JPH097420A - Conductive fine powder and its manufacture - Google Patents

Conductive fine powder and its manufacture

Info

Publication number
JPH097420A
JPH097420A JP14868495A JP14868495A JPH097420A JP H097420 A JPH097420 A JP H097420A JP 14868495 A JP14868495 A JP 14868495A JP 14868495 A JP14868495 A JP 14868495A JP H097420 A JPH097420 A JP H097420A
Authority
JP
Japan
Prior art keywords
fine powder
conductive fine
antimony
surfactant
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP14868495A
Other languages
Japanese (ja)
Inventor
Hiroki Hirata
寛樹 平田
Tomoko Oka
トモ子 岡
Katsumi Ogi
勝実 小木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP14868495A priority Critical patent/JPH097420A/en
Publication of JPH097420A publication Critical patent/JPH097420A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE: To enhance stability with the lapse of time of a dispersing liquid by obtaining antimony dope tin oxide type conductive fine powder having a small particle diameter by low temperature water heat treatment. CONSTITUTION: Conductive fine powder composed of particles containing an antimony dope tin oxide and a surfactant is manufactured by heating liquid containing a tin compound, an antimony compound and surfactant in a pressure vessel. When the surfactant is added to solution containing a tin compound and an antimony compound, since wettability of a particle surface to a solvent is improved, dispersibility is enhanced, and since reaction is promoted thereby, water heat treatment can be performed at a low temperature. Since dispersibility of the tin and antiomony compounds is improved, conductive fine powder having an average particle diameter not more than 100nm can be obtained only by adding the surfactant. In the obtained conductive fine powder, since the surfactant is stuck to a particle surface, when this is formed as a dispersing liquid, coagulation is hardly caused over a long period of time.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、優れた導電性、分散性
及び経時分散安定性を有するアンチモンドープ酸化錫系
導電性微粉末及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an antimony-doped tin oxide type conductive fine powder having excellent conductivity, dispersibility and dispersion stability over time, and a method for producing the same.

【0002】[0002]

【従来の技術】近年、導電性粉末として、アンチモンを
含有する酸化錫粉末、即ち、アンチモンドープ酸化錫粉
末が使用されるようになってきた。アンチモンドープ酸
化錫粉末は、プラスチック、ゴム、塗料などの媒体に混
入、配合された場合、可視光線を透過させるので、これ
らの媒体の色調、透明性を損なうことなく導電性を付与
できるものである。
2. Description of the Related Art In recent years, tin oxide powder containing antimony, that is, antimony-doped tin oxide powder has come to be used as a conductive powder. The antimony-doped tin oxide powder transmits visible light when mixed and mixed in media such as plastics, rubbers, paints, etc., so that conductivity can be imparted without impairing the color tone and transparency of these media. .

【0003】従来、アンチモンドープ酸化錫粉末は、錫
とアンチモンの塩を溶解した液に、アルカリを加えて反
応させることにより錫アンチモン水酸化物混合物を析出
させ、不要な塩を洗浄除去した後、溶媒を蒸発除去し、
更に400℃以上で焼成することにより製造されている
(特開昭56−156606号公報)。
Conventionally, antimony-doped tin oxide powder has been prepared by precipitating a tin-antimony hydroxide mixture by adding an alkali to a solution in which tin and antimony salt are dissolved to cause a reaction, and washing and removing unnecessary salts. Evaporate off the solvent,
Further, it is produced by firing at 400 ° C. or higher (JP-A-56-156606).

【0004】また、水熱処理法によるアンチモンドープ
酸化錫粉末の製造方法としては、アンチモン化合物及び
錫化合物を含有する溶液を170℃以上、好ましくは2
50℃以上に加熱する方法(特開平2−105875号
公報)、或いは、アンチモン化合物及び錫化合物の溶液
に過酸化水素を添加して加熱する方法(特開平2−22
1124号公報)が提案されている。
As a method of producing antimony-doped tin oxide powder by hydrothermal treatment, a solution containing an antimony compound and a tin compound is heated to 170 ° C. or higher, preferably 2
A method of heating to 50 ° C. or higher (JP-A-2-105875) or a method of adding hydrogen peroxide to a solution of an antimony compound and a tin compound and heating (JP-A-2-22).
1124) has been proposed.

【0005】[0005]

【発明が解決しようとする課題】上記従来のアンチモン
ドープ酸化錫粉末の製造方法のうち、錫アンチモン水酸
化物混合物の析出物を400℃以上で焼成する方法で
は、焼成の際、焼結により粗大粒子が生成するため、微
粉末が得られない。しかも、一旦粗大化した粒子を微細
化するのは、困難であるといった欠点がある。
Among the above-mentioned conventional methods for producing antimony-doped tin oxide powder, in the method of firing the precipitate of the tin-antimony hydroxide mixture at 400 ° C. or higher, when firing, coarse particles are formed by sintering. Fine particles cannot be obtained because particles are formed. Moreover, there is a drawback that it is difficult to make the once coarse particles finer.

【0006】また、水熱処理法による方法では、アンチ
モン錫化合物単独では溶媒中での分散が不十分で、アン
チモンをドープするために高温の水熱処理を必要とする
ため、作業上の安全性の面で問題があり、また、高価な
耐熱耐圧容器を必要とするという欠点がある。また、平
均粒径100nm以下の微粒子を得ることが困難であ
り、しかも、得られたアンチモンドープ酸化錫粉末を分
散液にした場合、長期間放置すると凝集するといった問
題がある。
Further, in the method by the hydrothermal treatment method, the antimony tin compound alone is not sufficiently dispersed in the solvent, and a high temperature hydrothermal treatment is required to dope antimony. However, there is a problem in that an expensive heat and pressure resistant container is required. Further, there is a problem that it is difficult to obtain fine particles having an average particle diameter of 100 nm or less, and further, when the obtained antimony-doped tin oxide powder is used as a dispersion liquid, it aggregates when left for a long time.

【0007】本発明は上記従来の問題点を解決し、分散
安定性に優れた微粉末状であって、低温反応にて容易に
製造することができるアンチモンドープ酸化錫系導電性
微粉末及びその製造方法を提供することを目的とする。
The present invention solves the above-mentioned problems of the prior art and is an antimony-doped tin oxide-based conductive fine powder which is a fine powder having excellent dispersion stability and which can be easily produced by a low temperature reaction. It is intended to provide a manufacturing method.

【0008】[0008]

【課題を解決するための手段】請求項1の導電性微粉末
は、アンチモンドープ酸化錫と界面活性剤とを含む粒子
からなることを特徴とする。
The electrically conductive fine powder of claim 1 is characterized in that it comprises particles containing antimony-doped tin oxide and a surfactant.

【0009】請求項2の導電性微粉末の製造方法は、こ
のような導電性微粉末を製造する方法であって、錫化合
物、アンチモン化合物及び界面活性剤を含有する液を耐
圧容器中で加熱することを特徴とする。
The method for producing a conductive fine powder according to claim 2 is a method for producing such a conductive fine powder, which comprises heating a liquid containing a tin compound, an antimony compound and a surfactant in a pressure vessel. It is characterized by doing.

【0010】請求項3の導電性微粉末の製造方法は、請
求項2において、加熱温度が150〜250℃であるこ
とを特徴とする。
The method for producing a conductive fine powder according to a third aspect is characterized in that the heating temperature is 150 to 250 ° C. in the second aspect.

【0011】以下に本発明を、本発明の導電性微粉末の
製造方法に従って説明する。
The present invention will be described below in accordance with the method for producing a conductive fine powder of the present invention.

【0012】本発明の方法においては、錫化合物、アン
チモン化合物及び界面活性剤を含有する液を耐圧容器中
で加熱することにより水熱反応を行うが、この錫化合物
及びアンチモン化合物としては、一般には、錫化合物及
びアンチモン化合物の溶液、具体的には錫及びアンチモ
ンの塩化物、硫酸塩、硝酸塩等の水溶液又はアルコール
溶液に、アルカリ溶液を添加して反応させて得られる錫
とアンチモンの水酸化物の共沈物を用いるのが好適であ
る。
In the method of the present invention, a hydrothermal reaction is carried out by heating a liquid containing a tin compound, an antimony compound and a surfactant in a pressure resistant vessel. As the tin compound and the antimony compound, generally, , Tin compound and antimony compound solution, specifically, tin and antimony hydroxide obtained by adding an alkaline solution to an aqueous solution or alcohol solution of tin and antimony chlorides, sulfates, nitrates, etc. It is preferable to use a coprecipitate of.

【0013】従って、本発明においては、上記共沈物を
水に添加し、必要に応じてアンモニア等を添加してpH
6〜7程度に調整し、更に界面活性剤を添加してオート
クレーブ処理するのが好ましい。
Therefore, in the present invention, the above coprecipitate is added to water, and if necessary, ammonia is added to adjust the pH.
It is preferable to adjust to about 6 to 7 and further add a surfactant for autoclave treatment.

【0014】ここで、添加する界面活性剤の添加量は、
得られるアンチモンドープ酸化錫に対して0.01〜5
重量%とするのが好ましい。この添加量が0.01重量
%未満では、界面活性剤を添加することによる分散性の
向上効果が十分に得られず、水熱反応温度を下げること
ができない。また、5重量%を超えて添加しても、分散
性の向上は望めず、界面活性剤特有の発泡が著しく、取
り扱い性等の面で好ましくない。特に好ましい添加量は
得られるアンチモンドープ酸化錫に対して0.05〜1
重量%である。
Here, the amount of the added surfactant is
0.01 to 5 with respect to the obtained antimony-doped tin oxide
It is preferably set to wt%. If the addition amount is less than 0.01% by weight, the effect of improving the dispersibility by adding the surfactant cannot be sufficiently obtained, and the hydrothermal reaction temperature cannot be lowered. Further, even if added in excess of 5% by weight, improvement in dispersibility cannot be expected, foaming peculiar to the surfactant is remarkable, and it is not preferable in terms of handleability. A particularly preferable amount of addition is 0.05 to 1 with respect to the obtained antimony-doped tin oxide.
% By weight.

【0015】用いる界面活性剤としては、アニオン系、
カチオン系、非イオン系界面活性剤のいずれでも良く、
これらは1種を単独で用いても2種以上を併用しても良
い。
The surfactant used is an anionic type,
Both cationic and nonionic surfactants may be used,
These may be used alone or in combination of two or more.

【0016】オートクレーブ処理温度は150〜250
℃とするのが好ましい。この温度が150℃未満ではア
ンチモンがドープされず、250℃を超えると圧力が高
くなり、作業の安全上十分な配慮が必要となる上に、耐
熱耐圧反応装置としての設備費が高騰する。本発明にお
いては、界面活性剤の使用により、反応温度を低く設定
することができるという効果の点から、反応温度は一般
に150〜200℃程度とするのが有利である。
The autoclave treatment temperature is 150 to 250.
It is preferably set to ° C. If this temperature is lower than 150 ° C., antimony is not doped, and if it exceeds 250 ° C., the pressure becomes high, and sufficient consideration is required for work safety, and the equipment cost as a heat and pressure resistant reactor rises. In the present invention, the reaction temperature is generally about 150 to 200 ° C., which is advantageous in that the reaction temperature can be set low by using the surfactant.

【0017】なお、反応時間は、通常の場合、3〜8時
間程度である。
The reaction time is usually about 3 to 8 hours.

【0018】このようなオートクレーブ処理により、ア
ンチモンドープ酸化錫と界面活性剤、好ましくはアンチ
モンドープ酸化錫に対して0.01〜5重量%の界面活
性剤を含有する導電性微粉末が、固形分として10〜4
0重量%程度分散した分散液が得られる。
By such an autoclave treatment, a conductive fine powder containing antimony-doped tin oxide and a surfactant, preferably 0.01 to 5% by weight of the surfactant with respect to antimony-doped tin oxide, becomes solid. As 10-4
A dispersion liquid obtained by dispersing about 0% by weight is obtained.

【0019】通常の場合、本発明の方法で得られる導電
性微粉末は、平均粒径1〜100nm、例えば20〜6
0nmの超微粉末であり、オートクレーブ処理で得られ
た導電性微粉末の分散液は、これをそのまま導電性分散
液として、導電性塗料用原料に用いることができる。ま
た、この導電性微粉末の分散液から、導電性微粉末を分
別回収してアンチモンドープ酸化錫系導電性微粉末とし
て提供することもできる。
Usually, the conductive fine powder obtained by the method of the present invention has an average particle size of 1 to 100 nm, for example, 20 to 6.
The dispersion liquid of conductive fine powder obtained by autoclave treatment, which is an ultrafine powder of 0 nm, can be used as a conductive dispersion liquid as it is as a raw material for a conductive coating material. Further, the conductive fine powder can be separately collected from the dispersion liquid of the conductive fine powder and provided as antimony-doped tin oxide-based conductive fine powder.

【0020】[0020]

【作用】錫化合物及びアンチモン化合物を含有する溶液
に界面活性剤を添加することにより、従来よりも粒子表
面の溶媒に対する濡れ性が向上することにより分散性が
高められ、これにより反応が促進されるため、水熱処理
を低温化することができる。また、このように錫化合物
及びアンチモン化合物の分散性が向上するため、界面活
性剤を添加するのみで、平均粒径100nm以下の導電
性微粉末を得ることができる。しかも、得られた導電性
微粉末は、界面活性剤が粒子表面に付着しているため、
これを分散液とした場合、長期に亘り凝集が起こりにく
いといった優れた経時分散安定性を有する。
By adding a surfactant to a solution containing a tin compound and an antimony compound, the wettability of the particle surface with respect to the solvent is improved as compared with the prior art, whereby the dispersibility is enhanced, and thereby the reaction is accelerated. Therefore, the hydrothermal treatment can be performed at a low temperature. Further, since the dispersibility of the tin compound and the antimony compound is improved in this way, conductive fine powder having an average particle size of 100 nm or less can be obtained only by adding a surfactant. Moreover, since the obtained conductive fine powder has the surfactant adhering to the particle surface,
When this is used as a dispersion liquid, it has excellent temporal dispersion stability that aggregation is unlikely to occur for a long period of time.

【0021】[0021]

【実施例】以下に実施例及び比較例を挙げて本発明をよ
り具体的に説明するが、本発明はその要旨を超えない限
り、以下の実施例に限定されるものではない。
The present invention will be described more specifically with reference to examples and comparative examples, but the present invention is not limited to the following examples unless it exceeds the gist.

【0022】実施例1 80℃の純水5L(リットル)に、60重量%塩化スズ
水溶液390g及び60重量%塩化アンチモン水溶液
(SbCl5 )47gとの混合液と、3N水酸化ナトリ
ウム水溶液とを反応系のpHが6〜7を維持するように
60分間にわたって同時に添加して、酸化スズと酸化ア
ンチモンの水和物からなる共沈物を生成させた。次に塩
酸を加えて反応系のpHを3に調整後、この共沈物を濾
過し、その濾液の電気伝導度が50μS以下になるまで
洗浄した。
Example 1 5 L (liter) of pure water at 80 ° C. was reacted with a mixed solution of 390 g of 60 wt% tin chloride aqueous solution and 47 g of 60 wt% antimony chloride aqueous solution (SbCl 5 ) and 3N sodium hydroxide aqueous solution. Co-precipitation consisting of tin oxide and antimony oxide hydrate was formed by simultaneous addition over 60 minutes to maintain the system pH at 6-7. Next, hydrochloric acid was added to adjust the pH of the reaction system to 3, and the coprecipitate was filtered and washed until the electric conductivity of the filtrate became 50 μS or less.

【0023】得られたケーキ110gに純水120ml
及び25重量%アンモニア水1mlを添加してpHを6
〜7にし、最終的に得られるSnO2 とSb25 との
混合物に対してノニオン系界面活性剤(日本油脂社製
「ノニオンS−6」)を0.1重量%添加した後、オー
トクレーブに入れ、150℃にて5時間撹拌しながら反
応させ、アンチモンドープ酸化錫系導電性微粉末の分散
液を得た(固形分含有量20重量%)。
120 ml of pure water to 110 g of the obtained cake
And 1 ml of 25 wt% ammonia water was added to adjust the pH to 6
To 7 and 0.1 wt% of a nonionic surfactant (“Nonion S-6” manufactured by NOF CORPORATION) was added to the finally obtained mixture of SnO 2 and Sb 2 O 5, and then the autoclave was added. And the mixture was reacted at 150 ° C. for 5 hours while stirring to obtain a dispersion liquid of antimony-doped tin oxide-based conductive fine powder (solid content 20% by weight).

【0024】得られた導電性微粉末の平均粒径、分散性
及びその塗膜の導電性、ヘイズを下記方法により調べ、
その結果を表1に示した。
The average particle size and dispersibility of the obtained conductive fine powder and the conductivity and haze of the coating film were examined by the following methods,
The results are shown in Table 1.

【0025】 導電性 導電性微粉末20重量%の水分散液10gと10重量%
ゼラチン水溶液10gを40℃にて混合し、これをPE
Tフィルム上にバーコーターにて塗布、乾燥後、この塗
布膜の表面抵抗を三菱油化社製表面抵抗計「Hiresta Mo
del HT−210」により測定した。
Conductivity 10 g of an aqueous dispersion of conductive fine powder 20% by weight and 10% by weight
Mix 10 g of gelatin aqueous solution at 40 ° C. and mix with PE.
After coating on T film with a bar coater and drying, the surface resistance of this coating film is measured by Mitsubishi Yuka's surface resistance meter "Hiresta Mo
del HT-210 ".

【0026】 平均粒径 導電性微粉末20重量%の水分散液を希釈し、Coulter
Electronics 社製コールターカウンターにてその平均粒
径を測定した。
Aqueous dispersion of 20% by weight of conductive fine powder having an average particle diameter is diluted and
The average particle size was measured with a Coulter Counter manufactured by Electronics.

【0027】 ヘイズ で形成した塗膜フィルムについて、スガ試験機社製ヘ
イズコンピューター「HGM−3D」にてヘイズを測定
した。
The haze of the coating film formed by haze was measured by a haze computer “HGM-3D” manufactured by Suga Test Instruments Co., Ltd.

【0028】 分散性 導電性微粉末20重量%の水分散液を1ケ月静置し、沈
降粒子の有無を目視により観察した。
Dispersibility An aqueous dispersion containing 20% by weight of conductive fine powder was allowed to stand for 1 month, and the presence or absence of sedimented particles was visually observed.

【0029】実施例2 実施例1においてノニオン系界面活性剤(日本曹達社製
「HPC−L」)を得られるSnO2 とSb25 との
混合物に対して0.5重量%添加したこと以外は同様に
して、アンチモンドープ酸化錫系導電性微粉末の分散液
を得、同様に各種特性の評価を行い、結果を表1に示し
た。
Example 2 In Example 1, 0.5% by weight was added to the mixture of SnO 2 and Sb 2 O 5 from which the nonionic surfactant (“HPC-L” manufactured by Nippon Soda Co., Ltd.) was obtained. A dispersion of antimony-doped tin oxide-based conductive fine powder was obtained in the same manner except for the above, and various properties were evaluated in the same manner. The results are shown in Table 1.

【0030】実施例3 実施例1においてアニオン系界面活性剤(日本油脂社製
「ニューレックスR」)を得られるSnO2 とSb2
5 との混合物に対して0.1重量%添加したこと以外は
同様にして、アンチモンドープ酸化錫系導電性微粉末の
分散液を得、同様に各種特性の評価を行い、結果を表1
に示した。
Example 3 SnO 2 and Sb 2 O capable of obtaining an anionic surfactant (“Nurex R” manufactured by NOF CORPORATION) in Example 1
A dispersion of antimony-doped tin oxide-based conductive fine powder was obtained in the same manner except that 0.1% by weight was added to the mixture with 5, and various characteristics were evaluated in the same manner.
It was shown to.

【0031】実施例4 実施例1においてアニオン系界面活性剤(日本油脂社製
「ポリスターA−1060」)を得られるSnO2 とS
25 との混合物に対して0.5重量%添加したこと
以外は同様にして、アンチモンドープ酸化錫系導電性微
粉末の分散液を得、同様に各種特性の評価を行い、結果
を表1に示した。
Example 4 SnO 2 and S capable of obtaining an anionic surfactant (“Polystar A-1060” manufactured by NOF CORPORATION) in Example 1
A dispersion liquid of antimony-doped tin oxide-based conductive fine powder was obtained in the same manner except that 0.5% by weight was added to the mixture with b 2 O 5, and various characteristics were evaluated in the same manner. The results are shown in Table 1.

【0032】実施例5 実施例1においてカチオン系界面活性剤(日本油脂社製
「カチオンBB」)を得られるSnO2 とSb25
の混合物に対して0.5重量%添加したこと以外は同様
にして、アンチモンドープ酸化錫系導電性微粉末の分散
液を得、同様に各種特性の評価を行い、結果を表1に示
した。
Example 5 In Example 1, except that a cationic surfactant (“Cation BB” manufactured by NOF CORPORATION) was added in an amount of 0.5% by weight based on the mixture of SnO 2 and Sb 2 O 5. In the same manner, a dispersion liquid of antimony-doped tin oxide-based conductive fine powder was obtained, various properties were similarly evaluated, and the results are shown in Table 1.

【0033】比較例1 実施例1において界面活性剤を添加しなかったこと以外
は同様にして、アンチモンドープ酸化錫系導電性微粉末
の分散液を得、同様に各種特性の評価を行い、結果を表
1に示した。
Comparative Example 1 A dispersion of antimony-doped tin oxide-based conductive fine powder was obtained in the same manner as in Example 1 except that no surfactant was added, and various characteristics were evaluated in the same manner. Is shown in Table 1.

【0034】比較例2 特開平2−105875号公報記載の方法により導電性
微粉末分散液を得た。即ち46.2gの塩化アンチモン
(SbCl3 )と670gの塩化錫(SnCl4 ・5H
2 O)を3000gの6N塩酸に溶解し、これに25重
量%アンモニア水溶液2000gを添加して反応させ
た。濾過、洗浄後、純水を加えて5重量%まで希釈した
溶液をオートクレーブに入れ、350℃にて5時間反応
させた。反応後、水分を一部蒸発させ、固形分20重量
%の分散液を得、実施例1と同様にして各種特性の評価
を行い、結果を表1に示した。
Comparative Example 2 A conductive fine powder dispersion liquid was obtained by the method described in JP-A-2-105875. That 46.2g of antimony chloride (SbCl 3) and 670g of tin chloride (SnCl 4 · 5H
2 O) was dissolved in 3000 g of 6N hydrochloric acid, and 2000 g of a 25% by weight aqueous ammonia solution was added and reacted. After filtration and washing, pure water was added and the solution diluted to 5% by weight was put into an autoclave and reacted at 350 ° C. for 5 hours. After the reaction, the water was partially evaporated to obtain a dispersion liquid having a solid content of 20% by weight, and various characteristics were evaluated in the same manner as in Example 1, and the results are shown in Table 1.

【0035】[0035]

【表1】 [Table 1]

【0036】表1より、本発明によれば、低温の水熱反
応により、平均粒径100nm以下の超微粉末であっ
て、分散液の分散安定性、得られる塗膜の導電性、透明
性に優れた導電性微粉末が得られることが明らかであ
る。
From Table 1, according to the present invention, a superfine powder having an average particle diameter of 100 nm or less is obtained by a low temperature hydrothermal reaction, dispersion stability of the dispersion liquid, conductivity of the coating film obtained, and transparency. It is clear that excellent conductive fine powder can be obtained.

【0037】これに対して界面活性剤を用いない比較例
1や特開平2−105875号公報記載の方法による比
較例2では、導電性、平均粒径、ヘイズ、分散性すべて
の面で本発明より著しく劣るものとなる。
On the other hand, in Comparative Example 1 in which no surfactant is used and Comparative Example 2 according to the method described in JP-A-2-105875, the present invention is used in terms of conductivity, average particle size, haze and dispersibility. It will be significantly worse.

【0038】[0038]

【発明の効果】以上詳述した通り、本発明の導電性微粉
末及びその製造方法によれば、 低温反応にてアンチモンをドープさせることがで
き、水熱処理条件を緩和することにより、作業上の安全
性を高めると共に、反応装置を簡易で安価なものとする
ことができる。 平均粒径100nm以下の超微粉末を得ることがで
きる。 分散液とした場合の均一分散性に優れ、しかも、長
期に亘り導電性微粉末の凝集が起こらず、経時分散安定
性に優れる。 ,より導電性、透明性に優れた導電性塗膜を形
成することができる。
As described in detail above, according to the conductive fine powder and the method for producing the same of the present invention, antimony can be doped by a low temperature reaction, and the hydrothermal treatment conditions can be relaxed to improve workability. The safety can be improved and the reactor can be simple and inexpensive. Ultrafine powder having an average particle size of 100 nm or less can be obtained. When it is used as a dispersion liquid, it has excellent uniform dispersibility, and further, the conductive fine powder does not aggregate for a long period of time, and has excellent dispersion stability over time. , It is possible to form a conductive coating film having higher conductivity and transparency.

【0039】といった効果が奏され、その工業的有用性
は極めて大である。
The effects described above are exhibited, and their industrial utility is extremely great.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 アンチモンドープ酸化錫と界面活性剤と
を含む粒子からなることを特徴とする導電性微粉末。
1. A conductive fine powder comprising particles containing antimony-doped tin oxide and a surfactant.
【請求項2】 錫化合物、アンチモン化合物及び界面活
性剤を含有する液を耐圧容器中で加熱することを特徴と
する請求項1に記載の導電性微粉末の製造方法。
2. The method for producing a conductive fine powder according to claim 1, wherein a liquid containing a tin compound, an antimony compound and a surfactant is heated in a pressure resistant container.
【請求項3】 請求項2において、加熱温度が150〜
250℃であることを特徴とする導電性微粉末の製造方
法。
3. The heating temperature according to claim 2, wherein the heating temperature is 150 to
It is 250 degreeC, The manufacturing method of electroconductive fine powder characterized by the above-mentioned.
JP14868495A 1995-06-15 1995-06-15 Conductive fine powder and its manufacture Withdrawn JPH097420A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14868495A JPH097420A (en) 1995-06-15 1995-06-15 Conductive fine powder and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14868495A JPH097420A (en) 1995-06-15 1995-06-15 Conductive fine powder and its manufacture

Publications (1)

Publication Number Publication Date
JPH097420A true JPH097420A (en) 1997-01-10

Family

ID=15458293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14868495A Withdrawn JPH097420A (en) 1995-06-15 1995-06-15 Conductive fine powder and its manufacture

Country Status (1)

Country Link
JP (1) JPH097420A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008050253A (en) * 2006-06-22 2008-03-06 Nissan Chem Ind Ltd Conductive tin oxide sol and process for producing the same
US7964281B2 (en) * 2004-11-30 2011-06-21 Tdk Corporation Transparent conductor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7964281B2 (en) * 2004-11-30 2011-06-21 Tdk Corporation Transparent conductor
JP2008050253A (en) * 2006-06-22 2008-03-06 Nissan Chem Ind Ltd Conductive tin oxide sol and process for producing the same

Similar Documents

Publication Publication Date Title
JP2783417B2 (en) Manufacturing method of rutile type titanium oxide sol
JP5629344B2 (en) Tin oxide particles and method for producing the same
EP0686600B1 (en) Zinc antimonate anhydride and method for producing same
CA2748185A1 (en) Dispersion of zirconium oxide and process for producing the same
US5906679A (en) Coating compositions employing zinc antimonate anhydride particles
JP4801617B2 (en) Conductive zinc oxide particles and method for producing the same
JP3346584B2 (en) Fibrous conductive filler and method for producing the same
US5582909A (en) Electro-conductive oxide particle and processes for its production
JPH0328125A (en) Needle-like conductive zinc oxide and its manufacture
JPH07232911A (en) Production of granular amorphous silica
JP6060973B2 (en) Barium sulfate composite particles, resin composition containing the same, and method for producing the same
JPH08501764A (en) Conductive material and method
JP2001058822A (en) Tin-doped indium oxide powder and its production
JPH097420A (en) Conductive fine powder and its manufacture
JP3609159B2 (en) Acicular conductive antimony-containing tin oxide fine powder and method for producing the same
JP2844011B2 (en) Conductive fine powder and method for producing the same
JPH1111947A (en) Production of antimony doped tin oxide powder and coating material containing the same
JP2858271B2 (en) Method for producing conductive fine powder
JP3250338B2 (en) Method for producing tin oxide white fine powder containing antimony oxide
JP2978146B2 (en) Conductive powder and transparent conductive composition
JP4097925B2 (en) Colorless and transparent tin oxide sol and process for producing the same
JP2776573B2 (en) Production method of indium oxide-tin oxide fine powder
JP3120663B2 (en) Conductive powder, method for producing the same, conductive dispersion and conductive paint
JP2844012B2 (en) Conductive fine powder and method for producing the same
JPH0931238A (en) Electroconductive dispersion, electroconductive coating material and their production

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020903