, refined sludge, paper incineration ash, iron rust sludge, and aluminum rolled slag were selected and used, and Kanto loam was selected as a clay mineral. It was ground to obtain a substrate. In addition, calcium carbonate was added as calcium, and the composition component was adjusted according to the intended hydraulic hardness. Then, hemihydrate gypsum was added to obtain a ground reinforcement and soil improvement material. The overall composition was as shown in Table 3 below.

実施例1 この実施例は、上記表3に示す組成成分のものを基準
として各々の添加量を調整したものであり、その配合内
容は表4の如きものであった。
Example 1 In this example, the amount of each component was adjusted based on the components shown in Table 3 above, and the content of the composition was as shown in Table 4.

そして表4の基材を用い、表5の如く半水石膏を加え
て地盤強化・土質改良材とした。
Then, using the base material shown in Table 4, hemihydrate gypsum was added as shown in Table 5 to obtain a ground strengthening / soil improving material.

尚、半水石膏は10%添加しており、水硬率は2であっ
た。
In addition, 10% of hemihydrate gypsum was added, and hydraulic hardness was 2.

実施例2 この実施例は、表3の組成成分のものを基準として各
成分の添加量を調整したものであり、その配合内容は表
6の如きものであった。
Example 2 In this example, the addition amount of each component was adjusted based on the components of Table 3 and the content of the composition was as shown in Table 6.

そして表6の基材に以下の表7の如く半水石膏を加え
て地盤強化・土質改良材とした。
Then, hemihydrate gypsum was added to the base material in Table 6 as shown in Table 7 below to obtain a ground strengthening / soil improving material.

半水石膏は10%添加してあり水硬率は2.0であった。 Hemihydrate gypsum was added at 10%, and hydraulic set was 2.0.

実施例3 表6の基材にアルミナを10%そして半水石膏を20%加
えて表8の如き内容の地盤強化・土質改良材とした。
Example 3 10% of alumina and 20% of gypsum hemihydrate were added to the base material of Table 6 to obtain a soil strengthening / soil improving material having the contents shown in Table 8.

この場合の水硬率は1.95であり、そして膨張率は体積
の0.5%であり、ゲル化タイムは1.5分そして凝結硬化は
30分であった。
The hydraulic set in this case is 1.95, and the swelling is 0.5% of the volume, the gel time is 1.5 minutes and the setting
30 minutes.

実施例4 表6の基材にアルミナを10%と半水石膏を10%加えて
表9の如き内容の地盤強化・土質改良材とした。
Example 4 10% of alumina and 10% of gypsum hemihydrate were added to the base material of Table 6 to obtain a soil strengthening / soil improving material having the contents shown in Table 9.

この場合の水硬率は2であり、そして膨張率は体積の
0.8乃至10%であり、ゲル化タイムは2分そして凝結硬
化は35分であった。
The hydraulic modulus in this case is 2 and the expansion coefficient is
The gel time was 2 minutes and the setting and hardening was 35 minutes.

各実施例に於ける地盤強化・土質改良の効果は次に示
す通りである。
The effects of ground reinforcement and soil improvement in each embodiment are as follows.

<試験例1> 実施例1の地盤強化・土質改良材を、含水比100%の
関東ロームに15%添加、混合してテスト品Aとし、これ
を型枠に入れた。そして3日めに脱型してテスト品Aを
ビニール袋に詰め湿空養生を4日間行った後に圧縮試験
を行ったところこのテスト品Aの一軸圧縮強度は2.1kgf
/cm2であった。
<Test Example 1> 15% of the soil strengthening / soil improving material of Example 1 was added to and mixed with Kanto loam having a water content of 100% to obtain a test product A, which was placed in a mold. Then, after demolding on the third day, the test product A was packed in a plastic bag and cured in a wet air for 4 days, and then subjected to a compression test. As a result, the uniaxial compressive strength of the test product A was 2.1 kgf.
/ cm 2 .

<試験例2> 実施例2の地盤強化・土質改良材を、含水比120%の
関東ロームに15%添加、混合してテスト品Bとし、これ
を型枠に入れた。そして3日めに脱型してテスト品Bを
ビニール袋に詰め湿空養生を4日間行った後で圧縮試験
を行ったところこのテスト品Bの一軸圧縮強度は2.0kgf
/cm2であった。
<Test Example 2> The ground reinforcement / soil improving material of Example 2 was added to and mixed with 15% of Kanto loam having a water content of 120% to obtain a test product B, which was placed in a mold. Then, after demolding on the third day, the test product B was packed in a plastic bag and subjected to wet and dry curing for 4 days and then subjected to a compression test. As a result, the uniaxial compressive strength of the test product B was 2.0 kgf.
/ cm 2 .

