JPH0974234A - Piezo-electric actuator - Google Patents

Piezo-electric actuator

Info

Publication number
JPH0974234A
JPH0974234A JP7228769A JP22876995A JPH0974234A JP H0974234 A JPH0974234 A JP H0974234A JP 7228769 A JP7228769 A JP 7228769A JP 22876995 A JP22876995 A JP 22876995A JP H0974234 A JPH0974234 A JP H0974234A
Authority
JP
Japan
Prior art keywords
displacement
piezoelectric
piezoelectric body
resonance
shim
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7228769A
Other languages
Japanese (ja)
Other versions
JP3324352B2 (en
Inventor
Katsumasa Miki
勝政 三木
Takeshi Masutani
武 増谷
Koji Nomura
幸治 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP22876995A priority Critical patent/JP3324352B2/en
Publication of JPH0974234A publication Critical patent/JPH0974234A/en
Application granted granted Critical
Publication of JP3324352B2 publication Critical patent/JP3324352B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/20Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
    • H10N30/204Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators using bending displacement, e.g. unimorph, bimorph or multimorph cantilever or membrane benders
    • H10N30/2041Beam type
    • H10N30/2042Cantilevers, i.e. having one fixed end

Landscapes

  • Manipulator (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

PROBLEM TO BE SOLVED: To stabilize the driving of laminated element type piezo-electric actuator mainly for the purpose of a chopper for an infrared ray sensor for driving close to a resonance. SOLUTION: A shim 11, a displacement enlarging part 13, a bending part 15 and a coupling part 16 are integrated in one body by bending an elastomer on a flat plate for bending the shim 11 onto a piezo-electric body 12 so as to compose an unimorph type laminated element. Since the series resistor Ra 18 is fitted to the unimorph laminated element in series in a circuit to be impressed with AC signals, the driving waveform can be easily got blunt thereby making the driving of actuator in such a constitution stable.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は焦電型赤外線センサなど
に利用され電気信号を機械的運動に変換する圧電アクチ
ュエータに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a piezoelectric actuator used for a pyroelectric infrared sensor or the like and converting an electric signal into a mechanical motion.

【0002】[0002]

【従来の技術】近年、焦電型赤外線センサは電子レンジ
における調理物の温度測定やエアーコンディショナーに
おける人体の位置検出などの幅広い分野で利用され、今
後ますます需要が大きくなると思われる。この焦電型赤
外線サセンサはLiTaO3単結晶等の焦電体による焦
電効果を利用したものである。焦電体は自発分極を有し
ており常に表面電荷が発生するが、大気中における定常
状態では大気中の電荷と結びついて電気的に中性を保っ
ている。この焦電体に赤外線が入射すると焦電体の温度
が変化し、これにともない表面の電荷状態も中性状態が
壊れて変化する。この表面に発生する電荷を検知し、赤
外線入射量を測定するのが焦電型赤外線センサである。
2. Description of the Related Art In recent years, pyroelectric infrared sensors have been used in a wide range of fields such as temperature measurement of cooked food in microwave ovens and position detection of human body in air conditioners, and it is expected that demand will increase further in the future. This pyroelectric infrared sensor utilizes the pyroelectric effect of a pyroelectric material such as a LiTaO 3 single crystal. The pyroelectric body has spontaneous polarization and always generates a surface charge. However, in a steady state in the atmosphere, the pyroelectric body is electrically neutral with the charge in the atmosphere. When infrared light is incident on the pyroelectric body, the temperature of the pyroelectric body changes, and accordingly, the charge state of the surface changes due to the neutral state being broken. The pyroelectric infrared sensor measures the amount of incident infrared rays by detecting the charges generated on the surface.

【0003】物体はその温度に応じた赤外線を放射して
おり、この焦電型赤外線センサを用いることにより物体
の位置や温度を検出できる。焦電効果は赤外線の入射量
の変化に起因するものであり、焦電型赤外線センサとし
て物体の温度を検出する場合、赤外線入射量を断続ある
いは開閉して強制的に変化させる必要がある。この手段
として用いられる機構をチョッパといい、入射する赤外
線を強制的に断続し検出物体の温度を検知する。従来の
チョッパとしては電磁モータ及び圧電アクチュエータ等
が用いられていた。
An object emits infrared rays according to its temperature, and the position and temperature of the object can be detected by using this pyroelectric infrared sensor. The pyroelectric effect is caused by a change in the incident amount of infrared rays, and when the temperature of an object is detected by a pyroelectric infrared sensor, it is necessary to intermittently open or close the infrared incident amount and forcibly change it. A mechanism used as this means is called a chopper, and forcibly interrupts the incident infrared rays to detect the temperature of the detection object. As a conventional chopper, an electromagnetic motor and a piezoelectric actuator have been used.

【0004】図5は弾性体平板に圧電体を接着したアク
チュエータをチョッパとして用いた焦電型赤外線センサ
の従来例である。一般的に金属等の弾性体平板に圧電体
を接着して貼合わせて素子を構成して片端を固定し、圧
電体による歪を利用して全体を屈曲運動を発生させるア
クチュエータは、弾性体平板の両面に圧電体を接着した
ものはバイモルフ型、片面にのみ接着したものはユニモ
ルフ型と呼ばれており、また弾性体平板はシムと呼ばれ
ており、以下各部材をそのように呼ぶ。
FIG. 5 shows a conventional example of a pyroelectric infrared sensor using an actuator in which a piezoelectric material is bonded to an elastic flat plate as a chopper. Generally, an actuator is an elastic plate which is made by adhering and bonding a piezoelectric body to an elastic flat plate such as a metal to form an element, fixing one end, and utilizing the strain of the piezoelectric body to generate a bending motion in its entirety. The one in which the piezoelectric body is adhered to both surfaces is called a bimorph type, the one to which only one surface is adhered is called a unimorph type, and the elastic flat plate is called a shim, and hereinafter, each member is called as such.

【0005】図5はバイモルフ型素子を焦電型赤外線セ
ンサ用チョッパとして用いたものであり、51はシム、
52a、52bは圧電体、53は遮蔽板、54は台座、
55は固定具、56はシム用配線、57a、57bは圧
電体用配線、58は赤外線検出部、59は遮蔽板53に
設けたスリット、60は赤外線である。シム51の両面
には圧電体52a、52bがそれぞれ接着され、三者が
一体となりバイモルフ型素子が構成されている。
FIG. 5 shows a bimorph type element used as a chopper for a pyroelectric infrared sensor, 51 is a shim,
52a and 52b are piezoelectric bodies, 53 is a shielding plate, 54 is a pedestal,
55 is a fixture, 56 is a wiring for shims, 57a and 57b are wirings for a piezoelectric material, 58 is an infrared detection part, 59 is a slit provided in the shielding plate 53, and 60 is infrared rays. Piezoelectric bodies 52a and 52b are adhered to both surfaces of the shim 51, and the three members are integrated to form a bimorph type element.

【0006】圧電体52a、52bは表面に電極が印刷
され、また接着面に対し垂直方向に分極処理が施されて
おり、圧電体52a、52bそれぞれの分極の方向は、
シム51から取り出された配線56と圧電体52a、5
2bから取り出された配線57a、57bによりシム5
1と圧電体52a、52bそれぞれの間に加えられる電
界の向きにより異なるが、圧電体52a、52bが常に
互いに逆の方向に歪を発生するように決められる。すな
わち、圧電体52a、52bの片方が分極方向に伸びる
方向で歪むとき、もう一方は分極方向に縮むように印加
電界の方向と分極方向は決められる。
Electrodes are printed on the surfaces of the piezoelectric bodies 52a and 52b, and polarization treatment is applied in a direction perpendicular to the bonding surface. The polarization directions of the piezoelectric bodies 52a and 52b are as follows.
The wiring 56 and the piezoelectric bodies 52a, 5 taken out from the shim 51
The shim 5 is formed by the wirings 57a and 57b taken out from 2b.
Although it depends on the direction of the electric field applied between 1 and the piezoelectric bodies 52a and 52b, it is determined that the piezoelectric bodies 52a and 52b always generate strain in opposite directions. That is, the direction of the applied electric field and the polarization direction are determined such that when one of the piezoelectric bodies 52a and 52b is distorted in the direction of extension in the polarization direction, the other is contracted in the polarization direction.

【0007】バイモルフ型素子は台座54と固定具55
とによりシム51の部分と圧電体52a、52bの部分
が同時に挟み込まれることにより保持されている。シム
51の圧電体52a、52bが接着されていない部分に
はシム用配線56が取り付けられ、また圧電体52a、
52bの表面には圧電体用配線57a、57bが取り付
けられている。バイモルフ型素子の自由端の先端部分に
は遮蔽板53が取り付けられ、遮蔽板53にはスリット
59が設けられている。遮蔽板53の近傍には赤外線検
出部58が遮蔽板53及びバイモルフ型素子に接触しな
いように配置される。
The bimorph type element has a base 54 and a fixture 55.
The portion of the shim 51 and the portions of the piezoelectric bodies 52a and 52b are simultaneously sandwiched by and are held. The shim wiring 56 is attached to a portion of the shim 51 where the piezoelectric bodies 52a and 52b are not bonded, and the piezoelectric body 52a,
Piezoelectric wires 57a and 57b are attached to the surface of 52b. A shield plate 53 is attached to the free end of the bimorph element, and a slit 59 is provided in the shield plate 53. An infrared detector 58 is arranged near the shield plate 53 so as not to contact the shield plate 53 and the bimorph element.

【0008】シム用配線56及び圧電体用配線57a、
57bによりシム51と圧電体52a、52bの間にそ
れぞれ電界が印加されると、バイモルフ型素子は片端固
定の屈曲運動を発生し、先端に取り付けられた遮蔽板5
3及びスリット59は電界の印加方向の変化に応じて往
復運動を行う。このスリット59の往復運動により赤外
線検出部58に入射する赤外線60を断続する。
Shim wiring 56 and piezoelectric wiring 57a,
When an electric field is applied between the shim 51 and the piezoelectric bodies 52a and 52b by 57b, the bimorph type element generates a bending motion with one end fixed, and the shield plate 5 attached to the tip.
3 and the slit 59 reciprocate according to the change in the direction of application of the electric field. The reciprocating movement of the slit 59 interrupts the infrared rays 60 incident on the infrared detecting section 58.

【0009】しかしながら、上記の構成のバイモルフ型
チョッパは赤外線を断続するのに十分な移動距離を得る
ために、固定部から先端の移動部までの寸法を大きくす
る必要があり、また非常に高い駆動電圧が必要である。
However, in the bimorph type chopper having the above-mentioned structure, in order to obtain a sufficient moving distance for interrupting infrared rays, it is necessary to increase the size from the fixed portion to the moving portion at the tip, and the driving force is very high. Voltage is needed.

【0010】そこで、従来の改善方法として、バイモル
フ型素子あるいはユニモルフ型素子の先端移動部分に荷
重負荷を設けて共振周波数を低下させ、固定をシム部分
のみで行うことにより圧電体が脆性破壊することを防止
し、更に必要に応じて固定部近傍のシムに切り欠きを設
けるなどの手段により共振周波数をより低下させること
で、低電圧駆動で大きな変位を得ることができる。以下
に上記の特徴を持つチョッパの構造の一例を示す。
Therefore, as a conventional improvement method, a load is applied to the tip moving portion of the bimorph type element or the unimorph type element to lower the resonance frequency, and the fixing is performed only at the shim portion, whereby the piezoelectric body is brittlely broken. It is possible to obtain a large displacement by driving at a low voltage by preventing the above phenomenon and further lowering the resonance frequency by means such as providing a notch in a shim near the fixed portion as necessary. An example of the structure of the chopper having the above characteristics is shown below.

【0011】図6は従来の改善例における焦電型赤外線
センサ用チョッパとしてのユニモルフ型素子をシム部分
の固定場所の幅が細くなるように成形した場合の一例を
示す斜視図である。図6において、61a、61bはシ
ム、62a、62bは圧電体、63a、63bは重り、
64はセンサ台座、65a、65bはユニモルフ型素子
固定具、66a、66bはシム用配線、67a、67b
は圧電体用配線、68は赤外線検出部、69a、69
b、69c、69dはユニモルフ型素子固定ネジ、70
は赤外線である。
FIG. 6 is a perspective view showing an example of a case where a unimorph type element as a chopper for a pyroelectric infrared sensor in a conventional improvement example is formed so that the width of the fixing place of the shim portion becomes narrow. In FIG. 6, 61a and 61b are shims, 62a and 62b are piezoelectric bodies, 63a and 63b are weights,
64 is a sensor pedestal, 65a and 65b are unimorph type element fixtures, 66a and 66b are shim wirings, 67a and 67b.
Is a piezoelectric wire, 68 is an infrared detector, 69a, 69
b, 69c and 69d are unimorph type element fixing screws, 70
Is infrared.

【0012】また、図7はシム71a、71bの詳細を
示す斜視図であり、71は遮蔽部、72は圧電体接着
部、73は切り欠き部、74は位置決め部、75a、7
5bは固定用穴である。遮蔽部71と圧電体接着部72
は折曲げによって直角をなし、圧電体接着部72から位
置決め部74にいたる間に幅が圧電体接着部72よりも
小さくなるように成形された切り欠き部73を設け、位
置決め部74の両端には固定用穴75a、75bが設け
られている。
FIG. 7 is a perspective view showing the details of the shims 71a and 71b, where 71 is a shielding portion, 72 is a piezoelectric material bonding portion, 73 is a cutout portion, 74 is a positioning portion, and 75a, 7a.
5b is a fixing hole. Shielding portion 71 and piezoelectric bonding portion 72
Is bent to form a right angle, and a notch 73 having a width smaller than that of the piezoelectric bonding portion 72 is provided between the piezoelectric bonding portion 72 and the positioning portion 74. Has fixing holes 75a and 75b.

【0013】シム71a、71bは図7に示すように幅
が細い切り欠き部73が設けられ、切り欠き部73にお
いて図6に示すようにセンサ台座64とユニモルフ型素
子固定具65a、65bによって挟まれ、更にユニモル
フ型素子固定ネジ69a、69b、69c、69dをそ
れぞれ固定用穴75a、75bに挿入して位置決め及び
片端固定され、互いに平行に向かい合うように配置され
ている。
As shown in FIG. 7, the shims 71a and 71b are provided with a cutout portion 73 having a narrow width. The cutout portion 73 is sandwiched between the sensor pedestal 64 and the unimorph type element fixtures 65a and 65b as shown in FIG. Further, the unimorph type element fixing screws 69a, 69b, 69c and 69d are inserted into the fixing holes 75a and 75b, respectively, positioned and fixed at one end, and arranged so as to face each other in parallel.

【0014】またシム61a、61bのそれぞれ向かい
合う面すなわち圧電体接着部72には圧電体62a、6
2bが、センサ台座64やユニモルフ型素子固定具65
a、65b及びシム61a、61b先端の遮蔽部、加え
て切り欠き部73に接触しない位置で接着されてユニモ
ルフ型圧電アクチュエータを構成している。赤外線検出
部68はセンサ台座64上にてユニモルフ型素子の自由
端近傍にて配され、赤外線70の入射あるいは遮断を受
ける。赤外線70を断続する遮蔽部はシム61a、61
bの固定する側とは反対側の端部を折り曲げて構成さ
れ、この部分の平面部分に重り63a、63bがそれぞ
れ接着されている。
Further, the piezoelectric bodies 62a, 6 are provided on the surfaces of the shims 61a, 61b which face each other, that is, on the piezoelectric body bonding portion 72.
2b is a sensor pedestal 64 and a unimorph type element fixture 65.
The a, 65b and the shims 61a, 61b are bonded at a position where they do not come into contact with the shielding portions at the tips and the cutout portions 73 to form a unimorph type piezoelectric actuator. The infrared detecting section 68 is arranged on the sensor pedestal 64 near the free end of the unimorph type element, and receives the infrared ray 70 or is blocked. The shields for connecting and disconnecting the infrared rays 70 are shims 61a, 61
It is configured by bending an end portion of the side opposite to the side where b is fixed, and weights 63a and 63b are adhered to the plane portions of this portion, respectively.

【0015】シム61a、61bの可動部以外の一箇所
すなわち位置決め部74の一箇所にはシム用配線66
a、66bが、圧電体62a、62bには圧電体用配線
67a、67bがそれぞれユニモルフ型素子の固定部に
近い位置で取り付けられており、シム用配線66a、6
6b及び圧電体用配線67a、67bによりシム61a
と圧電体62a、シム61bと圧電体62bの間に電界
を加えるとユニモルフ型素子は曲げを起こし、先端の遮
蔽部が移動する。2つのユニモルフ型素子を同一周波数
にて反対方向に駆動し、赤外線70を断続的に遮断す
る。
The shim wiring 66 is provided at one location other than the movable portions of the shims 61a and 61b, that is, at one location of the positioning section 74.
a and 66b are attached to the piezoelectric bodies 62a and 62b, respectively, and piezoelectric body wirings 67a and 67b are attached at positions close to the fixing portion of the unimorph type element.
6b and the wirings 67a and 67b for the piezoelectric body, the shim 61a
When an electric field is applied between the piezoelectric body 62a and the shim 61b and the piezoelectric body 62b, the unimorph type element bends and the shield portion at the tip moves. The two unimorph type elements are driven at the same frequency in opposite directions to intermittently block the infrared rays 70.

【0016】圧電体とユニモルフ型素子の固定部の間の
シム部に切り欠き部を設けることで、同一寸法で切り欠
き部を設けないユニモルフ型素子に比べてより共振周波
数を低下させることができるので、切り欠き部を設けな
いものに比べてチョッパの小型化と低周波数駆動時の変
位量の増大が図れる。
By providing the notch in the shim portion between the piezoelectric body and the fixed portion of the unimorph type element, the resonance frequency can be further lowered as compared with the unimorph type element having the same size and not having the notch. Therefore, it is possible to reduce the size of the chopper and increase the amount of displacement during low frequency driving, as compared with the case where the notch is not provided.

【0017】以上のようにユニモルフ型素子をはじめと
する貼合わせ型素子の共振近傍での駆動により様々な利
点が得られるが、共振周波数近傍での駆動であるので、
チョッパの共振周波数が固体間でばらついた場合には大
きな変位量の差が発生し、一定に保つために微細な調整
や、高精度が要求される部品加工や組立が必要であっ
た。また経時的に共振周波数が変化した場合変位が著し
く変化した。さらに、変位の安定化を図るために共振か
ら駆動周波数を離すと、変位量は低下し同様の変位を得
るためには高い駆動電圧を必要とした。かつ、形状を小
型化して変位を得る場合、シムと圧電体との接着層への
負担が増大して剥がれの原因となる。このような課題は
従来例のチョッパに限らず、共振を利用した場合全てに
等しい課題である。
As described above, various advantages can be obtained by driving the bonded type element including the unimorph type element in the vicinity of resonance, but since it is driven in the vicinity of the resonance frequency,
When the resonance frequency of the chopper varies among the solids, a large difference in displacement occurs, and it is necessary to perform fine adjustment to maintain a constant displacement and to process and assemble parts that require high precision. Also, when the resonance frequency changed with time, the displacement changed significantly. Furthermore, when the drive frequency is moved away from the resonance in order to stabilize the displacement, the displacement amount decreases, and a high drive voltage is required to obtain the same displacement. In addition, when the shape is downsized and displacement is obtained, the load on the adhesive layer between the shim and the piezoelectric body increases, causing peeling. Such a problem is not limited to the chopper of the conventional example, and is the same problem when using resonance.

【0018】以上のような共振駆動の持つ問題を改善す
るため、以下の圧電アクチュエータを提案した。
In order to improve the above problems of resonance driving, the following piezoelectric actuator has been proposed.

【0019】図8はユニモルフ型の圧電アクチュエータ
に変位拡大部を設けた焦電型赤外線センサ用チョッパの
一例を示す斜視図である。
FIG. 8 is a perspective view showing an example of a chopper for a pyroelectric infrared sensor in which a displacement expanding portion is provided on a unimorph type piezoelectric actuator.

【0020】図8において、81はシム、82は圧電
体、83は変位拡大部、84はセンサ台座、85は固定
具、86a、86bは固定用ネジ、87はシム用配線、
88は圧電体用配線、89は赤外線検出部、90は赤外
線、91は折曲げ部である。
In FIG. 8, reference numeral 81 is a shim, 82 is a piezoelectric body, 83 is a displacement enlargement portion, 84 is a sensor pedestal, 85 is a fixture, 86a and 86b are fixing screws, and 87 is shim wiring.
Reference numeral 88 is a piezoelectric wire, 89 is an infrared detecting section, 90 is infrared, and 91 is a bent section.

【0021】リン青銅やステンレス系合金などの弾性体
平板をコの字状に折曲げることによってシム81と変位
拡大部83は一体的に、かつ結合部よりシム81及び変
位拡大部83は互いに平行および同一方向に長手寸法を
有する構成となっている。さらに変位拡大部83におい
て、結合部と反対の先端は直角に、かつシム81とは反
対側に折曲げ部91が形成されている。シム81の表面
において圧電体82が接着されて圧電体接着部(ユニモ
ルフ型素子)を形成している。シム81は変位拡大部8
3との結合部の反対側の端部近傍においてセンサ台座8
4と固定具85によって挟まれ、さらにセンサ台座84
にはめネジ加工が、固定具85には孔加工が施され、固
定用ネジ86a、86bによって固定される。センサ台
座84上において赤外線検出部89が配され、前記の変
位拡大部83の先端の折曲げ部の近傍に位置している。
By bending an elastic flat plate made of phosphor bronze, stainless steel alloy or the like into a U-shape, the shim 81 and the displacement enlarging portion 83 are integrated, and the shim 81 and the displacement enlarging portion 83 are parallel to each other from the joint portion. And has a longitudinal dimension in the same direction. Further, in the displacement enlarging portion 83, a bent portion 91 is formed at a right angle on the tip opposite to the joint portion and on the side opposite to the shim 81. The piezoelectric body 82 is adhered to the surface of the shim 81 to form a piezoelectric body adhesive portion (unimorph type element). The shim 81 is the displacement magnifying section 8
The sensor pedestal 8 is provided in the vicinity of the end portion on the side opposite to the coupling portion with
4 and the fixture 85, and the sensor base 84
A female thread is processed on the fixing tool 85 and a hole is processed on the fixing tool 85, and the fixing tool 86 is fixed by fixing screws 86a and 86b. An infrared detecting section 89 is arranged on the sensor pedestal 84, and is located in the vicinity of the bent section at the tip of the displacement enlarging section 83.

【0022】また、シム81の固定部近傍にはシム用配
線87が、さらに圧電体82の接着側と反対の表面のシ
ム81の固定部に近い位置においては圧電体用配線88
がそれぞれ取り付けられている。ここでシム用配線87
と圧電体用配線88より交流信号を印加するとシム81
と圧電体82との間に電位差が生じ、圧電体接着部の変
位拡大部83との結合部が変位し、これに応じて変位拡
大部先端部の折曲げ部91も変位し、この運動によって
赤外線検出部89の入射する赤外線90を断続し、チョ
ッパとしての役割を果たす。
A shim wiring 87 is provided near the fixing portion of the shim 81, and a piezoelectric wiring 88 is provided at a position closer to the fixing portion of the shim 81 on the surface opposite to the bonding side of the piezoelectric body 82.
Are attached respectively. Wiring 87 for shim
When an AC signal is applied from the wiring 88 for the piezoelectric body, the shim 81
A potential difference is generated between the piezoelectric body 82 and the piezoelectric body 82, the joint portion of the piezoelectric body adhesive portion with the displacement magnifying portion 83 is displaced, and accordingly, the bent portion 91 at the tip of the displacement magnifying portion is also displaced. The infrared ray 90 entering the infrared ray detector 89 is interrupted to serve as a chopper.

【0023】ここで、前記構成の圧電アクチュエータ
(チョッパ)の共振特性を図9に示す。
Here, FIG. 9 shows the resonance characteristics of the piezoelectric actuator (chopper) having the above structure.

【0024】図9はコの字状に折曲げられたシムと変位
拡大部からなる圧電アクチュエータの共振特性の一例で
あり、縦軸はアドミッタンス、横軸は駆動周波数を示し
ている。f1、f2のそれぞれの周波数において共振現
象を有していることがわかり、これらはそれぞれ前記圧
電アクチュエータの主に圧電体接着部の振動に起因する
共振と、主に変位拡大部の振動に起因する共振のいずれ
かであり、圧電アクチュエータの構成によりいずれかに
相当し、また構成によってf1とf2の差も変化する。
FIG. 9 shows an example of resonance characteristics of a piezoelectric actuator comprising a shim bent in a U-shape and a displacement magnifying portion. The vertical axis represents admittance and the horizontal axis represents drive frequency. It has been found that there is a resonance phenomenon at each frequency of f1 and f2, and these are caused mainly by the resonance of the piezoelectric actuator due to the vibration of the piezoelectric bonding portion and the resonance of the displacement magnifying portion. One of the resonances, which corresponds to either one depending on the configuration of the piezoelectric actuator, and the difference between f1 and f2 also changes depending on the configuration.

【0025】前記のようにシムと変位拡大部とを結合部
から同一方向に長手寸法を有する構成とすることによ
り、f1とf2の相対位置の操作が容易なものとなる。
例えば変位拡大部材の長手寸法が一定で、圧電体接着部
の固定部から圧電体までの長さのみを変化させた場合、
すなわち圧電体接着部の長手寸法のみを変化させた場合
において、当初圧電体接着部の長手寸法が短い状態で圧
電体接着部に起因する共振周波数がf2に相当した場
合、すなわち圧電体接着部に起因する共振周波数が変位
拡大部に起因する共振周波数よりも高い場合、圧電体接
着部の長手寸法を段々と長くしていくと、両者の共振周
波数は相対的に近づき、ある長さにおいて両者は1つの
共振として重なった状態となり、さらに圧電体接着部の
長手寸法を長くした場合には、両者の相対位置は逆転
し、変位拡大部に起因する共振周波数の方が圧電体接着
部に起因する共振周波数よりも高い値を有するようにな
る。
By configuring the shim and the displacement enlarging portion to have the longitudinal dimension in the same direction from the connecting portion as described above, the relative positions of f1 and f2 can be easily manipulated.
For example, when the longitudinal dimension of the displacement magnifying member is constant and only the length from the fixed portion of the piezoelectric body bonding portion to the piezoelectric body is changed,
That is, when only the longitudinal dimension of the piezoelectric body adhesive portion is changed, when the resonance frequency due to the piezoelectric body adhesive portion is initially equal to f2 with the longitudinal dimension of the piezoelectric body adhesive portion being short, that is, When the resulting resonance frequency is higher than the resonance frequency due to the displacement magnifying section, when the longitudinal dimension of the piezoelectric body bonding section is gradually lengthened, the resonance frequencies of both become relatively close to each other, and at a certain length When the piezoelectric bonded portions are overlapped as one resonance and the longitudinal dimension of the piezoelectric bonded portion is further lengthened, the relative positions of the two are reversed, and the resonance frequency caused by the displacement magnified portion is caused by the piezoelectric bonded portion. It has a value higher than the resonance frequency.

