JPH0974650A - Compressed gas insulated transmission line - Google Patents

Compressed gas insulated transmission line

Info

Publication number
JPH0974650A
JPH0974650A JP23092695A JP23092695A JPH0974650A JP H0974650 A JPH0974650 A JP H0974650A JP 23092695 A JP23092695 A JP 23092695A JP 23092695 A JP23092695 A JP 23092695A JP H0974650 A JPH0974650 A JP H0974650A
Authority
JP
Japan
Prior art keywords
gas
transmission line
pipeline
air transmission
insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23092695A
Other languages
Japanese (ja)
Inventor
Hirokazu Ito
弘和 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP23092695A priority Critical patent/JPH0974650A/en
Publication of JPH0974650A publication Critical patent/JPH0974650A/en
Pending legal-status Critical Current

Links

Landscapes

  • Installation Of Bus-Bars (AREA)

Abstract

PROBLEM TO BE SOLVED: To avoid the increase of diameters of ducts of a compressed gas insulated transmission line even if a transmission capacity is increased by a method wherein gas outlets through which insulating gas is introduced out are formed in the upper parts and lower parts of the respective ducts of the transmission line which form gas spaces and respective gas inlets are connected to each other with a gas pipe through which insulating gas flows. SOLUTION: A compressed gas insulated transmission line is installed in a tunnel 11 horizontally. A gas outlet 7 through which insulating gas is introduced out is formed in the upper part of a metal vessel 1 in one gas space 6 divided by the two cone spacers 4 of the compressed gas insulated transmission line. A gas inlet 8 through which insulating gas is introduced is formed in the lower part of the metal vessel 1. A gas pipe 9 through which insulating gas can flow is provided between the gas outlet 7 and the gas inlet 8. A heat exchanger 10 which performs heat exchange is provided in a part of the gas pipe 9. In the soil 12, the heat exchanger 10 is placed at a position higher than the position of the metal vessel 1. As a result, stable cooling can be performed all through a year, so that the transmission capacity can be increased without the significant increase of a cost.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は地中送電線路、特に
大容量送電が可能なガス絶縁管路気中送電線路に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an underground power transmission line, and more particularly to a gas-insulated pipeline air power transmission line capable of large-capacity power transmission.

【0002】[0002]

【従来の技術】従来、地中送電線路は架橋ポリエチレン
ケーブル(CV)等を使用しているため、架空送電線路
に比べ熱放散性能が悪く送電容量が小さいことから、架
空線と同一容量の送電を行うには多回線化が必要であっ
た。このため、引き出し変電設備が複雑化し、コスト増
となることから、架空線と同様な送電容量が可能なガス
絶縁管路気中送電線が採用されてきている。
2. Description of the Related Art Conventionally, an underground power transmission line uses a cross-linked polyethylene cable (CV) or the like, and therefore has a poor heat dissipation performance and a small power transmission capacity as compared with an overhead power transmission line. In order to do, it was necessary to have multiple lines. Therefore, the extraction and transformation equipment is complicated and the cost is increased. Therefore, a gas-insulated pipeline air transmission line that has the same transmission capacity as an overhead line has been adopted.

【0003】図4は金属パイプに収納した導体を絶縁性
ガスで絶縁した管路気中送電線路の一部削除した長手方
向の構成図であり、図5(A)はコーンスペーサ部分の
側面図、図5(B)は主回路導体部分の断面図である。
FIG. 4 is a structural view in the longitudinal direction of a pipeline air transmission line in which a conductor housed in a metal pipe is insulated by an insulating gas, and FIG. 5A is a side view of a cone spacer portion. 5B is a sectional view of the main circuit conductor portion.

【0004】図4及び図5において、1は金属容器、2
は金属容器1の一部を形成する機械的,熱的変形を吸収
するベローズ、3は主回路導体、4は主回路導体3の支
持と同時に絶縁ガスが充填される空間を区分するための
コーンスペーサ、5は主回路導体3を支持するための柱
状スペーサ、6は絶縁ガス空間である。なお、図では単
相導体を示しているが、三相構成の場合は三相導体を配
置する以外は基本的には同等な構造である。
4 and 5, 1 is a metal container, 2
Is a bellows which forms a part of the metal container 1 and absorbs mechanical and thermal deformations, 3 is a main circuit conductor, 4 is a cone for supporting the main circuit conductor 3 and at the same time dividing a space filled with an insulating gas Spacers 5 are columnar spacers for supporting the main circuit conductor 3, and 6 is an insulating gas space. Although a single-phase conductor is shown in the figure, the structure is basically the same in the case of a three-phase configuration except that the three-phase conductor is arranged.

【0005】[0005]

【発明が解決しようとする課題】一般に、管路気中送電
線路は、各送電電圧と送電容量が決まれば、主回路導体
径は主回路電流による導体の温度上昇値許容値で決ま
り、また金属容器の容器径は送電電圧による主回路導体
径との関係で決まる電界値と金属容器温度上昇の許容値
で基本径が設計されている。これは送電電圧および送電
容量が増大するに従って、主回路導体と金属容器の径が
大形化する関係にある。
Generally, in a pipeline air transmission line, if each transmission voltage and transmission capacity are determined, the diameter of the main circuit conductor is determined by the allowable temperature rise value of the conductor due to the main circuit current, and The basic diameter of the container is designed by the electric field value determined by the relationship with the diameter of the main circuit conductor due to the transmission voltage and the allowable value of the temperature rise of the metal container. This is because the diameters of the main circuit conductor and the metal container increase as the transmission voltage and transmission capacity increase.

【0006】一方、上記したように主回路導体と金属容
器の大形化の関係から送電容量増大に伴って管路気中送
電線路の建設コストも増大することから、管路金属容器
を大きくせず送電容量の増加の可能な管路気中送電線路
の開発が求められていた。
On the other hand, since the construction cost of the pipeline air transmission line increases as the transmission capacity increases due to the large size of the main circuit conductor and the metal container as described above, the size of the pipeline metal container must be increased. It was necessary to develop a pipeline air transmission line capable of increasing the transmission capacity.

【0007】本発明は、上記事情に鑑みてなされたもの
で、その目的は系統の送電容量増大の必要性から送電容
量を増大しても管路気中送電線路の管路径をそれに伴っ
て増加しなくても対応できる管路気中送電線路を提供す
ることにある。
The present invention has been made in view of the above circumstances, and an object thereof is to increase the pipeline diameter of the pipeline airborne transmission line accordingly, even if the transmission capacity is increased due to the necessity of increasing the transmission capacity of the system. It is to provide a pipeline air transmission line that can cope without doing so.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、本発明の請求項1は、所定間隔毎に絶縁ガス区分ス
ペーサで仕切られたガス空間を有する管路気中送電線路
において、当該管路気中送電線路は水平な方向に設置さ
れた洞道内に水平に設置されており、当該管路気中送電
線路の一つのガス空間を形成する管路毎の各管路上部に
は当該管路内の絶縁ガスを導出するガス導出部を形成
し、管路下部にはガス導入部を形成し、前記ガス導出部
および前記ガス導入部は絶縁ガスが流れるガス管路によ
って互いに連結されていることを特徴とする。
In order to achieve the above object, the first aspect of the present invention relates to a pipeline air transmission line having a gas space partitioned by insulating gas partition spacers at predetermined intervals. The pipeline air transmission line is installed horizontally in the cave installed in a horizontal direction, and the pipeline air transmission line is installed at the upper part of each pipeline forming one gas space of the pipeline air transmission line. Forming a gas lead-out portion for leading out the insulating gas in the pipeline, forming a gas introducing portion in the lower portion of the pipeline, and the gas lead-out portion and the gas introducing portion are connected to each other by a gas pipeline through which the insulating gas flows. It is characterized by being

【0009】本発明の請求項2は、請求項1の管路気中
送電線路において、前記管路気中送電線内の絶縁ガスを
導出および導入するガス導出部およびガス導入部に連結
されたガス管路には、絶縁ガスの熱交換が可能な熱交換
器を設置したことを特徴とする。
A second aspect of the present invention is, in the pipeline air transmission line of claim 1, connected to a gas lead-out portion and a gas introduction portion for leading out and introducing an insulating gas in the pipeline air transmission line. A heat exchanger capable of exchanging heat of insulating gas is installed in the gas pipeline.

【0010】本発明の請求項3は、請求項2の管路気中
送電線路において、絶縁ガスと熱交換する熱交換器は当
該管路気中送電線路が設置された洞道外周の土壌中に埋
設され、前記熱交換器は前記ガス導出部よりも高い位置
に設置されていることを特徴とする。
According to a third aspect of the present invention, in the pipeline air transmission line according to the second aspect, the heat exchanger for exchanging heat with the insulating gas is in the soil around the cave where the pipeline air transmission line is installed. And the heat exchanger is installed at a position higher than the gas outlet.

【0011】本発明の請求項4は、所定間隔毎に絶縁ガ
ス区分スペーサで仕切られたガス空間を有する管路気中
送電線路において、当該管路気中送電線路は垂直な方向
に設置された洞道内に垂直に設置されており、当該管路
気中送電線路の一つのガス空間を形成する管路毎の各管
路軸方向上部の区分スペーサ近傍には管路内の絶縁ガス
を導出するためのガス導出部が形成され、管路下部の区
分スペーサ近傍には前記導出した絶縁ガスを管路内に導
入するためのガス導入部が形成され、前記ガス導出部お
よび前記ガス導入部は絶縁ガスが流れるガス管路によっ
て互いに連結されていることを特徴とする。
According to a fourth aspect of the present invention, in a pipeline air transmission line having a gas space partitioned by insulating gas partition spacers at predetermined intervals, the pipeline air transmission line is installed in a vertical direction. It is installed vertically in the cave and guides the insulating gas in the pipeline to the vicinity of the segment spacer in the axial upper part of each pipeline that forms one gas space of the pipeline air transmission line. And a gas introducing part for introducing the derived insulating gas into the conduit in the vicinity of the partition spacer at the lower part of the conduit, and the gas guiding part and the gas introducing part are insulated from each other. It is characterized in that they are connected to each other by a gas pipeline through which gas flows.

【0012】本発明の請求項5は、請求項4の管路気中
送電線路において、前記管路気中送電線内の絶縁ガスを
導出および導入するガス導出部およびガス導入部に連結
されたガス管路には絶縁ガスの熱交換が可能な熱交換器
を設置したことを特徴とする。
According to a fifth aspect of the present invention, in the pipeline air transmission line according to the fourth aspect, it is connected to a gas lead-out portion and a gas introduction portion for leading out and introducing an insulating gas in the pipeline air transmission line. A heat exchanger capable of exchanging heat of insulating gas is installed in the gas pipeline.

【0013】本発明の請求項6は、請求項1および請求
項4の管路気中送電線路において、前記ガス管路には絶
縁ガスを強制的に循環させる循環ポンプと絶縁ガスを強
制冷却させる冷却ユニットを設置したことを特徴とす
る。
According to a sixth aspect of the present invention, in the pipeline air transmission line according to the first and fourth aspects, the gas pipeline is forced to circulate an insulating gas and the insulating gas is forcibly cooled. It is characterized by installing a cooling unit.

【0014】[0014]

【発明の実施の形態】以下、本発明の実施の形態を図に
基づいて説明する。図1は本発明の第1実施例(請求項
1、請求項2及び請求項3対応)であるガス絶縁管路気
中送電線路の構成図である。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a configuration diagram of a gas-insulated pipeline air transmission line which is a first embodiment (corresponding to claim 1, claim 2 and claim 3) of the present invention.

【0015】同図に示すように、ガス絶縁管路気中送電
線路は水平な方向に設置された洞道11内に同じように
水平に設置されている。管路気中送電線路の2つのコー
ンスペーサ4で区分された一つのガス空間6の金属容器
1の上部には絶縁ガスを導出するためのガス導出部7が
形成され、また金属容器1の下部には絶縁ガスを導入す
るガス導入部8が形成されている。ガス導出部7とガス
導入部8の間には絶縁ガスが流通できるガス管路9があ
り、そのガス管路9の一部には熱交換を行う熱交換器1
0が形成されている。管路気中送電線路容器1が設置さ
れている洞道11の外部には土壌12があり、その土壌
12内には熱交換器10が金属容器1よりも高い位置に
設置されている。
As shown in the figure, the gas-insulated pipeline air transmission line is similarly installed horizontally in the cave 11 installed in the horizontal direction. A gas lead-out portion 7 for leading out an insulating gas is formed in the upper part of the metal container 1 in one gas space 6 divided by the two cone spacers 4 of the pipeline air transmission line, and in the lower part of the metal container 1. A gas introduction part 8 for introducing an insulating gas is formed in the. There is a gas pipeline 9 through which an insulating gas can flow between the gas outlet 7 and the gas inlet 8, and a heat exchanger 1 for exchanging heat in a part of the gas pipeline 9.
0 is formed. A soil 12 is provided outside the cavern 11 where the pipeline air transmission line container 1 is installed, and a heat exchanger 10 is installed in the soil 12 at a position higher than the metal container 1.

【0016】一般に、土壌12の温度は年間を通じて変
わる幅が小さくほぼ一定に保たれている。また、土壌1
2は熱容量が大きいため熱源を冷却する効果が大きい。
このため、外気温の変化に左右されることなく冷却効果
が一定であるので、熱交換器10において温度上昇した
絶縁ガスを冷却することになる。冷却された絶縁ガスは
ガス管路9を通り下降していき金属容器1下部に形成さ
れた絶縁ガス導入部8から金属容器1内に戻る自然対流
ループが形成される。
In general, the temperature of the soil 12 has a small variation throughout the year and is kept substantially constant. Also, soil 1
Since No. 2 has a large heat capacity, it has a large effect of cooling the heat source.
Therefore, the cooling effect is constant without being affected by the change in the outside air temperature, so that the insulating gas whose temperature has risen is cooled in the heat exchanger 10. A natural convection loop is formed in which the cooled insulating gas descends through the gas pipe 9 and returns from the insulating gas introducing portion 8 formed in the lower portion of the metal container 1 into the metal container 1.

【0017】土壌の温度は場所によって異なるが、外気
温度に比べて低く、また変化が小さい。例えば、ある地
点において、冬場で外気温度−3℃でも土壌の温度は1
0℃前後、夏場では外気温度35℃でも土壌の温度は2
0℃前後であり、年間の変化幅が外気に対して少ない。
通常の管路気中送電線路の温度設計は、外気温度40℃
を基準にして各部の温度上昇許容値から求められる寸法
で設計されている。
Although the soil temperature varies depending on the location, it is lower than the outside air temperature and changes little. For example, at a certain point, the temperature of the soil is 1 even if the outside temperature is -3 ° C in winter.
The temperature of the soil is around 0 ° C, and the temperature of the soil is 2
It is around 0 ° C, and the amount of annual change is small with respect to the outside air.
The temperature design of a normal pipeline air transmission line is an outside air temperature of 40 ° C.
It is designed with dimensions that can be obtained from the allowable temperature rise of each part based on.

【0018】上記地域の例では、従来の設計外気温度は
40℃であるが、本実施例では夏場での土壌温度20℃
を基準に設計可能となるので、その差20℃による冷却
効果を考慮した設計が可能になり、送電容量の増加、ま
たは管路径の縮小が可能となる。
In the example of the above area, the conventional design outside air temperature is 40 ° C., but in this embodiment, the soil temperature in the summer is 20 ° C.
Therefore, it is possible to design in consideration of the cooling effect due to the difference of 20 ° C., and it is possible to increase the transmission capacity or reduce the pipe diameter.

【0019】図2は本発明の第2実施例(請求項4及び
請求項5対応)である管路気中送電線路の構成図であ
る。本実施例では垂直な方向に設置された洞道11内に
管路気中送電線路を設置した場合であり、この場合は、
自然対流を図るためにも絶縁ガス導出部7は金属容器の
上部に設置された区分スペーサ4近傍に形成し、絶縁ガ
ス導入部8は金属容器の下部に設置された区分スペーサ
4近傍に形成している。このように設置された場合、区
分スペーサ4近傍には熱せられた絶縁ガスが溜まること
から他の部分よりも温度上昇が大きくなるが、本実施例
では絶縁ガスを冷却すれば温度上昇が抑えられる。
FIG. 2 is a block diagram of a pipeline air transmission line which is a second embodiment (corresponding to claim 4 and claim 5) of the present invention. In this embodiment, the pipeline air transmission line is installed in the cave 11 installed in the vertical direction. In this case,
In order to achieve natural convection, the insulating gas lead-out part 7 is formed near the partition spacer 4 installed at the upper part of the metal container, and the insulating gas lead-in part 8 is formed near the partition spacer 4 installed at the bottom of the metal container. ing. When installed in this way, the heated insulating gas accumulates in the vicinity of the partition spacers 4, so that the temperature rises more than other portions, but in this embodiment, the temperature rise is suppressed by cooling the insulating gas. .

【0020】ところで、従来の管路気中送電線路では、
主回路導体に流れる電流による導体の温度上昇は主回路
導体周囲の絶縁ガスを介した熱伝達によって金属容器を
通して管路気中送電線路外に熱放散されることで、主回
路および金属容器の温度上昇が許容値以内に保たれるよ
うに設定されている。
By the way, in the conventional pipeline air transmission line,
The temperature rise of the conductor due to the current flowing in the main circuit conductor is dissipated outside the power transmission line through the metal container by heat transfer through the insulating gas around the main circuit conductor. It is set so that the rise is kept within the allowable value.

【0021】一方、本実施例では、上記のように管路気
中送電線路外に絶縁ガスを導出して外部空間との熱交換
によって冷却された絶縁ガスを再度管路気中送電線路内
に導入することで主回路導体の温度上昇を抑えるもので
ある。絶縁ガスは導体の温度によって熱せられると上昇
することから、熱交換部分を管路気中送電線路よりも上
部に配置することで熱交換が自然に起き、また熱交換後
は管路気中送電線路の管路下部に設けられた導入部から
管路内に戻る自然対流が起きる。また、絶縁ガスの循環
を強制的に行うために循環ポンプおよび強制冷却機を設
置することも可能である。これらの結果、規定温度上昇
許容範囲内であれば主回路導体に流す電流を増加させる
ことが可能となり、送電容量の増加が図れる。
On the other hand, in this embodiment, as described above, the insulating gas which is cooled by the heat exchange with the external space by introducing the insulating gas to the outside of the pipeline air transmission line is again fed into the pipeline air transmission line. By introducing it, the temperature rise of the main circuit conductor is suppressed. Since the insulating gas rises when heated by the temperature of the conductor, heat exchange occurs naturally by placing the heat exchange part above the pipeline air transmission line, and after heat exchange, pipeline air transmission is performed. Natural convection that returns to the inside of the pipeline occurs from the introduction part provided at the bottom of the pipeline of the track. It is also possible to install a circulation pump and a forced cooler to forcibly circulate the insulating gas. As a result, it is possible to increase the current flowing in the main circuit conductor within the specified temperature rise allowable range, and increase the transmission capacity.

【0022】図3は本発明の第3実施例(請求項6対
応)である管路気中送電線路の構成図である。本実施例
では、図1の絶縁ガスが流通するガス管路9に絶縁ガス
を強制的に循環させるための循環ポンプ20と絶縁ガス
を強制的に冷却する冷却ユニット21が設置されてい
る。本実施例は、より大容量が必要な場合にその経済性
を検討して採用される。なお、循環ポンプ20のみを設
置して、冷却は土壌12内に設置した熱交換器10で行
う場合も可能である。
FIG. 3 is a configuration diagram of a pipeline air transmission line which is a third embodiment (corresponding to claim 6) of the present invention. In the present embodiment, a circulation pump 20 for forcibly circulating the insulating gas and a cooling unit 21 for forcibly cooling the insulating gas are installed in the gas pipeline 9 through which the insulating gas in FIG. 1 flows. This embodiment is adopted by considering its economical efficiency when a larger capacity is required. It is also possible to install only the circulation pump 20 and perform cooling with the heat exchanger 10 installed in the soil 12.

【0023】[0023]

【発明の効果】以上説明したように、本発明によれば、
管路気中送電線路外部に絶縁ガスの冷却を行う熱交換器
を土壌内に設置しているので、年間を通じて一定の冷却
が行えることから大幅なコストの増加なしに送電容量の
増加が図れる。また、従来の設計基準で決められるもの
よりも小さな管路径の管路気中送電線路で同一容量の送
電が可能となることから建設費の低減も可能になる。
As described above, according to the present invention,
Since a heat exchanger that cools the insulating gas is installed outside the pipeline air transmission line in the soil, a certain amount of cooling can be performed throughout the year, so the transmission capacity can be increased without a significant increase in cost. In addition, since it is possible to transmit the same capacity with a pipeline air transmission line having a pipeline diameter smaller than that determined by the conventional design standard, it is possible to reduce the construction cost.

【0024】また、より大容量送電が必要な場合には循
環ポンプおよび冷却ユニットを設置することで容易に対
応可能である。この場合は、循環ポンプおよび冷却ユニ
ットの設置等の総合的な経済効果の算定が必要である
が、管路径が大きくならないことからコスト的に大きな
ウエイトを占める洞道を作る必要がないので、経済的効
果は非常に大きい。
Further, when a larger capacity power transmission is required, it can be easily dealt with by installing a circulation pump and a cooling unit. In this case, it is necessary to calculate the overall economic effect such as the installation of circulation pumps and cooling units, but since the diameter of the pipeline does not become large, it is not necessary to create a cave that occupies a large weight in terms of cost. Effect is very large.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例である管路気中送電線路の
構成図。
FIG. 1 is a configuration diagram of a pipeline air transmission line that is a first embodiment of the present invention.

【図2】本発明の第2実施例である管路気中送電線路の
構成図。
FIG. 2 is a configuration diagram of a pipeline air transmission line that is a second embodiment of the present invention.

【図3】本発明の第3実施例である循環ポンプおよび強
制冷却ユニットを設置した管路気中送電線路の構成図。
FIG. 3 is a configuration diagram of a pipeline air transmission line in which a circulation pump and a forced cooling unit according to a third embodiment of the present invention are installed.

【図4】従来のガス絶縁管路気中送電線路の構成図。FIG. 4 is a configuration diagram of a conventional gas-insulated pipeline air transmission line.

【図5】同図(A)は図4のコーンスペーサ部分の側面
図、同図(B)は図4の主回路導体部分の断面図。
5A is a side view of the cone spacer portion of FIG. 4, and FIG. 5B is a cross-sectional view of the main circuit conductor portion of FIG.