<試験例3> 次にテスト品Aに半水石膏を20%追加配合し、次にこ
れを含水比120%の関東ロームに20%添加、混合してテ
スト品Cとした。テスト品Cを型枠に入れ3日めに脱型
しビニール袋に詰めて湿空養生を4日間行った後に圧縮
試験を行った。このテスト品Cの一軸圧縮強度は5.4kgf
/cm2であった。
<Test Example 3> Next, test product A was mixed with 20% additional hemihydrate gypsum, and then 20% was added and mixed with Kanto loam having a water content of 120% to obtain test product C. The test product C was put into a mold, demolded on the third day, packed in a plastic bag, and subjected to wet and dry curing for 4 days, and then subjected to a compression test. The unconfined compressive strength of test sample C is 5.4kgf
/ cm 2 .

<試験例4> 次にテスト品Bに半水石膏を20%追加配合し、次にこ
れを含水比120%の関東ロームに20%添加混合してテス
ト品Dとした。そして試験例3と同様の処置を行ったテ
スト品Dの一軸圧縮強度を調べたところ6.3kgf/cm2であ
った。
<Test Example 4> Next, test product B was added with 20% additional hemihydrate gypsum, and then 20% was added to and mixed with Kanto loam having a water content of 120% to obtain test product D. Then, when the uniaxial compressive strength of the test product D subjected to the same treatment as in the test example 3 was examined, it was 6.3 kgf / cm 2 .

以上の試験例1〜4より、各々のテスト品A、B、C
及びDは、それぞれ十分な圧縮強度を示していることが
判明した。
From the above Test Examples 1 to 4, each test product A, B, C
And D each showed sufficient compressive strength.

<試験例5> 埼玉県の大場川の川畔にあるメタンガスを発生させて
いる含水比279%の有機物シルト(pH=5.5〜6)を選
び、これに実施例1及び実施例2の地盤強化の土質改良
材を各々20%ずつ配合して、上記の試験例1と同様の処
置を施してから一軸圧縮強度を調べたところ、双方の圧
縮強度は1.3〜1.9kgf/cm2であり、強度不足であること
が判った。そこで、今度は実施例3の地盤強化の土質改
良材を上記有機質シルトに20%配合して、上記と同様の
処置を施し、その一軸圧縮強度を調べたところ2.8kgf/c
m2であり、十分な強度を示した。
<Test Example 5> An organic silt (pH = 5.5 to 6) having a water content of 279% and generating methane gas on the banks of the Oba River in Saitama Prefecture was selected, and the soil reinforcement of Examples 1 and 2 was selected. Each of the soil improving materials was blended by 20% and treated in the same manner as in Test Example 1 above, and the uniaxial compressive strength was examined. The compressive strength of both was 1.3 to 1.9 kgf / cm 2. It turned out to be short. Then, this time, 20% of the soil improving material for strengthening the ground of Example 3 was blended with the above-mentioned organic silt, and the same treatment as above was carried out. The uniaxial compressive strength was examined to be 2.8 kgf / c.
m 2 , indicating a sufficient strength.

有機質シルトには、通常のポルトランドセメントのよ
うな水硬率1.7〜2.4の範囲の地盤強化・土質改良材であ
っても半水石膏の含有率を多くしたもの(例えば半水石
膏20%添加の実施例3の如き地盤強化・土質改良材)は
酸性の軟弱地盤の強化・土質の改良に有効であることが
判明した。そして、宅地造成その他の土木工事の施工途
次の地盤強化・土質の改良には、アルミナを10〜20%添
加した地盤強化の土質改良材(例えば実施例3及び4)
を使用すれば、地盤の圧密とゲル化を促進して工事期間
の短縮を図ることができることも判った。
Organic silt has a high content of hemihydrate gypsum even for soil strengthening and soil improvement materials with a hydraulic modulus of 1.7 to 2.4 in the range of ordinary Portland cement (for example, a 20% addition of hemihydrate gypsum). The soil strengthening / soil improving material as in Example 3) was found to be effective for strengthening the acidic soft ground and improving the soil quality. In order to strengthen the ground and improve the soil quality during the construction of the residential land and other civil engineering works, a soil improving material for strengthening the ground by adding 10 to 20% of alumina (for example, Examples 3 and 4)
It was also found that the use of the steel can promote the compaction and gelation of the ground and shorten the construction period.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI // C09K 103:00 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI // C09K 103: 00

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】CaO、Al2O3、SiO2、Fe2O3を主成分として
多く含有する産業廃棄物と、粘度鉱物とを混合・焼成し
た焼成物を基材とし、この基材に石膏を加えて成る地盤
強度・土質改良材。
1. A fired product obtained by mixing and firing an industrial waste mainly containing CaO, Al 2 O 3 , SiO 2 and Fe 2 O 3 as main components and a viscous mineral as a base material. Ground strength and soil quality improvement material made by adding gypsum.
【請求項2】請求項(1)の焼成物を、微粉砕して基材
とし、これに半水石膏を加えて成る請求項(1)記載の
地盤強化・土質改良材。
2. The ground strengthening / soil improving material according to claim 1, wherein the fired material according to claim 1 is finely pulverized into a base material, and gypsum hemihydrate is added thereto.
【請求項3】請求項(1)の焼成物の水硬率が1.7ない
し2.4の範囲になるよう主成分の組成を予め調整した、
請求項(1)又は(2)記載の地盤強化・土質改良材。
3. The composition of the main component is adjusted in advance so that the hydraulic property of the fired product of claim (1) is in the range of 1.7 to 2.4.
The ground strengthening / soil improving material according to claim (1) or (2).
【請求項4】組成成分としてアルミナを、更に10%ない
し20%(wt)前後加えて成る請求項(1)ないし(3)
のいずれかに記載の地盤強化・土質改良材。
4. The composition according to claim 1, wherein alumina is further added in an amount of about 10% to 20% (wt) as a composition component.
The soil strengthening / soil improving material according to any one of the above.
JP1063777A 1989-03-03 1989-03-17 Ground reinforcement and soil improvement materials Expired - Fee Related JP2820708B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP1063777A JP2820708B2 (en) 1989-03-17 1989-03-17 Ground reinforcement and soil improvement materials
US08/274,824 US5501719A (en) 1989-03-03 1994-07-14 Ground strengthening/soil-improving material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1063777A JP2820708B2 (en) 1989-03-17 1989-03-17 Ground reinforcement and soil improvement materials

Publications (2)

Publication Number Publication Date
JPH02245088A JPH02245088A (en) 1990-09-28
JP2820708B2 true JP2820708B2 (en) 1998-11-05

Family

ID=13239145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1063777A Expired - Fee Related JP2820708B2 (en) 1989-03-03 1989-03-17 Ground reinforcement and soil improvement materials

Country Status (1)

Country Link
JP (1) JP2820708B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2732249B1 (en) * 1995-03-27 1997-06-13 Sol Comp Du METHODS FOR STABILIZING ASH RESULTING FROM THE INCINERATION OF SLUDGE FROM URBAN WATER TREATMENT PLANTS
CN1116242C (en) * 1998-12-31 2003-07-30 金树青 Low-base and low-dosage swelling agent for concrete
US20080276676A1 (en) * 2004-10-04 2008-11-13 Taiheiyo Cement Corporation Solidification Material
JP5015435B2 (en) * 2004-10-18 2012-08-29 太平洋セメント株式会社 Solidified material
CN104909694A (en) * 2015-05-29 2015-09-16 柳州普亚贸易有限公司 Novel antimicrobial impermeable concrete

Also Published As

Publication number Publication date
JPH02245088A (en) 1990-09-28

Similar Documents

Publication Publication Date Title
US4028130A (en) Disposal method and use of sewage sludge
Singh et al. Cementitious binder from fly ash and other industrial wastes
US4353749A (en) Process of producing a useful soil cement product from industrial chemical waste
Alqam et al. Utilization of cement incorporated with water treatment sludge
Elbaz et al. Review of beneficial uses of cement kiln dust (CKD), fly ash (FA) and their mixture
Kim et al. Stabilization of a residual granitic soil using various new green binders
CN111499324B (en) Low-toxicity phosphogypsum cemented macadam material and application thereof in road base course
USRE29783E (en) Process for treating aqueous chemical waste sludges and compositions produced thereby
JP2011038104A (en) Chemical agent for improving engineering properties of soil
Chin et al. Characterization of sewage sludge ASH (SSA) in cement mortar
JP6184149B2 (en) Fired product
US6387175B1 (en) Roadway base intermediate, roadway base, and methods of manufacture
US5501719A (en) Ground strengthening/soil-improving material
KR101495599B1 (en) The manufacturing method of block using industrial byproducts
Breesem et al. Reuse of alum sludge in construction materials and concrete works: a general overview
Mymrin et al. Material cycle realization by hazardous phosphogypsum waste, ferrous slag, and lime production waste application to produce sustainable construction materials
Shekhawat et al. A comprehensive review of development and properties of flyash-based geopolymer as a sustainable construction material
EP2305620B1 (en) The use of a concrete material comprising aggregates, cement and a cement additive comprising a mixture of three zeolites for making a prefab construction material.
Tran et al. A state-of-the-art review on the utilization of new green binders in the production of controlled low-strength materials
JP2820708B2 (en) Ground reinforcement and soil improvement materials
KR100450898B1 (en) production of incinerated construction materials using wastewater sludge
JP4201677B2 (en) Fired product
JP3407854B2 (en) Rapid hardening soil improvement material
KR20050024754A (en) Method of solidifying sea clay and soft ground with waste plaster and cement
Mekbel et al. The potential of sludge from wastewater treatment plants to improve the mechanical properties of bricks

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees