JPH0974777A - Magnetic coupling device - Google Patents

Magnetic coupling device

Info

Publication number
JPH0974777A
JPH0974777A JP23122695A JP23122695A JPH0974777A JP H0974777 A JPH0974777 A JP H0974777A JP 23122695 A JP23122695 A JP 23122695A JP 23122695 A JP23122695 A JP 23122695A JP H0974777 A JPH0974777 A JP H0974777A
Authority
JP
Japan
Prior art keywords
coupling device
side magnet
magnetic coupling
metal plates
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP23122695A
Other languages
Japanese (ja)
Inventor
Hirohito Matsui
啓仁 松井
Mikio Matsuda
三起夫 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Soken Inc
Original Assignee
Nippon Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soken Inc filed Critical Nippon Soken Inc
Priority to JP23122695A priority Critical patent/JPH0974777A/en
Publication of JPH0974777A publication Critical patent/JPH0974777A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a magnetic coupling device which restrains a magnetic resonance by making use of an eddy current generated in metal plates when a rotation is changed by a method wherein the metal plates, as resonance suppression means, which are nonmagnetic bodies and whose electric conductivity is high are mounted on, and attached to, the surface of a drive-side magnet and the surface of an idler-side magnet which is faced with the magnet. SOLUTION: Metal plates 41, 42 are mounted on, and attached to, the surface of a drive-side magnet 11 and the surface of an idler-side magnet 21, and they are faced with each other via a partition plate 31. Here, metal plates which are nonmagnetic bodies and whose electric conductivity is high are used as the metal plates 41, 42. Then, in a change in a rotation, an energy loss is generated by an eddy current generated in the metal plates 41, 42, and a resonance characteristic is suppressed to be low. Thereby, the separation of the idler-side magnet at a specific speed of rotation and the generation of the change in the rotation are suppressed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は磁気カップリング装
置に関し、特に、特定の回転数においても安定して回転
動作することができる磁気カップリング装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic coupling device, and more particularly, it relates to a magnetic coupling device that can stably rotate even at a specific rotation speed.

【0002】[0002]

【従来の技術】磁気カップリング装置はモータ等のトル
クを駆動側から磁気的な結合を介して従動側、例えば、
回転翼等に伝達する動力伝達装置である。磁気カップリ
ング装置は、例えば、ウォーターポンプ等、高い機密性
が要求される駆動部に利用され、応用製品としては車両
ラジエター、空調機器、燃料計、流量計等、多方面にわ
たっている。
2. Description of the Related Art A magnetic coupling device applies a torque of a motor or the like from a driving side to a driven side through magnetic coupling.
This is a power transmission device that transmits the power to the rotor blades and the like. The magnetic coupling device is used, for example, in a drive unit that requires high airtightness such as a water pump, and as applied products, it is used in various fields such as a vehicle radiator, an air conditioner, a fuel meter, and a flow meter.

【0003】この磁気カップリング装置は、後述するよ
うに、非接触で駆動側から従動側にトルク伝達が可能な
ので、仕切り板による静的シールを可能とし、その結
果、駆動側と従動側を完全に分離した状態でトルクを伝
達することができる。例えば、シールドケースに収容し
ても、駆動軸や従動軸付近からの液体の漏洩を考慮する
必要は全くなく、完全にシールすることができる。
As will be described later, this magnetic coupling device can transmit torque from the driving side to the driven side in a non-contact manner, so that static sealing can be performed by the partition plate, and as a result, the driving side and the driven side can be completely sealed. The torque can be transmitted in a separated state. For example, even if it is housed in a shield case, there is no need to consider leakage of liquid from the vicinity of the drive shaft or the driven shaft, and complete sealing is possible.

【0004】しかしながら、この磁気カップリング装置
は、特定の回転数において大きな共振を生じ、その結
果、従動側の離脱や回転変動を生じたりすることがあ
り、改善が要望されていた。図4(A),(B)は一般
的なシリンダー形磁気カップリング装置の要部構成図で
ある。(A)は軸方向断面図、(B)は(A)のA−
A’断面図である。図中、11は駆動側磁石、12は駆
動側ヨーク部材(磁性体)、13は駆動軸である。ま
た、21は従動側磁石、22は従動側ヨーク部材(磁性
体)、23は従動軸である。さらに、31は駆動側と従
動側を分離する仕切り板(非磁性体)である。
However, this magnetic coupling device may cause a large resonance at a specific rotation speed, resulting in disengagement on the driven side and rotation fluctuation. Therefore, improvement has been demanded. 4 (A) and 4 (B) are configuration diagrams of essential parts of a general cylinder type magnetic coupling device. (A) is an axial sectional view, (B) is A- of (A)
It is an A'sectional view. In the figure, 11 is a drive side magnet, 12 is a drive side yoke member (magnetic material), and 13 is a drive shaft. Further, 21 is a driven side magnet, 22 is a driven side yoke member (magnetic body), and 23 is a driven shaft. Further, 31 is a partition plate (non-magnetic body) for separating the driving side and the driven side.

【0005】磁気カップリング装置には、一般に、図示
のような半径方向に磁気結合したシリンダー形と、軸方
向に磁気結合したディスク形とあるが、基本的動作は同
じなので本例では前者について説明する。図4(A),
(B)において、通常、駆動側磁石11と従動側磁石2
1ともに、フェライト磁石を用いる場合と、希土類コバ
ルト磁石を用いる場合とあるが、前者は比較的弱磁界で
あるため小トルクの伝達に、後者は強磁界であるため大
トルクの伝達に利用されることが多い。
The magnetic coupling device is generally classified into a cylinder type magnetically coupled in the radial direction as shown in the figure and a disk type magnetically coupled in the axial direction, but since the basic operation is the same, the former will be described in this example. To do. FIG. 4 (A),
In (B), usually, the driving side magnet 11 and the driven side magnet 2
In both cases, a ferrite magnet is used and a rare earth cobalt magnet is used in both cases. The former is used for transmitting a small torque because it is a relatively weak magnetic field, and the latter is used for transmitting a large torque because it is a strong magnetic field. Often.

【0006】(B)で明らかなように従動側と駆動側の
各磁石はそれぞれ半径方向に磁化された磁石界磁を持
ち、仕切り板の存在する空隙を介して対向配置され、か
つ同軸上に配置されている。従って、一方の磁石が回転
すれば、両者の磁極同士で吸引若しくは反発が生じて他
方の磁石は回転動作を開始する。両者が回転を開始する
と駆動側から従動側へトルクが伝達されるが、そのトル
ク伝達特性を次に説明する。
As is apparent from (B), each of the driven-side magnet and the driving-side magnet has a magnet field magnetized in the radial direction, and is arranged to face each other through a gap in which a partition plate exists and coaxially. It is arranged. Therefore, when one magnet rotates, attraction or repulsion occurs between the two magnetic poles, and the other magnet starts rotating operation. When both start rotating, torque is transmitted from the driving side to the driven side. The torque transmission characteristic will be described below.

【0007】図5は図4(A),(B)に示す磁気カッ
プリング装置の、ねじれ角−伝達トルク特性のグラフで
ある。横軸は駆動側と従動側の間のねじれ角(図4
(B)のθ)であり、縦軸は駆動側から従動側に伝達さ
れるトルクである。図示のように、駆動側から従動側へ
の最大伝達トルクはねじれ角が45°のときである。し
かし、実際には、図示のように、通常は安全を見込ん
で、最大伝達トルクは使用負荷トルク(平均トルク)の
2倍以上で設計されている。
FIG. 5 is a graph of torsion angle-transmission torque characteristics of the magnetic coupling device shown in FIGS. 4 (A) and 4 (B). The horizontal axis is the twist angle between the driving side and the driven side (Fig. 4
(B) θ), and the vertical axis represents the torque transmitted from the driving side to the driven side. As shown, the maximum transmission torque from the driving side to the driven side is when the twist angle is 45 °. However, in practice, as shown in the figure, normally, the maximum transmission torque is designed to be at least twice the load torque (average torque) in consideration of safety.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、この磁
気カップリング装置は、回転数がある特定の回転数にな
ると、最大伝達トルクが十分あるにもかかわらず、共振
時、従動側の離脱や回転変動といった問題を生じる。こ
れは、以下に説明するように磁気カップリング装置の固
有振動数と外力の振動数に起因する。
However, in this magnetic coupling device, when the rotational speed reaches a specific rotational speed, the driven side disengages or the rotational fluctuation occurs at the time of resonance, although the maximum transmission torque is sufficient. Causes problems such as. This is due to the natural frequency of the magnetic coupling device and the frequency of the external force, as described below.

【0009】一般に、磁気カップリング装置の固有振動
数Wは次式で表される。 W=1/√(K/I) (rad/sec) ・・・・(1) で表される。ここで、Kは磁気カップリング装置のばね
定数であり、図5の曲線の傾きである。Iは従動側の慣
性モーメントである。
Generally, the natural frequency W of the magnetic coupling device is expressed by the following equation. W = 1 / √ (K / I) (rad / sec) ... (1) Here, K is the spring constant of the magnetic coupling device, and is the slope of the curve in FIG. I is the moment of inertia on the driven side.

【0010】外力の振動数Pと磁気カップリング装置の
固有振動数Wが等しい(即ち、P=W)のときに、従動
側と駆動側との間で機械的な共振を起こし、前述のよう
な従動側の離脱や回転変動を生じる要因となる。本発明
の目的は上述の問題点を解消することにあり、機械的な
共振時における従動側の離脱を防止し回転変動を極小に
抑えることが可能な磁気カップリング装置を提供するこ
とにある。
When the frequency P of the external force and the natural frequency W of the magnetic coupling device are equal (that is, P = W), mechanical resonance occurs between the driven side and the driving side, and as described above. It becomes a factor that causes the separation of the driven side and the rotation fluctuation. An object of the present invention is to solve the above-mentioned problems, and it is an object of the present invention to provide a magnetic coupling device capable of preventing separation of the driven side at the time of mechanical resonance and suppressing rotational fluctuation to a minimum.

【0011】[0011]

【課題を解決するための手段】本発明は、駆動側磁石と
従動側磁石を磁気結合して動力を伝達する磁気カップリ
ング装置であって、駆動側磁石の表面及びこれに対向す
る従動側磁石の表面に、機械的共振を抑止するための共
振抑止手段を各々装着したことを特徴とするものであ
る。
SUMMARY OF THE INVENTION The present invention is a magnetic coupling device for magnetically transmitting power by magnetically coupling a driving side magnet and a driven side magnet, the surface of the driving side magnet and a driven side magnet facing the surface. Resonance suppressing means for suppressing mechanical resonance are respectively mounted on the surface of the.

【0012】ここで、この共振抑止手段の各々は、非磁
性体でかつ電気伝導率の高い金属板が適切であり、回転
変動時に、この金属板の各々に発生する渦電流を利用し
て機械的共振を抑止する。さらに、本発明は、駆動側磁
石と従動側磁石が半径方向に磁気結合したシリンダー形
にも、駆動側磁石と従動側磁石が軸方向に磁気結合した
ディスク形にも適用可能である。
Here, as each of the resonance suppressing means, a metal plate which is a non-magnetic material and has a high electric conductivity is suitable, and the eddy current generated in each of the metal plates when the rotation fluctuates is used to machine the machine. Suppresses dynamic resonance. Further, the present invention can be applied to a cylinder type in which a driving side magnet and a driven side magnet are magnetically coupled in a radial direction and a disk type in which a driving side magnet and a driven side magnet are magnetically coupled in an axial direction.

【0013】[0013]

【発明の実施の形態】本発明では、機械的共振の抑止手
段として磁気カップリング装置の磁気結合部分に粘性
(エネルギー損失)を付加し、これにより共振特性を示
すA/F値を極力小さく抑えることにある。一般に、A
/F値は以下の式で与えられる。 A/F=1/√〔(W2 −P2 )+4λ2 2 〕 ・・・(2) ここで、Aは強制振動の振幅、Fは強制力の振幅、λは
粘性による係数であり、前述のように、Wは磁気カップ
リング装置の固有振動数、Pは外力の振動数、である。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, viscosity (energy loss) is added to a magnetic coupling portion of a magnetic coupling device as a means for suppressing mechanical resonance, thereby suppressing the A / F value showing the resonance characteristic as small as possible. Especially. Generally, A
The / F value is given by the following formula. A / F = 1 / √ [(W 2 −P 2 ) + 4λ 2 P 2 ] ... (2) where A is the amplitude of the forced vibration, F is the amplitude of the forced force, and λ is the coefficient due to viscosity. As described above, W is the natural frequency of the magnetic coupling device, and P is the frequency of the external force.

【0014】明らかなように、外力の振動数Pと磁気カ
ップリング装置の固有振動数Wが等しい(即ち、P=
W)とき、式(2)は最大値となる。即ち、 A/F=1/√〔4λ2 2 〕 ・・・(3) さらに、式(3)の左辺A/Fをできるだけ小さくする
ためには、右辺のエネルギー損失を表す粘性係数λをで
きるだけ大きくすればよいことは明らかである。ここ
で、A/F値をできるだけ小さくするということは、共
振曲線の共振時のピークの状態を示す尖鋭度(一般に
“Q”で表す)を低く抑えることを意味する。即ち、共
振の「鋭さ」を抑えることである。
As is apparent, the frequency P of the external force and the natural frequency W of the magnetic coupling device are equal (that is, P =
In the case of W), the formula (2) has the maximum value. That is, A / F = 1 / √ [4λ 2 P 2 ] ... (3) Furthermore, in order to make A / F on the left side of Expression (3) as small as possible, the viscosity coefficient λ representing the energy loss on the right side is Clearly, it should be as large as possible. Here, making the A / F value as small as possible means keeping the sharpness (generally represented by “Q”) indicating the peak state at resonance of the resonance curve low. That is, to suppress the "sharpness" of resonance.

【0015】従って、外力の振動数Pと磁気カップリン
グ装置の固有振動数Wが一致し、共振が起きても、機械
的共振抑止手段として粘性係数λをできるだけ大きくす
る手段を付加することにより、A/F値を極力小さくす
ることができ、その結果、従動側の離脱を防止し、回転
変動も小さく抑えることができる。図1(A),(B)
は本発明による一実施例としてのシリンダー形磁気カッ
プリング装置の要部構成図である。(A)は軸方向断面
図、(B)は(A)のA−A’断面図である。図中、従
来と同様の構成要素には同一番号を付す。図中、41は
駆動側金属板、42は従動側金属板である。粘性係数λ
を大きくする手段として、これらの金属板を装着する。
Therefore, even if the frequency P of the external force and the natural frequency W of the magnetic coupling device match and resonance occurs, by adding a means for increasing the viscosity coefficient λ as a mechanical resonance suppressing means, The A / F value can be made as small as possible, and as a result, separation on the driven side can be prevented and rotation fluctuation can be suppressed to a small value. 1 (A), (B)
FIG. 1 is a configuration diagram of a main part of a cylinder type magnetic coupling device according to an embodiment of the present invention. (A) is an axial sectional view, (B) is an AA 'sectional view of (A). In the figure, the same components as those in the related art are designated by the same reference numerals. In the figure, 41 is a driving side metal plate, and 42 is a driven side metal plate. Viscosity coefficient λ
These metal plates are attached as means for increasing the size.

【0016】図示のように、金属板41は駆動側磁石1
1の表面(内面)に装着され、金属板42は従動側磁石
21の表面(外面)に装着され、仕切り板31を介して
互いに相対している。これらの金属板はいずれも非磁性
体であり、かつ電気伝導率の高いもの(即ち、電気抵抗
の小さいもの)を用いる。これは、各々に渦電流を発生
し易くし、発生した渦電流が作用し合うことにより、粘
性係数λを大きくすることができるからである。
As shown in the figure, the metal plate 41 is the driving side magnet 1.
1, the metal plate 42 is mounted on the surface (outer surface) of the driven magnet 21, and is opposed to each other via the partition plate 31. Each of these metal plates is a non-magnetic material and has a high electric conductivity (that is, a low electric resistance). This is because eddy currents are easily generated in each of them, and the generated eddy currents act on each other to increase the viscosity coefficient λ.

【0017】図2(A),(B)は本発明の作用を説明
する図である。本発明の磁気カップリング装置の作用を
図1及び図2を参照しつつ説明する。磁気カップリング
装置に共振が起きていない時は駆動側と従動側はねじれ
角(θ)が一定の状態で回転している。即ち、この場合
は使用平均トルク(図5参照)に対応するねじれ角でト
ルクを伝達している。この時に、金属板41、42を貫
く磁束には時間的変化がなく、従って、これら金属板に
は渦電流は発生しない。
2A and 2B are views for explaining the operation of the present invention. The operation of the magnetic coupling device of the present invention will be described with reference to FIGS. When resonance does not occur in the magnetic coupling device, the driving side and the driven side rotate with a constant twist angle (θ). That is, in this case, the torque is transmitted at a twist angle corresponding to the average torque used (see FIG. 5). At this time, the magnetic flux penetrating the metal plates 41 and 42 does not change with time, so that no eddy current is generated in these metal plates.

【0018】即ち、図2に示すように、共振を起こして
いないときは駆動側と従動側が相対的に位置変動せず、
ねじれ角θが一定のときは、金属板上で磁束の変化(即
ち、磁束密度や方向の変化)がなく、矢印の磁力線に変
化はない。しかし、共振が発生して駆動側が従動側に対
して回転変動を起こすと、金属板41、42に磁束の変
化が生じるので、各々の金属板に渦電流が発生する。従
って、これら金属板の間で作用し合い、その結果エネル
ギー損失が大きくなり粘性係数λが大きくなる。
That is, as shown in FIG. 2, when resonance does not occur, the driving side and the driven side do not move relative to each other,
When the twist angle θ is constant, there is no change in magnetic flux (that is, change in magnetic flux density or direction) on the metal plate, and there is no change in the magnetic force line of the arrow. However, when resonance occurs and the driving side causes rotational fluctuation with respect to the driven side, a change in magnetic flux occurs in the metal plates 41 and 42, so that an eddy current is generated in each metal plate. Therefore, these metal plates act on each other, resulting in a large energy loss and a large viscosity coefficient λ.

【0019】従って、外力の振動数Pと磁気カップリン
グ装置の固有振動数Wが一致して共振が起きても、機械
的共振特性を示すA/F値を小さく抑えることができ、
従動側の離脱を防止し、回転変動を抑えることができ
る。ところで、金属板を設けずに、渦電流を発生し易く
するために仕切り板31に、電気伝導率の高い材料を用
いたり、仕切り板の板厚を厚くする方法が既に提案され
ている。しかし、この場合には、常時、共振していない
ときでも磁束の変化により仕切り板に渦電流が発生し、
この渦電流によりエネルギー損失が発生する。従って、
この方法には問題がある。
Therefore, even if the frequency P of the external force and the natural frequency W of the magnetic coupling device match and resonance occurs, the A / F value showing the mechanical resonance characteristic can be suppressed to a small value.
It is possible to prevent the driven side from separating and suppress the rotation fluctuation. By the way, there has already been proposed a method of using a material having a high electric conductivity for the partition plate 31 or increasing the plate thickness of the partition plate in order to easily generate an eddy current without providing a metal plate. However, in this case, eddy currents are always generated in the partition plate due to changes in the magnetic flux even when they are not resonating,
This eddy current causes energy loss. Therefore,
There are problems with this method.

【0020】図3は本発明の他の実施例としてのディス
ク形磁気カップリング装置の要部構成図である。図中、
11’は駆動側磁石、21’は従動側磁石、31’は仕
切り板、41’は駆動側の金属板、42’は従動側の金
属板である。このような構造は前述のシリンダー形に比
べて小型化が可能な利点を有する。明らかなように、シ
リンダー形では半径方向に磁気結合していたのが、ディ
スク形では軸方向に磁気結合しているだけで、基本構造
には変わりはない。従って、この場合の作用の説明を省
略する。
FIG. 3 is a block diagram of the essential parts of a disk type magnetic coupling device as another embodiment of the present invention. In the figure,
Reference numeral 11 'is a driving side magnet, 21' is a driven side magnet, 31 'is a partition plate, 41' is a driving side metal plate, and 42 'is a driven side metal plate. Such a structure has an advantage that it can be downsized as compared with the above-mentioned cylinder type. Obviously, the cylindrical shape was magnetically coupled in the radial direction, whereas the disk type was only magnetically coupled in the axial direction, and the basic structure remains unchanged. Therefore, the description of the operation in this case is omitted.

【0021】[0021]

【発明の効果】以上説明したように、本発明によれば、
磁気カップリング装置において、駆動側磁石と従動側磁
石の各々に金属板を配置し、回転変動時にこれらに発生
する渦電流によりエネルギー損失を生じさせて共振特性
を低く抑えることにより、特定の周波数における従動側
の離脱や回転変動を顕著に抑えることができる効果があ
る。
As described above, according to the present invention,
In the magnetic coupling device, a metal plate is placed on each of the driving side magnet and the driven side magnet, and energy loss is generated by the eddy current generated in these at the time of rotation fluctuation, and the resonance characteristic is suppressed to a low level. There is an effect that it is possible to remarkably suppress separation and rotation fluctuation on the driven side.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による磁気カップリング装置の一実施例
としての軸方向断面図(A)と、A−A’線の断面図
(B)である。
FIG. 1 is an axial sectional view (A) as an embodiment of a magnetic coupling device according to the present invention and a sectional view (B) taken along the line AA ′.

【図2】図1構成の磁気カップリング装置の通常回転時
のねじれ角及び磁力線の説明図である。
FIG. 2 is an explanatory diagram of a twist angle and magnetic force lines during normal rotation of the magnetic coupling device having the configuration of FIG.

【図3】本発明による磁気カップリング装置の他の実施
例としての軸方向断面図である。
FIG. 3 is an axial sectional view showing another embodiment of the magnetic coupling device according to the present invention.

【図4】従来の磁気カップリング装置の軸方向断面図
(A)と、A−A’線の断面図(B)である。
FIG. 4 is an axial sectional view (A) of a conventional magnetic coupling device and a sectional view (B) taken along the line AA ′.

【図5】磁気カップリング装置におけるねじれ角と伝達
トルク特性のグラフである。
FIG. 5 is a graph of a twist angle and a transmission torque characteristic in the magnetic coupling device.

【符号の説明】[Explanation of symbols]

11,11’…駆動側磁石 12…駆動側ヨーク部材 13…駆動軸 21,21’…従動側磁石 22…従動側ヨーク部材 23…従動軸 31,31’…仕切り板 41,41’…駆動側金属板 42,42’…従動側金属板 θ…ねじれ角 11, 11 '... Drive side magnet 12 ... Drive side yoke member 13 ... Drive shaft 21,21' ... Driven side magnet 22 ... Driven side yoke member 23 ... Driven shaft 31, 31 '... Partition plate 41, 41' ... Drive side Metal plate 42, 42 '... Driven side metal plate θ ... Twist angle

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 駆動側磁石と従動側磁石を磁気結合して
動力を伝達する磁気カップリング装置において、 前記駆動側磁石の表面及びこれに対向する従動側磁石の
表面に、機械的共振を抑止するための共振抑止手段を各
々装着したことを特徴とする磁気カップリング装置。
1. A magnetic coupling device for magnetically transmitting a power by magnetically coupling a driving-side magnet and a driven-side magnet, wherein mechanical resonance is suppressed on the surface of the driving-side magnet and the surface of the driven-side magnet facing the surface of the driving-side magnet. A magnetic coupling device, each of which is provided with a resonance suppressing means.
【請求項2】 前記共振抑止手段の各々は、非磁性体で
かつ電気伝導率の高い金属板である請求項1に記載の磁
気カップリング装置。
2. The magnetic coupling device according to claim 1, wherein each of the resonance suppressing means is a non-magnetic material and a metal plate having a high electric conductivity.
【請求項3】 回転変動時に前記金属板の各々に発生す
る渦電流を利用して機械的共振を抑止する請求項2に磁
気カップリング装置。
3. The magnetic coupling device according to claim 2, wherein the mechanical resonance is suppressed by utilizing an eddy current generated in each of the metal plates when the rotation changes.
【請求項4】 前記駆動側磁石と従動側磁石が半径方向
に磁気結合したシリンダー形である請求項1に記載の磁
気カップリング装置。
4. The magnetic coupling device according to claim 1, wherein the drive-side magnet and the driven-side magnet are in a cylindrical shape magnetically coupled in the radial direction.
【請求項5】 前記駆動側磁石と従動側磁石が軸方向に
磁気結合したディスク形である請求項1に記載の磁気カ
ップリング装置。
5. The magnetic coupling device according to claim 1, wherein the drive-side magnet and the driven-side magnet have a disk shape in which they are magnetically coupled in the axial direction.
JP23122695A 1995-09-08 1995-09-08 Magnetic coupling device Withdrawn JPH0974777A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23122695A JPH0974777A (en) 1995-09-08 1995-09-08 Magnetic coupling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23122695A JPH0974777A (en) 1995-09-08 1995-09-08 Magnetic coupling device

Publications (1)

Publication Number Publication Date
JPH0974777A true JPH0974777A (en) 1997-03-18

Family

ID=16920304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23122695A Withdrawn JPH0974777A (en) 1995-09-08 1995-09-08 Magnetic coupling device

Country Status (1)

Country Link
JP (1) JPH0974777A (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005233326A (en) * 2004-02-20 2005-09-02 Kayaba Ind Co Ltd Transmission mechanism
KR100644835B1 (en) * 2004-09-16 2006-11-15 엘지전자 주식회사 Device of Cylindrical Eddy Current Axis Connection
JP2007501365A (en) * 2003-08-05 2007-01-25 ホートン, インコーポレイテッド Two-speed rotation controller with eddy current drive
JP2008099366A (en) * 2006-10-06 2008-04-24 Honda Motor Co Ltd Motor
WO2009054135A1 (en) * 2007-10-26 2009-04-30 Denso Corporation Power transmitter
JP2009121676A (en) * 2007-10-26 2009-06-04 Denso Corp Power transmitter
US7633292B2 (en) * 2007-02-28 2009-12-15 Siemens Aktiengesellschaft Method of reducing eddy currents caused by a gradient magnetic field in a magnetic resonance system
JP4523672B1 (en) * 2010-01-22 2010-08-11 有限会社窪工機 transmission
WO2011091578A1 (en) * 2010-01-28 2011-08-04 清华大学 Sealed transmission device for helium space of high temperature gas cooled reactor and drive device thereof
WO2012066106A1 (en) * 2010-11-17 2012-05-24 Ricardo Uk Limited An improved coupler
WO2013003153A2 (en) * 2011-06-29 2013-01-03 Baker Hughes Incorporated Systems and methods to reduce oscillations in magnetic couplings
JP2013038952A (en) * 2011-08-09 2013-02-21 Hitachi Metals Ltd Magnetic coupling device
US8808096B2 (en) 2009-03-27 2014-08-19 Ricardo Uk Limited Flywheel
JP2015152455A (en) * 2014-02-14 2015-08-24 株式会社小野測器 angular acceleration detector
JP2015152454A (en) * 2014-02-14 2015-08-24 株式会社小野測器 torque sensor
JP2015152453A (en) * 2014-02-14 2015-08-24 株式会社小野測器 angular acceleration detector
US9273755B2 (en) 2009-03-27 2016-03-01 Ricardo Uk Limited Method and apparatus for balancing a flywheel
CN105692478A (en) * 2016-04-05 2016-06-22 中国海洋大学 Underwater traction winch based on motor static sealing
EP3174184A1 (en) * 2015-11-25 2017-05-31 Mahle International GmbH Magnetic coupling, in particular for an exhaust heat usage device
US9704631B2 (en) 2009-03-27 2017-07-11 Ricardo Uk Limited Flywheel
US9718343B2 (en) 2011-04-20 2017-08-01 Ricardo Uk Limited Energy storage system having a flywheel for a vehicle transmission
WO2019074176A1 (en) * 2017-10-13 2019-04-18 이창우 Magnetic coupling
CN110273933A (en) * 2019-06-28 2019-09-24 石愈超 A kind of shaft coupling
JP2021002982A (en) * 2019-06-24 2021-01-07 ツカサ電工株式会社 Drive control mechanism of geared motor

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007501365A (en) * 2003-08-05 2007-01-25 ホートン, インコーポレイテッド Two-speed rotation controller with eddy current drive
KR101105601B1 (en) * 2003-08-05 2012-01-19 호르톤 인코포레이티드 Two-speed rotational control apparatus with eddy current drive
JP2005233326A (en) * 2004-02-20 2005-09-02 Kayaba Ind Co Ltd Transmission mechanism
KR100644835B1 (en) * 2004-09-16 2006-11-15 엘지전자 주식회사 Device of Cylindrical Eddy Current Axis Connection
JP2008099366A (en) * 2006-10-06 2008-04-24 Honda Motor Co Ltd Motor
US7633292B2 (en) * 2007-02-28 2009-12-15 Siemens Aktiengesellschaft Method of reducing eddy currents caused by a gradient magnetic field in a magnetic resonance system
WO2009054135A1 (en) * 2007-10-26 2009-04-30 Denso Corporation Power transmitter
JP2009121676A (en) * 2007-10-26 2009-06-04 Denso Corp Power transmitter
US8808096B2 (en) 2009-03-27 2014-08-19 Ricardo Uk Limited Flywheel
US9704631B2 (en) 2009-03-27 2017-07-11 Ricardo Uk Limited Flywheel
US9273755B2 (en) 2009-03-27 2016-03-01 Ricardo Uk Limited Method and apparatus for balancing a flywheel
JP2011149523A (en) * 2010-01-22 2011-08-04 Kubo Koki:Kk Transmission
JP4523672B1 (en) * 2010-01-22 2010-08-11 有限会社窪工機 transmission
US9093891B2 (en) 2010-01-28 2015-07-28 Tsinghua University Sealed transmission device for helium space of high temperature gas cooled reactor and drive device thereof
WO2011091578A1 (en) * 2010-01-28 2011-08-04 清华大学 Sealed transmission device for helium space of high temperature gas cooled reactor and drive device thereof
WO2012066106A1 (en) * 2010-11-17 2012-05-24 Ricardo Uk Limited An improved coupler
JP2013543095A (en) * 2010-11-17 2013-11-28 リカルド ユーケー リミテッド Improved coupler
US9391489B2 (en) 2010-11-17 2016-07-12 Ricardo Uk Limited Magnetic coupler having magnets with different magnetic strengths
GB2499760A (en) * 2010-11-17 2013-08-28 Ricardo Uk Ltd An improved coupler
US9718343B2 (en) 2011-04-20 2017-08-01 Ricardo Uk Limited Energy storage system having a flywheel for a vehicle transmission
GB2506058A (en) * 2011-06-29 2014-03-19 Baker Hughes Inc Systems and methods to reduce oscillations in magnetic couplings
US8944185B2 (en) 2011-06-29 2015-02-03 Baker Hughes Incorporated Systems and methods to reduce oscillations in magnetic couplings
GB2506058B (en) * 2011-06-29 2018-08-01 Baker Hughes Inc Systems and methods to reduce oscillations in magnetic couplings
WO2013003153A2 (en) * 2011-06-29 2013-01-03 Baker Hughes Incorporated Systems and methods to reduce oscillations in magnetic couplings
WO2013003153A3 (en) * 2011-06-29 2013-02-14 Baker Hughes Incorporated Systems and methods to reduce oscillations in magnetic couplings
JP2013038952A (en) * 2011-08-09 2013-02-21 Hitachi Metals Ltd Magnetic coupling device
JP2015152454A (en) * 2014-02-14 2015-08-24 株式会社小野測器 torque sensor
JP2015152453A (en) * 2014-02-14 2015-08-24 株式会社小野測器 angular acceleration detector
JP2015152455A (en) * 2014-02-14 2015-08-24 株式会社小野測器 angular acceleration detector
EP3174184A1 (en) * 2015-11-25 2017-05-31 Mahle International GmbH Magnetic coupling, in particular for an exhaust heat usage device
DE102015223344A1 (en) * 2015-11-25 2017-06-01 Mahle International Gmbh Magnetic coupling, in particular for a waste heat utilization device
CN105692478A (en) * 2016-04-05 2016-06-22 中国海洋大学 Underwater traction winch based on motor static sealing
WO2019074176A1 (en) * 2017-10-13 2019-04-18 이창우 Magnetic coupling
JP2021002982A (en) * 2019-06-24 2021-01-07 ツカサ電工株式会社 Drive control mechanism of geared motor
CN110273933A (en) * 2019-06-28 2019-09-24 石愈超 A kind of shaft coupling

Similar Documents

Publication Publication Date Title
JPH0974777A (en) Magnetic coupling device
KR100508315B1 (en) Improvements in high speed electeric motors
US8294320B2 (en) Interior permanent magnet machine
KR101000188B1 (en) Axial Gap-type Rotary Electric Machine
JP5898976B2 (en) Impeller system with axial gap rotor
US2603678A (en) Magnetic torque transmission
US3458122A (en) Ventilating device for cooling a heat engine
JPS59113754A (en) Generator for vehicle
RU2004131867A (en) DRIVE ENGINE, PARTICULAR FOR PUMP
US9438084B2 (en) Explosion-proof braking device with non-magnetic shaft for an explosion-proof electric motor
US20110074238A1 (en) Electric Motor With Axially Movable Rotor Assembly
JPS59137628A (en) Liquid friction clutch
US2320721A (en) Electrodynamic oscillation damper
EP1657803B1 (en) Automotive alternator with magnetic fluctuation suppressor for suppressing fluctuations in rotational movement
JP2674556B2 (en) Vehicle alternator
WO1997034357A1 (en) High power oscillatory drive
US11271467B2 (en) Coaxial double-rotor variable-speed electromagnetic drive
US2444797A (en) Magnetic coupling
JP7345759B2 (en) magnetic gears
US4138618A (en) Spread pole eddy current coupling
JP2021173369A (en) Magnetic gear device
EP2657561B1 (en) Explosion-proof braking device for an explosion-proof electric motor
JP3335113B2 (en) Motor with speed detector
US3421032A (en) Synchronous reaction motor with deadshaft rotor mount
Sakai et al. Structure and characteristics of new high speed machines with two or three rotor discs

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20021203