【符号の説明】[Explanation of symbols]

1…管路気中送電線路の金属容器、2…ベローズ、3…
管路気中送電線路の主回路導体、4…コーンスペーサ、
5…柱状スペーサ、6…絶縁ガス充填空間、7…ガス導
出部、8…ガス導入部、9…ガス流通管路、10…熱交
換器、11…洞道、12…土壌、20…循環ポンプ、2
1…冷却ユニット。
1 ... Metal container for pipeline air transmission line, 2 ... Bellows, 3 ...
Main circuit conductor of pipeline air transmission line, 4 ... Cone spacer,
5 ... Columnar spacer, 6 ... Insulating gas filling space, 7 ... Gas lead-out part, 8 ... Gas introducing part, 9 ... Gas distribution line, 10 ... Heat exchanger, 11 ... Cave, 12 ... Soil, 20 ... Circulation pump Two
1 ... Cooling unit.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 所定間隔毎に絶縁ガス区分スペーサで仕
切られたガス空間を有する管路気中送電線路において、
当該管路気中送電線路は水平な方向に設置された洞道内
に水平に設置されており、当該管路気中送電線路の一つ
のガス空間を形成する管路毎の各管路上部には当該管路
内の絶縁ガスを導出するガス導出部を形成し、管路下部
にはガス導入部を形成し、前記ガス導出部および前記ガ
ス導入部は絶縁ガスが流れるガス管路によって互いに連
結されていることを特徴とする管路気中送電線路。
1. A pipeline air transmission line having a gas space partitioned by insulating gas partition spacers at predetermined intervals,
The pipeline air transmission line is installed horizontally in a cave installed in a horizontal direction, and each pipeline forming one gas space of the pipeline air transmission line has an upper portion above each pipeline. A gas lead-out portion for leading out an insulating gas in the pipe is formed, a gas inlet is formed in a lower portion of the pipe, and the gas lead-out portion and the gas inlet are connected to each other by a gas pipe through which an insulating gas flows. A transmission line in the air.
【請求項2】 請求項1の管路気中送電線路において、
前記管路気中送電線内の絶縁ガスを導出および導入する
ガス導出部およびガス導入部に連結されたガス管路に
は、絶縁ガスの熱交換が可能な熱交換器を設置したこと
を特徴とする管路気中送電線路。
2. The pipeline air transmission line according to claim 1,
A heat exchanger capable of exchanging heat of the insulating gas is installed in the gas conduit connected to the gas outlet and the gas inlet for guiding and introducing the insulating gas in the pipeline air transmission line. The pipeline air transmission line.
【請求項3】 請求項2の管路気中送電線路において、
絶縁ガスと熱交換する熱交換器は当該管路気中送電線路
が設置された洞道外周の土壌中に埋設され、前記熱交換
器は前記ガス導出部よりも高い位置に設置されているこ
とを特徴とする管路気中送電線路。
3. The pipeline air transmission line according to claim 2,
A heat exchanger for exchanging heat with the insulating gas is buried in the soil around the cave where the pipeline air transmission line is installed, and the heat exchanger is installed at a position higher than the gas outlet. A pipeline air transmission line characterized by.
【請求項4】 所定間隔毎に絶縁ガス区分スペーサで仕
切られたガス空間を有する管路気中送電線路において、
当該管路気中送電線路は垂直な方向に設置された洞道内
に垂直に設置されており、当該管路気中送電線路の一つ
のガス空間を形成する管路毎の各管路軸方向上部の区分
スペーサ近傍には管路内の絶縁ガスを導出するためのガ
ス導出部が形成され、管路下部の区分スペーサ近傍には
前記導出した絶縁ガスを管路内に導入するためのガス導
入部が形成され、前記ガス導出部および前記ガス導入部
は絶縁ガスが流れるガス管路によって互いに連結されて
いることを特徴とする管路気中送電線路。
4. A pipeline air transmission line having a gas space partitioned by insulating gas section spacers at predetermined intervals,
The pipeline air transmission line is installed vertically in a cave installed in the vertical direction, and each pipeline axial upper part of each pipeline forming one gas space of the pipeline air transmission line A gas lead-out portion for leading out the insulating gas in the pipeline is formed near the partition spacer, and a gas lead-in portion for introducing the lead-out insulating gas into the pipeline near the partition spacer under the pipeline. And the gas outlet and the gas inlet are connected to each other by a gas pipeline through which an insulating gas flows.
【請求項5】 請求項4の管路気中送電線路において、
前記管路気中送電線内の絶縁ガスを導出および導入する
ガス導出部およびガス導入部に連結されたガス管路には
絶縁ガスの熱交換が可能な熱交換器を設置したことを特
徴とする管路気中送電線路。
5. The pipeline air transmission line according to claim 4,
A heat exchanger capable of exchanging heat of the insulating gas is installed in the gas pipeline connected to the gas outlet and the gas inlet for guiding and introducing the insulating gas in the pipeline air transmission line. Line air transmission line.
【請求項6】 請求項1および請求項4の管路気中送電
線路において、前記ガス管路には絶縁ガスを強制的に循
環させる循環ポンプと絶縁ガスを強制冷却させる冷却ユ
ニットを設置したことを特徴とする管路気中送電線路。
6. The pipeline air transmission line according to claim 1 or 4, wherein a circulation pump for forcibly circulating an insulating gas and a cooling unit for forcibly cooling the insulating gas are installed in the gas pipeline. A pipeline air transmission line characterized by.
JP23092695A 1995-09-08 1995-09-08 Compressed gas insulated transmission line Pending JPH0974650A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23092695A JPH0974650A (en) 1995-09-08 1995-09-08 Compressed gas insulated transmission line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23092695A JPH0974650A (en) 1995-09-08 1995-09-08 Compressed gas insulated transmission line

Publications (1)

Publication Number Publication Date
JPH0974650A true JPH0974650A (en) 1997-03-18

Family

ID=16915456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23092695A Pending JPH0974650A (en) 1995-09-08 1995-09-08 Compressed gas insulated transmission line

Country Status (1)

Country Link
JP (1) JPH0974650A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105448384A (en) * 2015-12-09 2016-03-30 中国电力科学研究院 Power transmission circuit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105448384A (en) * 2015-12-09 2016-03-30 中国电力科学研究院 Power transmission circuit
CN105448384B (en) * 2015-12-09 2023-11-14 中国电力科学研究院 Power transmission line

Similar Documents

Publication Publication Date Title
US20120204590A1 (en) Cooling device for cooling medium-voltage switchgear by means of live heat pipes
AU2012366958B2 (en) High gradient, oil-cooled iron removal device with inner circulation
JPH0974650A (en) Compressed gas insulated transmission line
Strevell et al. Designing an energy-efficient hpc supercomputing center
CN209692306U (en) A kind of radiating bus-bar groove
JPH1022135A (en) Cooling system for stationary induction apparatus
JPH05166639A (en) External cooler of gas-insulated transformer
CN204792340U (en) Bottom heat dissipation type transformer cooling device
KR102003346B1 (en) Cooling device for dry transformer
JP3148044B2 (en) Gas cooled stationary electrical equipment
JP2000182841A (en) Cooler for electrical apparatus
US2787768A (en) Cooling apparatus for electrical equipment
CN207409341U (en) Power transformer cooling system
JPH07161538A (en) Gas cooled static induction machine
CN110739125A (en) power transformer for accelerating transformer oil circulation and cooling
Muhammed et al. Temperature Distribution in Core and Winding of a Transformer and Its Effect on Performance
JPH033211A (en) Electrical equipment with cooler
CN113972053A (en) Improved cooling structure suitable for environment-friendly GIT
JPH09115737A (en) Gas insulated transformer
JPS62181407A (en) Automatic-cooling-gas insulated transformer
Lis et al. Water cooling of ehv cables
Kobayashi et al. Development of Internally Oil-cooled Oil-filled Cable (separated-type)
JPH0945541A (en) Cooling device for gas-insulated stationary induction apparatus
JPH0510509Y2 (en)
CN110838765A (en) Stator cooling system of synchronous phase modulator