【0026】この時、f1とf2の間を近接させる構成
とした場合の変位拡大部先端の変位と駆動周波数の関係
を図10に示す。
At this time, FIG. 10 shows the relationship between the displacement of the tip of the displacement magnifying portion and the drive frequency in the case where f1 and f2 are arranged close to each other.

【0027】図10において、縦軸は変位拡大部先端部
変位、横軸は駆動周波数を示している。
In FIG. 10, the vertical axis represents the displacement of the displacement magnifying portion and the horizontal axis represents the drive frequency.

【0028】f1とf2の間の駆動周波数において両方
の共振の影響により変位が拡大され、かつ比較的変位量
が安定な周波数領域が存在することがわかる。よって、
f1とf2を近接させ、両周波数の間の周波数において
駆動することにより、共振による変位拡大効果と、安定
した変位とが得られる。
It can be seen that there is a frequency region in which the displacement is magnified by the influence of both resonances and the displacement amount is relatively stable at the driving frequency between f1 and f2. Therefore,
By bringing f1 and f2 close to each other and driving them at a frequency between both frequencies, a displacement expansion effect due to resonance and a stable displacement can be obtained.

【0029】またf1を圧電体接着部に主に起因する共
振周波数、f2を変位拡大部に主に起因する共振周波数
とすること、すなわち圧電体接着部に主に起因する共振
周波数よりも変位拡大部に主に起因する共振周波数の方
が高い構成を有することにより、変位は拡大されて安定
でかつ印加した交流信号と変位拡大部先端の時間差が一
定の周波数領域をさらに広く確保できる。
Further, f1 is a resonance frequency mainly caused by the piezoelectric bonding portion, and f2 is a resonance frequency mainly caused by the displacement expanding portion, that is, the displacement expansion is larger than the resonance frequency mainly caused by the piezoelectric bonding portion. By having a configuration in which the resonance frequency mainly caused by the part is higher, the displacement is expanded and stable, and it is possible to further secure a wider frequency region in which the applied AC signal and the time difference between the tip of the displacement expanding part are constant.

【0030】通常の共振を利用したユニモルフ型アクチ
ュエータは変位が駆動周波数により大幅な変化を示し、
これを安定にするため共振周波数より5%程度離れた周
波数において駆動した場合、同様の変位を得るためには
高い電圧を必要とした。これに対して、前記の構成を有
する圧電アクチュエータの場合、シムが約16mmの長
手方向の寸法を有し、変位拡大部に起因する共振周波数
f2が約100Hz、圧電体接着部に起因する共振周波
数f1が約85Hzとしたとき、f1とf2の間で駆動
した場合±30Vの交流印加により、変位拡大部先端に
おいて1.1±0.05mmの変位を約6Hzの区間で
得ることが可能である。
The unimorph type actuator using ordinary resonance shows a large change in displacement depending on the driving frequency.
In order to stabilize this, when driven at a frequency about 5% away from the resonance frequency, a high voltage was required to obtain the same displacement. On the other hand, in the case of the piezoelectric actuator having the above configuration, the shim has a longitudinal dimension of about 16 mm, the resonance frequency f2 due to the displacement magnifying portion is about 100 Hz, and the resonance frequency due to the piezoelectric bonding portion is When f1 is set to about 85 Hz, it is possible to obtain a displacement of 1.1 ± 0.05 mm at the tip of the displacement magnifying section in a section of about 6 Hz by applying an alternating voltage of ± 30 V when driven between f1 and f2. .

【0031】同様の効果は圧電体接着部の長手寸法が1
8mm以下の状態において、変位拡大部の長手寸法に応
じてf2が120Hz以下の構成を有する圧電アクチュ
エータの場合、f2とf1の差がほぼf2の5〜25%
の間において得られる。5%以内であっても同様の効果
は得られるが、この場合駆動を行える周波数領域が少な
くなる場合や、1方の共振が励振されなくなる場合があ
る。
The same effect is obtained when the longitudinal dimension of the piezoelectric bonding portion is 1.
In the case of a piezoelectric actuator having a configuration in which f2 is 120 Hz or less according to the longitudinal dimension of the displacement magnifying portion in a state of 8 mm or less, the difference between f2 and f1 is approximately 5 to 25% of f2.
Obtained in between. Even if it is within 5%, the same effect can be obtained, but in this case, the frequency range in which driving can be performed may be reduced, or one resonance may not be excited.

【0032】以上のように前記の構成とすることによ
り、共振を利用しての駆動がより低電圧で安定して行
え、駆動及び組立、部材の加工が容易になる。さらに圧
電体と接着した部分の振動量を低くできるので、圧電体
とシムとの剥離が起こりにくくなる。また折曲げた構成
により全体の長手寸法が小型化し、この構成を焦電型赤
外線センサのチョッパとして用いることにより、センサ
全体の小型化がはかれ、また赤外線検出部と同一の台座
への固定を行うことで、簡易に赤外線検出部との一体化
がはかれ、加えて赤外線検出部の近傍を開閉することが
できるので開閉の面積を少なくできてチョッパの負担を
軽減できる。さらに、低電圧での駆動により、圧電体か
らのノイズが赤外線検出部への影響を低減できる。
With the above-mentioned structure, the drive utilizing the resonance can be stably performed at a lower voltage, and the drive, the assembly, and the processing of the members can be facilitated. Further, since the amount of vibration of the portion bonded to the piezoelectric body can be reduced, peeling between the piezoelectric body and the shim is less likely to occur. Also, the bent configuration reduces the overall longitudinal size, and by using this configuration as a chopper for a pyroelectric infrared sensor, the overall size of the sensor can be reduced, and the infrared detector can be fixed to the same pedestal. By doing so, the infrared detector can be easily integrated, and the vicinity of the infrared detector can be opened and closed, so that the opening and closing area can be reduced and the load on the chopper can be reduced. Further, driving with a low voltage can reduce the influence of noise from the piezoelectric body on the infrared detecting section.

【0033】以上の特徴を有するチョッパを、簡易のた
めに以下W共振型チョッパあるいはアクチュエータと呼
ぶ。
The chopper having the above characteristics is hereinafter referred to as a W resonance type chopper or actuator for simplicity.

【0034】[0034]

【発明が解決しようとする課題】しかしながら従来のW
共振型チョッパは、駆動に用いる振動モード以外の不要
振動もまた励振され、これによってチョッパが制御不能
となり、焦電型赤外線センサのチョッパとして使用した
場合温度測定が全くできなくなる場合があり、これは矩
形波駆動の場合によく見られた。反面サイン波駆動とす
ると不要振動は減少するが、変位量が同電圧の矩形波駆
動と比較して安定領域において20%以上も低下する現
象が見られた。
However, the conventional W
The resonance type chopper also excites unnecessary vibrations other than the vibration mode used for driving, which makes the chopper uncontrollable, and when used as a chopper of a pyroelectric infrared sensor, temperature measurement may not be possible at all. It was often seen in the case of square wave drive. On the other hand, when the sine wave drive is used, unnecessary vibration is reduced, but a phenomenon in which the displacement amount is reduced by 20% or more in the stable region as compared with the rectangular wave drive having the same voltage is observed.

【0035】本発明は駆動の安定化が図られ、変位量を
十分に確保できる圧電アクチュエータを提供することを
目的とする。
An object of the present invention is to provide a piezoelectric actuator in which driving is stabilized and a displacement amount can be sufficiently secured.

【0036】[0036]

【課題を解決するための手段】上記目的を達成するため
に本発明の圧電アクチュエータは、印加する交流電圧波
形を時定数τでなまった形とし、特に駆動周波数が55
から120Hzまでの圧電アクチュエータに対しては、
時定数τを駆動電圧周期の0.02倍から0.15倍と
するための一手段として、アクチュエータと直列に抵抗
を設ける構成としたものである。
In order to achieve the above object, the piezoelectric actuator of the present invention has a waveform in which an alternating voltage waveform to be applied is blunted with a time constant τ, and particularly, a driving frequency is 55.
For piezoelectric actuators up to 120 Hz,
As one means for making the time constant τ 0.02 to 0.15 times the driving voltage cycle, a resistor is provided in series with the actuator.

【0037】[0037]

【作用】駆動電圧波形を矩形波より時定数τだけなまら
せることにより、圧電アクチュエータの変位出力の不安
定化に起因する不要振動が励振されにくくなり、よって
安定に駆動を行うことができる。またこの駆動方法で得
られる変位量はサイン波で駆動した場合に比べて大きい
ので、圧電アクチュエータの基本特性の低下を防止でき
る。不要振動のレベルは時定数τの増加とともに減少
し、特に駆動周波数が55Hzから120HzまでのW
共振型アクチュエータに対しては、時定数τが駆動電圧
周期のほぼ0.02倍から効果が顕著に現れ始め、ある
時定数τ以上ではほぼ不要振動は確認されなくなる。時
定数τを上げすぎると変位量が減少するので、ほぼ0.
15倍までの範囲で駆動することにより、良好な特性が
得られる。このように小型、大変位、安定駆動のチョッ
パを用いることにより、焦電型赤外線センサの小型、高
精度化が実現できる。
By making the drive voltage waveform blunt by the time constant τ rather than the rectangular wave, unnecessary vibration due to the instability of the displacement output of the piezoelectric actuator is less likely to be excited, and thus stable driving can be performed. Further, since the amount of displacement obtained by this driving method is larger than that in the case of driving with a sine wave, it is possible to prevent deterioration of the basic characteristics of the piezoelectric actuator. The level of unwanted vibration decreases as the time constant τ increases, especially when the drive frequency is W from 55Hz to 120Hz.
With respect to the resonance type actuator, the effect begins to appear remarkably when the time constant τ is approximately 0.02 times the driving voltage cycle, and when the time constant τ is greater than a certain time constant, almost no unnecessary vibration is confirmed. If the time constant τ is raised too much, the amount of displacement will decrease.
Good characteristics can be obtained by driving up to 15 times. By using such a small-sized, large-displacement, and stable-driving chopper, the pyroelectric infrared sensor can be made compact and highly accurate.

【0038】[0038]

【実施例】以下、図にしたがって本発明の一実施例につ
いて説明する。
An embodiment of the present invention will be described below with reference to the drawings.

【0039】(実施例1)図1(a)、図1(b)は本
発明の第1の実施例における駆動回路中にW共振型アク
チュエータと直列抵抗を接続した場合の一例を示す斜視
図及び等価回路図である。
(Embodiment 1) FIGS. 1 (a) and 1 (b) are perspective views showing an example in which a W resonance type actuator and a series resistor are connected in a drive circuit according to a first embodiment of the present invention. It is an equivalent circuit diagram.

【0040】図1(a)において、11はシム、12は
圧電体、13は変位拡大部、14a、14bは固定具、
15は折曲げ部、16は結合部、17は交流信号源、1
8は直列抵抗Raである。シム11、変位拡大部13、
折曲げ部15、結合部16は1枚の板状の導電性金属体
を折曲げることにより一体的に構成される。シム11の
片面には、厚み方向に分極処理されかつ両表面に電極が
形成された圧電体12が接着されている。シム11の結
合部16と反対の端部近傍において、固定具14a、1
4bによって挟み込まれて一方端を固定することにより
W共振型アクチュエータが形成されている。固定具14
a、14bもシム11と同様に導電性材料によって形成
され、固定具14aと圧電体12の接着されていない表
面の電極部においてそれぞれ電界印加用の配線が取り付
けられる。電界印加用配線を通じて直列抵抗Ra18が
圧電体12に隣接して配され、さらに交流信号源17と
の接続によりシム11と圧電体12の間に交流電圧を印
加する電気回路が形成される。
In FIG. 1A, 11 is a shim, 12 is a piezoelectric body, 13 is a displacement magnifying portion, 14a and 14b are fixtures,
Reference numeral 15 is a bent portion, 16 is a coupling portion, 17 is an AC signal source, 1
Reference numeral 8 is a series resistance Ra. Shim 11, displacement magnifying section 13,
The bending portion 15 and the connecting portion 16 are integrally configured by bending a single plate-shaped conductive metal body. A piezoelectric body 12, which is polarized in the thickness direction and has electrodes formed on both surfaces, is bonded to one surface of the shim 11. In the vicinity of the end of the shim 11 opposite to the connecting portion 16, the fixtures 14a, 1
A W resonance type actuator is formed by being sandwiched by 4b and fixing one end thereof. Fixture 14
Similarly to the shim 11, a and 14b are also made of a conductive material, and wirings for applying an electric field are attached to the electrode portions of the surfaces of the fixture 14a and the piezoelectric body 12 which are not adhered. The series resistor Ra18 is arranged adjacent to the piezoelectric body 12 through the electric field applying wiring, and further, the connection with the AC signal source 17 forms an electric circuit for applying an AC voltage between the shim 11 and the piezoelectric body 12.

【0041】図1(b)は図1(a)におけるW共振型
アクチュエータの等価回路及びこれに接続された直列抵
抗Ra及び交流信号源よりなる電気回路図である。直列
抵抗Rb、直列容量Ca、直列インダクタンスL及び並
列容量Cbは圧電振動子の等価回路を示す一般的な内部
パラメータであり、等価回路は一般に図のように直列抵
抗Rb、直列容量Ca、直列インダクタンスLの直列接
続と、これに並列に接続された並列容量Cbからなる。
図から分かるように圧電振動子はCa、Cbからなる容
量Cを持っており、圧電振動子に直列抵抗Raを直列に
接続して矩形の交流波形を印加することにより、圧電振
動子には図2(b)に示すように時定数τ=RaCにな
まりをもった波形が印加されることとなる。あるいは正
確には直列抵抗Rbも影響を及ぼす。
FIG. 1B is an electric circuit diagram including an equivalent circuit of the W resonance type actuator in FIG. 1A, a series resistor Ra connected to the equivalent circuit, and an AC signal source. The series resistance Rb, the series capacitance Ca, the series inductance L, and the parallel capacitance Cb are general internal parameters showing an equivalent circuit of the piezoelectric vibrator, and the equivalent circuit is generally the series resistance Rb, the series capacitance Ca, and the series inductance as shown in the figure. It is composed of a series connection of L and a parallel capacitance Cb connected in parallel with the series connection.
As can be seen from the figure, the piezoelectric vibrator has a capacitance C composed of Ca and Cb. By connecting a series resistance Ra in series to the piezoelectric vibrator and applying a rectangular alternating waveform, As shown in FIG. 2 (b), a waveform having a round shape with a time constant τ = RaC is applied. Alternatively, to be exact, the series resistance Rb also influences.

【0042】図2(a)は矩形での交流電圧波形、図2
(b)は時定数τのなまりをもった交流電圧波形の一例
である。Raの値を調節することにより、駆動波形の時
定数の調整が行える。
FIG. 2 (a) is a rectangular AC voltage waveform, FIG.
(B) is an example of an AC voltage waveform having a rounded time constant τ. By adjusting the value of Ra, the time constant of the drive waveform can be adjusted.

【0043】W共振型アクチュエータは各構成部材の寸
法及び取付位置によって、様々な共振周波数と振動モー
ドをもつ。例えばW共振型アクチュエータの駆動に利用
する変位拡大部のたわみ振動に起因する共振は、少なく
とも変位拡大部自身の形状寸法、折曲げ部の形状、圧電
体の形状及び接着位置、圧電体接着部の形状等の影響を
受ける。例えば変位拡大部の長手寸法が大、折曲げ部形
状が大すなわち質量が大であったり、また圧電体接着部
の長さ大である場合は共振周波数は低下する。
The W resonance type actuator has various resonance frequencies and vibration modes depending on the size and mounting position of each constituent member. For example, the resonance caused by the flexural vibration of the displacement magnifying portion used for driving the W resonance type actuator is at least the shape dimension of the displacement magnifying portion itself, the shape of the bent portion, the shape and bonding position of the piezoelectric body, and the piezoelectric body bonding portion. It is affected by the shape, etc. For example, when the displacement magnifying portion has a large longitudinal dimension, the bent portion has a large shape, that is, has a large mass, and the piezoelectric bonding portion has a large length, the resonance frequency decreases.

【0044】変位拡大部の振動をより片端固定のたわみ
振動モードの近づけたい場合の1手法として圧電体の接
着位置をより結合部寄りとすることが挙げられるが、本
実施例においては導電性金属体の折曲げの簡易化のため
に結合部より幾分離してある。また折曲げ部の質量と変
位拡大部の形状を調整することも有効である。
One method for making the vibration of the displacement magnifying portion closer to the flexural vibration mode of fixing one end is to make the bonding position of the piezoelectric body closer to the coupling portion. In this embodiment, the conductive metal is used. It is separated from the joint to make it easier to bend the body. It is also effective to adjust the mass of the bent portion and the shape of the displacement magnifying portion.

【0045】W共振型アクチュエータは通常の駆動に使
用する共振の他にも様々な共振をもち、駆動中には目的
とする共振以外に他の振動モードの不要共振も同時に励
振され、これら不要共振も同様に各構成部材のパラメー
タの影響を受ける。駆動周波数近傍における不要共振の
振動エネルギが十分小さければ駆動に支障はないが、逆
に大きい場合には図3(b)のように通常の変位を得る
ことに対する妨げとなったり、場合によってはW共振型
アクチュエータ全体の振動が通常の振動と全く別のモー
ドとなり、駆動が行えなくなる場合がある。
The W-resonance type actuator has various resonances in addition to the resonances used for normal driving, and during driving, unnecessary resonances of other vibration modes are excited at the same time in addition to the desired resonances. Is also affected by the parameters of each component. If the vibration energy of the unnecessary resonance in the vicinity of the driving frequency is sufficiently small, the driving will not be hindered. On the contrary, if the vibration energy is large, it will hinder the normal displacement as shown in FIG. The vibration of the entire resonance type actuator may be completely different from the normal vibration, and it may not be possible to drive.

【0046】図3(a)は通常の変位波形、図3(b)
は不要共振によって歪んだ変位波形の一例である。図3
(a)はほぼサイン波をなしており、図3(b)は駆動
は行えているが不要共振によって波形が歪み、通常の変
位量が得られないばかりか、不安定な挙動によりW共振
型アクチュエータの機械的寿命に対して悪影響を及ぼ
す。これらの不要共振のエネルギが更に大きいと、W共
振型アクチュエータは他モードの不安定な振動となり、
急激な破壊にいたる場合もある。
FIG. 3A shows a normal displacement waveform, and FIG. 3B.
Is an example of a displacement waveform distorted by unnecessary resonance. FIG.
FIG. 3A shows a substantially sine wave, and FIG. 3B shows that the driving is performed, but the waveform is distorted due to unnecessary resonance, and a normal displacement amount cannot be obtained. In addition, unstable behavior causes the W resonance type. It adversely affects the mechanical life of the actuator. If the energy of these unnecessary resonances is larger, the W resonance type actuator becomes unstable vibration of other modes,
In some cases, it may lead to sudden destruction.

【0047】このような不要共振は、より高い周波数を
有する共振である場合が多く、これらの共振の振動モー
ドを正確に把握し、W共振型アクチュエータの形状を調
整することによって低減を図ることも可能であるが、複
数の共振のモードを正確に把握し、同時に低減させる構
成を得ることは困難であり、かつW共振型アクチュエー
タ本来の共振の変動も引き起こす。逆に、組立のばらつ
き程度によっても振動の不安定化の有無が見られる。
Such unnecessary resonance is often a resonance having a higher frequency, and it is possible to reduce it by accurately grasping the vibration modes of these resonances and adjusting the shape of the W resonance type actuator. Although possible, it is difficult to accurately grasp a plurality of resonance modes and obtain a configuration that simultaneously reduces the resonance modes, and also causes fluctuations in the resonance inherent in the W resonance type actuator. On the contrary, the presence or absence of instability of vibration can be seen depending on the degree of assembly variation.

【0048】上述のように駆動電圧の波形をなまらせる
ことにより、不要共振のレベルを低下させることがで
き、駆動の安定化が図れ、振動の他モードへの移行を防
止することができる。一例を挙げると、全体の長さが約
16mm、幅1.5mm、金属体として厚み0.05m
mのスーパーインバー、圧電体寸法11×1.5×0.
1、変位拡大部長さ約13mmで、駆動周波数が83H
zの図1(a)の形状を有するW共振型アクチュエータ
において、約800Hzで振動する他モードの共振が確
認された。この振動は結合部、変位拡大部、折曲げ部が
同時にそれぞれたわみ、折曲げ部が変位拡大部との接合
部を固定端とする片端固定の振動を行う形態であった。
By blunting the waveform of the driving voltage as described above, the level of unnecessary resonance can be lowered, the driving can be stabilized, and the vibration can be prevented from shifting to another mode. To give an example, the overall length is about 16 mm, the width is 1.5 mm, and the thickness of the metal body is 0.05 m.
m super invar, piezoelectric size 11 × 1.5 × 0.
1. Displacement magnifying section length is about 13mm, drive frequency is 83H
In the W resonance type actuator having the shape of z shown in FIG. 1A, resonance of another mode vibrating at about 800 Hz was confirmed. In this vibration, the joint portion, the displacement magnifying portion, and the bent portion are simultaneously bent, and the bent portion vibrates at one end with the joint portion with the displacement magnifying portion as the fixed end.

【0049】折曲げ部の変位量を測定しつつ直列抵抗の
値を徐々に上げるにしたがい、折曲げ部の変位は減少
し、ある値以上では全く測定されなかった。かつ、駆動
中に他モードの振動に移行したW共振型アクチュエータ
について直列抵抗の挿入を行ったところ、通常の振動モ
ードとなって以後不安定とはならなかった。
As the series resistance value was gradually increased while measuring the displacement amount of the bent portion, the displacement of the bent portion decreased, and the displacement was not measured at a certain value or more. When a series resistance was inserted into the W resonance type actuator that had changed to the vibration of another mode during driving, it became a normal vibration mode and was not unstable thereafter.

【0050】この場合のW共振型アクチュエータの容量
は約5000pFであり、約30kΩの直列抵抗により
折曲げ部の変位は著しく減少し、約80kΩにおいてほ
ぼ0となった。この時の時定数は約0.3msから0.
6msであり、これは駆動周波数83Hzの周期に対し
て0.025から0.05倍である。より時定数を増せ
ばより不要共振は低減されるサイン波になると更に安定
となるが、反面得られる変位量は時定数の増加に伴って
低下する。一例を挙げれば、矩形波駆動の変位量に対
し、サイン波駆動では変位が20%程度低下し、時定数
τだけなまらせたものは両駆動方法の変位量の間の値を
とる。
In this case, the capacitance of the W resonance type actuator was about 5000 pF, and the displacement of the bent portion was remarkably reduced by the series resistance of about 30 kΩ, and became almost 0 at about 80 kΩ. The time constant at this time is about 0.3 ms to 0.
6 ms, which is 0.025 to 0.05 times the period of the driving frequency of 83 Hz. If the time constant is increased, the unnecessary resonance is further reduced and the sine wave becomes more stable, but on the other hand, the amount of displacement obtained decreases as the time constant increases. As an example, the displacement is reduced by about 20% in the sine wave drive with respect to the displacement amount in the rectangular wave drive, and a value which is blunted by the time constant τ takes a value between the displacement amounts of both drive methods.

【0051】同様の傾向は近い寸法をもつW共振型アク
チュエータにおいても確認され、駆動の安定化と変位量
の確保の両面からみて、駆動周波数55Hzから120
HzのW共振型アクチュエータにおいては、時定数が駆
動周期の0.02倍から0.15倍がほぼ最適である。
またより具体的にいえば、全体の長さが13mmから1
8mm、金属体と圧電体の幅が全体の長さの0.25倍
以下、圧電体の長さが全体の長さの0.9倍以下、静電
容量が4000pFから7000pFを有する、55H
zから120Hzで駆動するW共振型アクチュエータに
おいて、直列抵抗20kΩから150kΩで良好な駆動
が得られる。
A similar tendency is confirmed in the W resonance type actuator having a similar dimension, and from the viewpoint of both the stabilization of driving and the securing of the amount of displacement, the driving frequency is from 55 Hz to 120 Hz.
In the W resonance type actuator of Hz, it is almost optimal that the time constant is 0.02 to 0.15 times the driving cycle.
More specifically, the total length is from 13 mm to 1
8 mm, the width of the metal body and the piezoelectric body is 0.25 times or less of the whole length, the length of the piezoelectric body is 0.9 times or less of the whole length, and the capacitance is 4000 pF to 7000 pF, 55H
In the W resonance type actuator driven from z to 120 Hz, good drive can be obtained with a series resistance of 20 kΩ to 150 kΩ.

【0052】なお、この駆動方法は従来例に記したよう
な構成の焦電型赤外線センサ用チョッパにそのまま用い
ることができる。温度検知の精度に対してチョッパの動
きは大きく起因し、チョッパは大変位でかつ正確な動き
が要求される。非共振駆動型の圧電バイモルフ等を用い
ると精度は向上する反面、形状が極めて大型なものとな
り、センサユニットそのものの汎用性を損なう。焦電型
赤外線センサ用チョッパとしてW共振型アクチュエータ
を用い、かつ上記の駆動方法を用いることで、小型で高
精度な開閉可能なチョッパが実現でき、センサユニット
の小型化、高精度化に寄与する。
This driving method can be used as it is for the pyroelectric infrared sensor chopper having the structure described in the conventional example. The movement of the chopper largely affects the accuracy of temperature detection, and the chopper is required to have large displacement and accurate movement. When a non-resonant drive type piezoelectric bimorph or the like is used, the accuracy is improved, but the shape becomes extremely large and the versatility of the sensor unit itself is impaired. By using the W resonance type actuator as the chopper for the pyroelectric infrared sensor and using the above-mentioned driving method, it is possible to realize a compact chopper that can be opened and closed with high accuracy, which contributes to downsizing and high accuracy of the sensor unit. .

【0053】(実施例2)図4は変位拡大部の先端近傍
において1部に略平面を有する変位部材が設けられ、略
平面の法線方向は変位拡大部の変位方向の接線方向と略
垂直であり、かつシムと変位拡大部との結合部から前記
変位拡大部先端へと向かう方向に対しても略垂直である
構成のW共振型アクチュエータの斜視図である。
(Embodiment 2) In FIG. 4, a displacement member having a substantially flat surface is provided in a part in the vicinity of the tip of the displacement amplification portion, and the normal direction of the substantially flat surface is substantially perpendicular to the tangential direction of the displacement direction of the displacement amplification portion. FIG. 3 is a perspective view of a W resonance type actuator having a configuration that is substantially perpendicular to the direction from the joint between the shim and the displacement enlarging portion toward the tip of the displacement enlarging portion.

【0054】図4において、41はシム、42は圧電
体、43は変位拡大部、44は固定部、45は圧電体用
配線、46は赤外線検出部、47は赤外線、48は変位
部材、49は結合部である。
In FIG. 4, reference numeral 41 is a shim, 42 is a piezoelectric body, 43 is a displacement enlargement portion, 44 is a fixed portion, 45 is a wiring for piezoelectric body, 46 is an infrared detection portion, 47 is infrared rays, 48 is a displacement member, and 49 is a displacement member. Is the joint.

【0055】シム41と変位拡大部43、変位部材4
8、結合部49は一体の金属部材により構成され、平板
形状よりそれぞれ折曲げることによって形成されてい
る。シム41と変位拡大部43は互いに平行であり、結
合部49を介してコの字形状を成している。シム41に
は平面に対して垂直方向に分極された圧電体42が片面
に接着されている。シム41の結合部49との結合側の
反対側は固定部44に、ネジ止め、接着あるいは溶接等
によって固定されている。圧電体42の表面には圧電体
用配線45が取り付けられ、固定部44の材質は銅等の
導電性材料とする。変位部材48の略平面部は変位拡大
部平面に対して略直角に折り曲げられている。
The shim 41, the displacement enlarging portion 43, and the displacement member 4
8 and the connecting portion 49 are made of an integral metal member, and are formed by bending each in a flat plate shape. The shim 41 and the displacement enlarging portion 43 are parallel to each other, and have a U-shape through the joint portion 49. A piezoelectric body 42 polarized in the direction perpendicular to the plane is attached to one side of the shim 41. The opposite side of the shim 41 from the side where the shim 41 is joined to the joint portion 49 is fixed to the fixing portion 44 by screwing, bonding, welding, or the like. The piezoelectric wire 45 is attached to the surface of the piezoelectric body 42, and the material of the fixing portion 44 is a conductive material such as copper. The substantially flat surface portion of the displacement member 48 is bent substantially at right angles to the plane of the displacement enlargement portion.

【0056】その他の構成及び駆動方法、特徴は実施例
1と同様であるが加えて、実施例1のW共振型アクチュ
エータは小型化、大変位化にともなって折曲げ部の長手
方向の変位すなわち回動運動に伴う変位が大きくなり、
センサ等他の部材との接触が問題となる恐れがある。こ
れに対し上記構成のW共振型アクチュエータは、変位部
材平面は変位方向とほぼ平行な関係にあり、片端固定の
たわみ振動にともなう回動運動によって変位部材がセン
サへ接近する恐れがなく、よって各部材の配置が容易で
あり、ユニットを効率よく小型化できる。またチョッパ
の遮蔽部はセンサに近づけるほど小変位で同様の特性が
得られ、よってチョッパの長期的な信頼性を確保及び精
度の向上を図ることができる。
Other constitutions, driving methods, and characteristics are the same as those of the first embodiment. In addition, the W resonance type actuator of the first embodiment is smaller in size and larger in displacement, that is, the longitudinal displacement of the bent portion, that is, The displacement due to the turning movement becomes large,
Contact with other members such as a sensor may pose a problem. On the other hand, in the W resonance type actuator having the above-described configuration, the plane of the displacement member is substantially parallel to the displacement direction, and there is no fear that the displacement member approaches the sensor due to the rotational movement accompanied by the flexural vibration with one end fixed. The arrangement of the members is easy, and the unit can be efficiently downsized. Further, the closer the shielding portion of the chopper is to the sensor, the smaller the displacement, and the similar characteristics can be obtained. Therefore, the long-term reliability of the chopper can be secured and the accuracy can be improved.

【0057】なお本実施例においては変位部材を一体と
して折曲げを行ったが、別部材において構成して接合し
ても、上記の特徴は何等損なわれないことはいうまでも
ない。
In the present embodiment, the displacement member is integrally bent and bent, but it goes without saying that the above characteristics are not impaired even if the displacement member is constructed and joined.

【0058】[0058]

【発明の効果】以上のように本発明は、小型で大変位が
得られる圧電アクチュエータの駆動方法として、駆動電
圧波形を矩形波から時定数τだけなまらせることにより
W共振型アクチュエータの不要振動の励振を抑制し、圧
電アクチュエータの制御不能状態の現出を防止し、また
構成部材に不要振動による余分な機械的負荷を低減させ
信頼性を向上できる。またある範囲の時定数τを用いる
ことにより、不要振動を抑制しつつ、変位量の低下を最
小限に抑え、基本特性ほとんど低下させることのない駆
動が可能である。特に55Hzから120Hzで駆動す
る圧電アクチュエータは、時定数τを駆動電圧周期の
0.02から0.15倍の範囲内で駆動することで良好
な駆動と基本特性が同時に得られる。W共振型アクチュ
エータは小型でかつ大変位が得られるので、センサ等の
ユニット全体の小型化に寄与し、特に温度検知にチヨッ
パが必要な焦電型赤外線サンサに対して、小型化、高精
度化に寄与し、同駆動方法と組み合わせることにより、
より信頼性、汎用性が高いセンサを実現できる。
INDUSTRIAL APPLICABILITY As described above, the present invention is a method of driving a piezoelectric actuator that is small and can obtain large displacement. By blunting the driving voltage waveform from a rectangular wave by the time constant τ, unnecessary vibration of the W resonance type actuator can be reduced. The excitation can be suppressed, the uncontrollable state of the piezoelectric actuator can be prevented from appearing, and the unnecessary mechanical load on the constituent members due to unnecessary vibration can be reduced to improve the reliability. Further, by using the time constant τ within a certain range, it is possible to suppress unnecessary vibration, minimize the decrease in the displacement amount, and perform driving with almost no deterioration in the basic characteristics. Particularly, in the piezoelectric actuator driven at 55 Hz to 120 Hz, good driving and basic characteristics can be obtained at the same time by driving the time constant τ within the range of 0.02 to 0.15 times the driving voltage period. Since the W resonance type actuator is small and can obtain large displacement, it contributes to the miniaturization of the entire unit such as the sensor. Especially, the pyroelectric infrared sensor that requires a chewper for temperature detection is smaller and more accurate. And by combining with the same driving method,
A sensor with higher reliability and versatility can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)本発明の第1の実施例の構成を示す斜視
図 (b)本発明の第1の実施例の構成を示す電気回路図
FIG. 1A is a perspective view showing a configuration of a first embodiment of the present invention. FIG. 1B is an electric circuit diagram showing a configuration of a first embodiment of the present invention.

【図2】(a)本発明の第1の実施例における通常の駆
動波形図 (b)本発明の第1の実施例の駆動波形図
FIG. 2A is a normal drive waveform diagram in the first embodiment of the present invention. FIG. 2B is a drive waveform diagram in the first embodiment of the present invention.

【図3】(a)本発明の第1の実施例における正常な変
位特性図 (b)本発明の第1の実施例における不要共振を伴う変
位特性図
FIG. 3A is a normal displacement characteristic diagram in the first embodiment of the present invention. FIG. 3B is a displacement characteristic diagram with unnecessary resonance in the first embodiment of the present invention.

【図4】本発明の第2の実施例の構成を示す斜視図FIG. 4 is a perspective view showing the configuration of a second embodiment of the present invention.

【図5】従来の圧電バイモルフ型チョッパの構成を示す
斜視図
FIG. 5 is a perspective view showing a configuration of a conventional piezoelectric bimorph type chopper.

【図6】従来の共振型チョッパの構成を示す斜視図FIG. 6 is a perspective view showing a configuration of a conventional resonance type chopper.

【図7】従来の共振型チョッパの構造の詳細を示す斜視
FIG. 7 is a perspective view showing details of the structure of a conventional resonance type chopper.

【図8】従来のW共振型アクチュエータの構成を示す斜
視図
FIG. 8 is a perspective view showing a configuration of a conventional W resonance type actuator.

【図9】従来のW共振型アクチュエータのアドミッタン
ス特性図
FIG. 9 is an admittance characteristic diagram of a conventional W resonance type actuator.

【図10】従来のW共振型アクチュエータの変位特性図FIG. 10 is a displacement characteristic diagram of a conventional W resonance type actuator.

【符号の説明】[Explanation of symbols]

11、41 シム 12、42 圧電体 13、43 変位拡大部 15 折曲げ部 19、49 結合部 48 変位部材 11, 41 Shim 12, 42 Piezoelectric body 13, 43 Displacement expanding part 15 Bending part 19, 49 Coupling part 48 Displacement member

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 分極処理がなされた平板状の圧電体を平
板状の弾性部材の片面あるいは両面に接着し、一端を固
定部材により固定された圧電体接着部と、前記圧電体接
着部と結合して自由端が前記結合部よりも前記圧電体接
着部の固定部に近い距離に位置する変位拡大部を有し、
前記圧電体接着部に電界を印加して前記圧電体接着部を
屈曲運動させることで前記圧電体接着部の自由端及び前
記変位拡大部の自由端が変位する構成で、前記圧電体接
着部の振動に起因して発生する共振周波数f1と、前記
変位拡大部の振動に起因して発生する共振周波数f2の
差を近接させ、前記f1と前記f2の差が高い側の周波
数の30%以内となる構造を有し、前記f1とf2の間
の周波数において交流電圧を印加して駆動させ、前記交
流電圧波形が矩形波から時定数τのなまりを有するよう
にした圧電アクチュエータ。
1. A flat plate-shaped piezoelectric body subjected to polarization treatment is bonded to one or both surfaces of a flat plate-shaped elastic member, and one end is fixed by a fixing member, and the piezoelectric body bonding section is coupled to the piezoelectric body bonding section. Then, the free end has a displacement magnifying portion located at a distance closer to the fixing portion of the piezoelectric body bonding portion than the coupling portion,
An electric field is applied to the piezoelectric body bonding section to cause the piezoelectric body bonding section to bend, whereby the free end of the piezoelectric body bonding section and the free end of the displacement enlarging section are displaced. The difference between the resonance frequency f1 generated due to the vibration and the resonance frequency f2 caused due to the vibration of the displacement magnifying portion is brought close to each other, and within 30% of the frequency on the side where the difference between f1 and f2 is high. A piezoelectric actuator having the structure described above, wherein an AC voltage is applied and driven at a frequency between f1 and f2, and the AC voltage waveform has a roundness of a time constant τ from a rectangular wave.
【請求項2】 駆動周波数が55から120Hzの間で
あり、前記時定数τは駆動電圧周期に対して0.02倍
から0.15倍の間である請求項1記載の圧電アクチュ
エータ。
2. The piezoelectric actuator according to claim 1, wherein the drive frequency is between 55 and 120 Hz, and the time constant τ is between 0.02 and 0.15 times the drive voltage period.
【請求項3】 変位拡大部と、圧電体を接着する弾性部
材とが板状の金属体の折曲げによって一体的に構成さ
れ、前記変位拡大部は圧電体接着用弾性部材と結合して
いないもう一方の先端近傍で折曲げ部を有する構成の請
求項1記載の圧電アクチュエータ。
3. The displacement magnifying portion and the elastic member for bonding the piezoelectric body are integrally configured by bending a plate-shaped metal body, and the displacement magnifying portion is not coupled to the piezoelectric body bonding elastic member. The piezoelectric actuator according to claim 1, wherein the piezoelectric actuator has a bent portion near the other tip.
【請求項4】 変位拡大部の圧電体接着用弾性部材と結
合していないもう一方の先端近傍において少なくとも1
部に略平面を有する変位部材が設けられ、前記略平面の
法線方向は前記変位拡大部の変位方向の接続方向と略垂
直であり、かつ前記圧電体接着用弾性部材と前記変位拡
大部との結合部から前記変位拡大部先端へと向かう方向
に対しても略垂直である構成の請求項1記載の圧電アク
チュエータ。
4. At least 1 in the vicinity of the other end of the displacement magnifying portion, which is not connected to the piezoelectric body bonding elastic member.
Is provided with a displacement member having a substantially flat surface, the normal direction of the substantially flat surface is substantially perpendicular to the connection direction of the displacement direction of the displacement magnifying portion, and the piezoelectric body bonding elastic member and the displacement magnifying portion. The piezoelectric actuator according to claim 1, wherein the piezoelectric actuator is also substantially perpendicular to a direction from the coupling portion to the tip of the displacement enlarging portion.
【請求項5】 圧電アクチュエータと電気回路的に直列
の関係に所定の抵抗を接続することにより駆動電圧波形
になまりを発生させる請求項1記載の圧電アクチュエー
タ。
5. The piezoelectric actuator according to claim 1, wherein the driving voltage waveform is rounded by connecting a predetermined resistor in series relationship with the piezoelectric actuator in an electrical circuit manner.
【請求項6】 固定端から結合部までが13mmから1
8mm、金属体と圧電体の幅が一様で前記固定部から結
合部までの長さに対し0.25倍以下、圧電体の長さを
前記固定端から結合部までの長さに対し0.9倍以下、
駆動周波数が55Hzから120Hzであり、かつ静電
容量4000pFから7000pFを有し、20kΩか
ら150kΩの抵抗を用いる請求項5記載の圧電アクチ
ュエータ。
6. The distance from the fixed end to the connecting portion is 13 mm to 1
8 mm, the width of the metal body and the piezoelectric body is uniform, and is 0.25 times or less the length from the fixed portion to the coupling portion, and the length of the piezoelectric body is 0 with respect to the length from the fixed end to the coupling portion. Less than 9 times,
The piezoelectric actuator according to claim 5, wherein the drive frequency is 55 Hz to 120 Hz, the electrostatic capacity is 4000 pF to 7000 pF, and a resistance of 20 kΩ to 150 kΩ is used.
JP22876995A 1995-09-06 1995-09-06 Piezo actuator Expired - Fee Related JP3324352B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22876995A JP3324352B2 (en) 1995-09-06 1995-09-06 Piezo actuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22876995A JP3324352B2 (en) 1995-09-06 1995-09-06 Piezo actuator

Publications (2)

Publication Number Publication Date
JPH0974234A true JPH0974234A (en) 1997-03-18
JP3324352B2 JP3324352B2 (en) 2002-09-17

Family

ID=16881559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22876995A Expired - Fee Related JP3324352B2 (en) 1995-09-06 1995-09-06 Piezo actuator

Country Status (1)

Country Link
JP (1) JP3324352B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6724560B2 (en) 2000-04-20 2004-04-20 Fujitsu Limited Head assembly employing microactuator in recording medium drive
JP2008251669A (en) * 2007-03-29 2008-10-16 Kenwood Corp Piezoelectric element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6724560B2 (en) 2000-04-20 2004-04-20 Fujitsu Limited Head assembly employing microactuator in recording medium drive
JP2008251669A (en) * 2007-03-29 2008-10-16 Kenwood Corp Piezoelectric element

Also Published As

Publication number Publication date
JP3324352B2 (en) 2002-09-17

Similar Documents

Publication Publication Date Title
US6222302B1 (en) Piezoelectric actuator, infrared sensor and piezoelectric light deflector
JP3235099B2 (en) Piezoelectric actuator and pyroelectric infrared sensor using the same
USRE42923E1 (en) Piezoelectric vibration angular velocity meter and camera using the same
EP0764828B1 (en) Angular velocity sensor
US7737604B2 (en) Ultrasonic actuator
US20080073999A1 (en) Piezoelectric Ultrasound Motor
US20140203684A1 (en) Ultrasonic generation device
US10001372B2 (en) Angular velocity detection device
JPH02248865A (en) Acceleration detector
JPH0974234A (en) Piezo-electric actuator
WO1999019689A1 (en) Angular velocity sensor
JP3334450B2 (en) Piezoelectric actuator and pyroelectric infrared sensor using the same
JPH06300800A (en) Potential sensor
JP4039744B2 (en) Piezoelectric actuator
JP3189620B2 (en) Piezoelectric vibrator
JP2005114631A (en) Angular velocity sensor
JP2606069B2 (en) Piezoelectric element displacement amplification mechanism and driving method thereof
JP2006226802A (en) Compound sensor
JPH09292284A (en) Piezoelectric actuator and pyroelectric infrared sensor using it
JP3414563B2 (en) Piezoelectric chopper and pyroelectric infrared sensor
JP3239629B2 (en) Pyroelectric infrared sensor
JPH07294331A (en) Pyroelectric infrared sensor
JP3762814B2 (en) Driving method of piezoelectric chopper for pyroelectric infrared sensor
JPH10321926A (en) Piezoelectric actuator
JP2024032561A (en) Angular velocity detecting element and angular velocity sensor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070705

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080705

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees