JPH0974053A - Electrical double-layer capacitor electrode and its manufacture - Google Patents

Electrical double-layer capacitor electrode and its manufacture

Info

Publication number
JPH0974053A
JPH0974053A JP7345276A JP34527695A JPH0974053A JP H0974053 A JPH0974053 A JP H0974053A JP 7345276 A JP7345276 A JP 7345276A JP 34527695 A JP34527695 A JP 34527695A JP H0974053 A JPH0974053 A JP H0974053A
Authority
JP
Japan
Prior art keywords
resin
temperature
layer capacitor
double layer
electric double
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7345276A
Other languages
Japanese (ja)
Other versions
JP3537106B2 (en
Inventor
Toshikazu Takeda
敏和 竹田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP34527695A priority Critical patent/JP3537106B2/en
Publication of JPH0974053A publication Critical patent/JPH0974053A/en
Application granted granted Critical
Publication of JP3537106B2 publication Critical patent/JP3537106B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Ceramic Products (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To manufacture a forming electrode without using any binder by heating a resin material within an atmosphere within a specific pressure range, at a melting temperature or higher of the resin, and at a temperature or lower where oxidation reaction starts for tentative baking. SOLUTION: Resin, PVDC, which becomes a raw material is heated at 200-500 deg.C which is equal to or more than the temperature of a heat-absorbing ending point due to a melt point or fusion and at the temperature or less of oxidation reaction point to obtain a tentatively baked resin. Then, the tentatively baked resin is cooled to normal temperatures and is ground by a vibration mill or a roll mill and then a powder tentatively baked resin is boiled in water. Then, the powder tentatively baked resin is subjected to pressurization tentative formation in an atmosphere of a pressure range of 0.01-10kg/cm<2> and is heated and baked at a temperature above the exidation reaction point, namely 500-900 deg.C, to obtain a porous carbon forming body. Therefore, since baking is performed while leaving a proper amount of volatile constituent in a material, a forming electrode can be manufactured without using any binder, thus obtaining a large-capacity capacitor.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は電気二重層コンデン
サ用電極とその製法に関し、特に大静電容量を得るのに
最適な電気二重層コンデンサ用電極とその製法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrode for an electric double layer capacitor and a manufacturing method thereof, and more particularly to an electrode for an electric double layer capacitor most suitable for obtaining a large capacitance and a manufacturing method thereof.

【0002】[0002]

【従来の技術】近年、電気二重層に基づく電荷の蓄積、
すなわち電気二重層原理を用いた電気二重層コンデンサ
が開発されて製品化されており、該コンデンサは大静電
容量が得られるため、小型のものは電子機器の半導体メ
モリー用のバックアップ電源から、大型のものは車載の
鉛バッテリの用途の一部にまで使用されている。
2. Description of the Related Art In recent years, charge accumulation based on electric double layers,
That is, an electric double layer capacitor using the electric double layer principle has been developed and commercialized. Since the capacitor can obtain a large electrostatic capacity, a small capacitor can be used as a backup power source for a semiconductor memory of an electronic device, and a large capacitor. Are used for some of the applications of lead batteries in vehicles.

【0003】この種の電気二重層コンデンサ用の電極材
として、水を混合した炭素粉末を約700℃で加熱しな
がら50kg/cm2 の圧力で加圧する第1の工程で粉
末活性炭を得、次に700〜1000℃の温度50〜8
00kg/cm2 の圧力で加圧成形する第2の工程から
活性炭の成形体を製造する方法を本出願人の出願による
特許文献、特開平3−201520号に開示した。
As an electrode material for this type of electric double layer capacitor, powdered activated carbon was obtained in the first step of pressurizing carbon powder mixed with water at a pressure of 50 kg / cm 2 while heating at about 700 ° C. Temperature of 700-1000 ℃ 50-8
A method for producing a molded body of activated carbon from the second step of pressure molding at a pressure of 00 kg / cm 2 is disclosed in Japanese Patent Application Laid-Open No. 3-201520, which is a patent document filed by the present applicant.

【0004】また、本出願人は、電気二重層コンデンサ
用電極に関して鋭意研究開発を行った結果、ポリ塩化ビ
ニリデン樹脂を非酸化雰囲気中で加熱し、それによって
原子および分子欠陥を生じさせて細孔を形成した電極材
料を開発し、これについて特許出願を行った(特願平6
−67827号)。この材料は、非常に微細な細孔を有
する多孔質炭素材料であって、従来の活性炭に比べ高容
量の電極材料となっている。
As a result of earnest research and development on electrodes for electric double layer capacitors, the present applicant heated polyvinylidene chloride resin in a non-oxidizing atmosphere, thereby causing atomic and molecular defects to generate pores. We have developed an electrode material that has been formed with, and filed a patent application (Patent Application 6
-67827). This material is a porous carbon material having extremely fine pores and has a higher capacity than that of conventional activated carbon.

【0005】[0005]

【発明の解決しようとする課題】前述の特開平3−20
1520号に開示されている成形方法では、炭素粉末を
出発原料としているので、固形化に寄与する揮発成分が
炭素化の過程で蒸発してしまい固形化が難しく、成形に
際して大電力又は大エネルギーを必要とするので製造コ
ストが高く、また成形密度を上げられないという問題が
あり、炭素粉末の固形化を助けるためにバインダを使用
すると、コンデンサにした際、バインダの分だけ電気容
量が減少してしまう。また、炭素の原料である樹脂をそ
のまま粉砕、成形してから焼結すると、揮発成分が多す
ぎ、形を保持できない。なぜなら、焼成時に揮発成分が
大量に蒸発し、その蒸発力によって形が崩れてしまうか
らである。つまり、従来の方法では、揮発成分が多すぎ
たり、少なすぎたり、適当な量でないために、炭素粉末
を十分に固形化することができなかったのである。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
In the molding method disclosed in No. 1520, since carbon powder is used as a starting material, volatile components that contribute to solidification evaporate in the process of carbonization and solidification is difficult, and a large amount of power or energy is required for molding. Since there is a problem that the manufacturing cost is high and the molding density cannot be increased because a binder is used to help solidify the carbon powder, the electric capacity decreases by the amount of the binder when used as a capacitor. I will end up. If the resin, which is a raw material of carbon, is crushed and molded as it is and then sintered, the amount of volatile components is too large to maintain the shape. This is because a large amount of volatile components evaporate during firing, and the evaporating force causes the shape to collapse. That is, in the conventional method, the carbon powder could not be sufficiently solidified because the volatile component was too much or too little, or the amount was not appropriate.

【0006】[0006]

【課題を解決するための手段】この発明は、前記の課題
を解決し、また、製造コストの低減を目的として、樹脂
を出発材料として、その樹脂を圧力範囲0.01〜10
kg/cm2 の雰囲気で、かつその樹脂の融点温度以
上、又はその樹脂の融解(軟化流動)に伴う吸熱反応が
終了する温度以上でかつ酸化反応が始まる温度以下、で
加熱し仮焼き樹脂を製造する工程と、その仮焼き樹脂を
常温まで冷却し粉末にし仮焼き粉末樹脂を製造する工程
と、その仮焼き粉末樹脂を加圧成形後、前記樹脂の酸化
反応が始まる温度以上の温度で加熱し、又は仮焼き粉末
樹脂を加圧しながら酸化反応が始まる温度以上の温度で
加熱し、成形炭素体を得る製造工程とからなることを特
徴とする電気二重層コンデンサ電極の製造方法である。
さらに本発明は、樹脂を炭化した電気二重層コンデンサ
の電極であって、該電極は細孔径20オングストローム
以上細孔が、前記電極の細孔の全表面積に占める割合が
10%以下であることを特徴とする電気二重層コンデン
サの電極が提供される。さらに、前記樹脂として、ハロ
ゲンを含む熱可塑性樹脂または、ハロゲンを含まない熱
可塑性樹脂では製造工程において適切な時期に適切な方
法でハロゲンを添加することを特徴とする電気二重層コ
ンデンサの電極の製造方法が提供される。
In order to solve the above-mentioned problems and to reduce the manufacturing cost, the present invention uses a resin as a starting material, and uses the resin in a pressure range of 0.01 to 10.
Manufacture a calcined resin by heating in an atmosphere of kg / cm2 and above the melting point of the resin, or above the temperature at which the endothermic reaction due to melting (softening flow) of the resin ends and below the temperature at which the oxidation reaction begins And the step of cooling the calcined resin to room temperature to make powder, and manufacturing the calcined powder resin, and after press-molding the calcined powder resin, heating at a temperature above the temperature at which the oxidation reaction of the resin starts. Or a step of heating the calcined powder resin at a temperature not lower than the temperature at which the oxidation reaction starts to obtain a molded carbon body, the method for producing an electric double layer capacitor electrode.
Furthermore, the present invention relates to an electrode of an electric double layer capacitor obtained by carbonizing a resin, wherein the electrode has a pore diameter of 20 angstroms or more, and the proportion of the pores of the electrode in the total surface area is 10% or less. A featured electric double layer capacitor electrode is provided. Further, in the case of a thermoplastic resin containing halogen or a thermoplastic resin not containing halogen as the resin, halogen is added by an appropriate method at an appropriate time in the production process, and an electrode for an electric double layer capacitor is produced. A method is provided.

【0007】[0007]

【発明の実施の形態】上述のように、この発明によれ
ば、樹脂材料を圧力範囲0.01〜10kg/cm2 の
雰囲気で、かつその樹脂の融点温度以上、又はその樹脂
の融解(軟化流動)に伴う吸熱反応が終了する温度以上
で、かつ酸化反応が始まる温度以下、で加熱し仮焼きす
ることにより、材料中の適当量の揮発成分を残した状態
で焼成を行うので、バインダを使用することなく、成形
電極を製造することができ、より大容量のコンデンサを
提供することができる。
As described above, according to the present invention, the resin material is placed in an atmosphere having a pressure range of 0.01 to 10 kg / cm @ 2 and at a melting point temperature of the resin or higher, or the resin is melted (softened and fluidized). ), The temperature is above the temperature at which the endothermic reaction ends and below the temperature at which the oxidation reaction starts, and calcining is performed with the appropriate amount of volatile components in the material remaining, so a binder is used. Without doing so, a molded electrode can be manufactured, and a capacitor with a larger capacity can be provided.

【0008】[0008]

【実施例】この発明の発明者は、電気二重層コンデンサ
の電極として最適な多孔質炭成形体の製造方法を発明す
るため、質量変化が樹脂内の揮発成分の蒸発によるもの
であることに着目し、多孔質炭素を製造するのに適した
粉末状のポリ塩化ビニリデン樹脂(PVDC)を用い
て、加熱時の質量変化及び反応熱の特性を調査し、加熱
時の加熱温度と揮発成分の蒸発量との関係を把握し、成
形に有効な揮発成分が残る加熱温度を得た。図12及び
図13がその結果を示す図であり、これらの図は横軸に
加熱時間を縦軸に質量及び温度を示してある。図12は
PVDCを酸化性雰囲気中(大気中)で加熱した場合の
特性で、図13は非酸化性雰囲気中(窒素ガス中)で加
熱した場合のそれである。これらの図のカ−ブaは加熱
炉の加熱温度で時間軸に対し比例して上昇させ、そのと
きの質量変化(カ−ブb)と反応熱の特性(カ−ブc)
を示している。
EXAMPLES The inventor of the present invention focuses on the fact that the mass change is due to the evaporation of volatile components in the resin in order to invent a method for producing a porous charcoal compact which is optimal as an electrode of an electric double layer capacitor. Then, using a powdery polyvinylidene chloride resin (PVDC) suitable for producing porous carbon, the characteristics of mass change and reaction heat during heating are investigated, and heating temperature during heating and evaporation of volatile components By grasping the relationship with the amount, we obtained the heating temperature at which the volatile components effective for molding remain. 12 and 13 are diagrams showing the results, and in these diagrams, the horizontal axis shows the heating time and the vertical axis shows the mass and temperature. FIG. 12 shows the characteristics when PVDC is heated in an oxidizing atmosphere (air), and FIG. 13 shows the characteristics when heated in a non-oxidizing atmosphere (nitrogen gas). The curve a in these figures is raised at a heating temperature of the heating furnace in proportion to the time axis, and the change in mass (curve b) and reaction heat characteristics (curve c) at that time.
Is shown.

【0009】まず、酸化性雰囲気中(大気中)で加熱し
た場合、図12の反応熱(カ−ブc)に着目すると、c
1点で反応熱が減少している。これは溶融による吸熱反
応によるものであり、この点がこの樹脂の融点で、この
点での質量変化はほとんどないこと、つまり、樹脂内の
揮発成分がほとんど蒸発していないことが分かった。こ
の吸熱反応はc2点で終了しており、この点では急激に
質量減少(樹脂内の揮発成分の蒸発)が発生しているこ
とが分かった。ちなみに今回実験したPVDCの場合、
溶融点は175℃であり、溶解による吸熱反応終了点は
230℃であった。上記のc1、c2点は非酸化性雰囲
気中で加熱した場合も同じ現象が発生しておりこのこと
から、c1、c2の反応は酸化、すなわち燃焼を伴う反
応でないことが言える。
First, when the reaction heat (curve c) of FIG. 12 is heated when heated in an oxidizing atmosphere (air), c
Reaction heat is decreasing at 1 point. This is due to the endothermic reaction due to melting, and it was found that this point is the melting point of this resin and there is almost no change in mass at this point, that is, the volatile components in the resin have hardly evaporated. This endothermic reaction was completed at point c2, and it was found that mass reduction (evaporation of volatile components in the resin) was rapidly occurring at this point. By the way, in the case of PVDC, which was tested this time,
The melting point was 175 ° C., and the end point of the endothermic reaction due to melting was 230 ° C. The same phenomenon occurs at points c1 and c2 above when heated in a non-oxidizing atmosphere. From this, it can be said that the reaction of c1 and c2 is not a reaction involving oxidation, that is, combustion.

【0010】さらに加熱を進めると酸化性雰囲気中(大
気中)で加熱した場合、図12のカ−ブcのc3点で反
応熱が急激に上昇しているが、非酸化性雰囲気中で加熱
した場合この現象の発生がないことが分かった。これら
のことから酸化性雰囲気中(大気中)で加熱した場合の
c3点は酸化による反応であると分かった。ちなみにP
VDCの場合c3点は530℃であった。以上の分析結
果から成形体を製造するには、c1点もしくはc2点の
温度以上でc3点の温度以下で加熱すれば、成形に寄与
する揮発成分を残した材料を得ることができることが分
かった。
When the heating is further advanced, when the heating is carried out in an oxidizing atmosphere (in the air), the reaction heat sharply rises at point c3 of the curve c in FIG. 12, but the heating is carried out in a non-oxidizing atmosphere. When it did, it turned out that this phenomenon did not occur. From these, it was found that the point c3 when heated in an oxidizing atmosphere (in the air) is a reaction due to oxidation. By the way, P
In the case of VDC, the c3 point was 530 ° C. From the above analysis results, it was found that in order to produce a molded body, a material having a volatile component that contributes to molding can be obtained by heating at a temperature of the c1 point or the c2 point or higher and a temperature of the c3 point or lower. .

【0011】以上の知見を基に、実施例1として図1に
示す製造方法で電気二重層コンデンサの電極を製造し、
そのコンデンサ性能を測定した。図1について説明をす
る。まず原料となる樹脂、PVDCを前述した融点(c
1点)もしくは融解による吸熱終了点(図12のc2
点)の温度以上でかつ酸化反応点(図12のc3点)の
温度以下の250〜300℃で30分間加熱し仮焼き樹
脂を得た。次に、この仮焼き樹脂を常温に冷却し、振動
ミルやロールミル等で粉砕し粉末仮焼き樹脂を得た。こ
の粉末樹脂を水中で煮沸した。この煮沸工程はなくても
良いが煮沸したほうがコンデンサ性能に有効であった。
次に、粉末仮焼き樹脂を加圧仮成形し、それを酸化反応
点(図12のc3点)以上の温度、700℃及び850
℃で加熱焼成し、2種類の多孔質炭素成形体を得た。上
記製造方法の温度のパタ−ンを図11に示す。図11で
は前記焼成温度の保持時間は1〜15分となっている
が、1時間以下であればよい。
Based on the above findings, the electrode of the electric double layer capacitor was manufactured by the manufacturing method shown in FIG. 1 as Example 1.
The capacitor performance was measured. FIG. 1 will be described. First, the resin as a raw material, PVDC, has the melting point (c
1 point) or end point of endotherm due to melting (c2 in FIG. 12)
Point) and a temperature not higher than the oxidation reaction point (point c3 in FIG. 12) at 250 to 300 ° C. for 30 minutes to obtain a calcined resin. Next, the calcined resin was cooled to room temperature and pulverized with a vibration mill, a roll mill or the like to obtain a powder calcined resin. This powdered resin was boiled in water. This boiling step may be omitted, but boiling was more effective for capacitor performance.
Next, the powder calcined resin is pressure-temporarily molded, and the temperature is 700 ° C. and 850 ° C. above the oxidation reaction point (c3 point in FIG. 12).
The mixture was heated and baked at 0 ° C. to obtain two types of porous carbon compacts. The temperature pattern of the above manufacturing method is shown in FIG. In FIG. 11, the holding time of the firing temperature is 1 to 15 minutes, but it may be 1 hour or less.

【0012】次に、実施例2として図2に示すように、
実施例1(図1)の加圧仮成形を行わずに、加圧・加熱
焼成した以外は実施例1と同様にして多孔質炭素成形体
を得、電気二重層コンデンサの電極を製造し、そのコン
デンサ性能を測定した。
Next, as shown in FIG. 2 as a second embodiment,
A porous carbon molded body was obtained in the same manner as in Example 1 except that pressure pre-molding in Example 1 (FIG. 1) was not performed, and pressure / heat firing was performed to manufacture an electrode of an electric double layer capacitor. The capacitor performance was measured.

【0013】実施例3として図3に示すように、実施例
1(図1)の仮焼き樹脂を得る第1の加熱工程を水蒸気
雰囲気下で、加熱時の圧力を無加圧から20kg/cm
2 の範囲で印加し、第2の加熱処理後に電解液を煮沸含
浸し、マイクロ波処理を実施した以外は実施例1と同様
にして多孔質炭素成形体を得、電気二重層コンデンサの
電極を製造し、その細孔径の分布及びコンデンサ性能を
測定した。
As shown in FIG. 3 as Example 3, in the first heating step for obtaining the calcined resin of Example 1 (FIG. 1) under a steam atmosphere, the pressure during heating is from no pressure to 20 kg / cm.
A porous carbon compact was obtained in the same manner as in Example 1 except that the electrolyte was boiled and impregnated after the second heat treatment and microwave treatment was performed, and the electrode of the electric double layer capacitor was applied. It was manufactured, and its pore size distribution and capacitor performance were measured.

【0014】実施例4の製造方法の工程図を図4に示
す。本実施例では、樹脂はハロゲンを含まない熱可塑性
のポリブチレンテレフタレート(以下、PBTと表わ
す。)として、製造方法は実施例3(図3)の仮焼き樹
脂を得る第1の加熱工程を塩化水素雰囲気下で、加熱時
の圧力を3kg/cm2 印加した以外は実施例3と同様
にして多孔質炭素成形体を得、電気二重層コンデンサの
電極を製造し、そのコンデンサ性能を測定した。
FIG. 4 shows a process chart of the manufacturing method of the fourth embodiment. In this embodiment, the resin is a halogen-free thermoplastic polybutylene terephthalate (hereinafter referred to as PBT), and the manufacturing method is the first heating step for obtaining the calcined resin of Example 3 (FIG. 3). A porous carbon compact was obtained in the same manner as in Example 3 except that the pressure during heating was applied under a hydrogen atmosphere of 3 kg / cm @ 2, the electrode of the electric double layer capacitor was manufactured, and the capacitor performance was measured.

【0015】実施例5の製造方法の工程図を図5に示
す。本実施例では、樹脂はPBTとして、製造方法は実
施例3(図3)の仮焼き樹脂を得る第1の加熱工程の前
に、PBTと塩酸水溶液とを混合する工程を追加した以
外はは実施例3と同様にして多孔質炭素成形体を得、電
気二重層コンデンサの電極を製造し、そのコンデンサ性
能を測定した。
A process diagram of the manufacturing method of Example 5 is shown in FIG. In this example, the resin was PBT, and the manufacturing method was the same as in Example 3 (FIG. 3) except that a step of mixing PBT and an aqueous hydrochloric acid solution was added before the first heating step for obtaining the calcined resin. A porous carbon molded body was obtained in the same manner as in Example 3, an electrode of an electric double layer capacitor was manufactured, and the capacitor performance was measured.

【0016】また、比較のため、PVDCを700〜9
00℃、非酸化雰囲気中で炭化したものを、バインダ
(テフロン樹脂)を混合して成形して多孔質炭素成形体
を得、同様にコンデンサ性能を測定した。さらに市販の
活性炭6種類(AからFの記号で表す。)について細孔
径の分布及びコンデンサ性能を測定した。
For comparison, PVDC is 700-9.
What was carbonized in a non-oxidizing atmosphere at 00 ° C. was mixed with a binder (Teflon resin) and molded to obtain a porous carbon molded body, and similarly the capacitor performance was measured. Further, the distribution of pore diameters and the capacitor performance were measured for six types of commercially available activated carbon (represented by symbols A to F).

【0017】これらの電極の電気二重層コンデンサの静
電容量の実験結果を図6に示す。図6において実施例3
については第1の加熱時の圧力が無加圧のものと静電容
量が最大となった圧力3.0kg/cm2 のものとの結
果を記載してある。図6の結果から、実施例1は、バイ
ンダが無く、しかも加熱焼成時に加圧しなくても比較例
と同等の性能となることがわかり、実施例2は加圧・加
熱焼成を行うことにより比較例に比し1.3〜1.6倍
の静電容量を得られ、実施例3は加圧、水蒸気雰囲気中
で仮焼きをし、成形焼成後にマイクロ波処理を施すこと
により比較例の約3倍の容量増加につながることが分か
った。マイクロ波を使わない場合は、大気中において2
00℃で1h程熱処理を行うことで同じになることが分
かっている。ここでは時間を短くできるマイクロ波を用
いた。さらに、実施例4及び5については実施例3と同
等の容量であることが分かった。実施例4及び5におい
てハロゲンを含まない樹脂としてPBTを例示したが、
ポリエチレンテレフタレート、ポリシクロヘキサンテレ
フタレートについても電気二重層コンデンサの電極を製
造し、そのコンデンサ性能を測定した結果、実施例4、
5と同等の性能を得ることができた。また、実施例4で
は、塩化水素雰囲気中で加圧・加熱処理を実施したが、
フッ素又は臭素又はヨウ素雰囲気中でも実施例4と同等
の性能が得られた。さらに、実施例5において樹脂と混
合する溶液を塩酸水溶液の代わりに、フッ素又は臭素又
はヨウ素の水溶液を用いたものについても実施例5と同
等の性能を得ることができた。ここで、比較のため実施
例4において、塩化水素雰囲気の代わりに硫酸雰囲気で
処理したもの、実施例5において、塩酸水溶液の代わり
に希硫酸を混合したものをそれぞれ試作し電気二重層コ
ンデンサの電極を製造し、そのコンデンサ性能を測定し
たが、いずれも実施例4、5に比較し20〜40%低い
静電容量であった。以上のことから、電気二重層コンデ
ンサの電極としてハロゲンを含む熱可塑性樹脂を原材料
とするか、ハロゲンを含まない熱可塑性樹脂では製造工
程において適切な時期に適切な方法でハロゲンを添加す
ることにより静電容量の大なる電極を製造できることが
判明した。
The experimental results of the electrostatic capacitance of the electric double layer capacitors having these electrodes are shown in FIG. Example 3 in FIG.
Regarding the results, the results of the case where the pressure during the first heating is unpressurized and the case where the pressure at which the electrostatic capacity is maximum is 3.0 kg / cm @ 2 are described. From the results shown in FIG. 6, it can be seen that Example 1 has the same performance as the Comparative Example without the binder and no pressure is applied during heating and firing, and Example 2 is compared by performing pressure and heating firing. A capacitance of 1.3 to 1.6 times that of the comparative example can be obtained. It was found that this would lead to a three-fold increase in capacity. When not using microwave, 2 in the atmosphere
It is known that the same result can be obtained by performing heat treatment at 00 ° C. for about 1 hour. Here, a microwave that can shorten the time is used. Furthermore, it was found that the capacities of Examples 4 and 5 were equivalent to those of Example 3. Although PBT was exemplified as the resin containing no halogen in Examples 4 and 5,
For polyethylene terephthalate and polycyclohexane terephthalate, electrodes of electric double layer capacitors were manufactured and the performance of the capacitors was measured.
It was possible to obtain the same performance as that of No. 5. Further, in Example 4, the pressurization / heat treatment was carried out in a hydrogen chloride atmosphere,
The same performance as in Example 4 was obtained even in a fluorine, bromine, or iodine atmosphere. Further, the same performance as in Example 5 could be obtained even when the solution mixed with the resin in Example 5 used an aqueous solution of fluorine, bromine, or iodine instead of the hydrochloric acid aqueous solution. Here, for comparison, in Example 4, a sample treated in a sulfuric acid atmosphere instead of a hydrogen chloride atmosphere and a sample in Example 5 mixed with dilute sulfuric acid instead of an aqueous hydrochloric acid solution were trial-produced, and electrodes of an electric double layer capacitor were prepared. Was manufactured and its capacitor performance was measured, and the capacitance was 20 to 40% lower than those of Examples 4 and 5. From the above, it is possible to use a halogen-containing thermoplastic resin as the raw material for the electrodes of electric double layer capacitors, or to add a halogen-free thermoplastic resin by adding halogen at an appropriate time and at an appropriate method in the manufacturing process. It has been found that an electrode having a large capacitance can be manufactured.

【0018】図7に実施例3で第1の加熱工程の加圧力
を変化させた場合の静電容量を、図8に第1の加熱工程
の加圧力を変化させた場合の全表面積に対する細孔径2
0オングストローム以上の細孔の表面積の割合を示す。
図7から第1の加熱工程の加圧力を変化させた場合、静
電容量は圧力3.0kg/cm2 で最大を示し、無加圧
及び圧力10kg/cm2 以上では容量が最小であるこ
とが分かった。また、図8から第1の加熱工程の加圧力
を変化させた場合、全表面積に対する細孔径20オング
ストローム以上の細孔の表面積の割合は圧力3.0kg
/cm2 で最小を示し、無加圧及び圧力10kg/cm
2 以上では全表面積に対する細孔径20オングストロー
ム以上の細孔の表面積の割合が大であることが分かっ
た。ちなみに直径が20オングストローム以上である細
孔の表面積に注目した理由は、細孔径の分類として20
オングストロームを境とすることが一般に行われている
ためである。例えば、1972年には、IUPAC(In
ternational Unionof Pore and Applied Chemistry )
により、マクロ孔:500オングストローム以上、メソ
孔:500〜20オングストローム、ミクロ孔:20〜
8オングストローム、サブミクロ孔:8オングストロー
ム以下という細孔の分類が定められている。
FIG. 7 shows the capacitance when the pressure applied in the first heating step was changed in Example 3, and FIG. 8 shows the capacitance with respect to the total surface area when the pressure applied in the first heating step was changed. Pore diameter 2
The ratio of the surface area of pores of 0 angstrom or more is shown.
From FIG. 7, it was found that when the applied pressure in the first heating step was changed, the electrostatic capacity showed the maximum at a pressure of 3.0 kg / cm2, and the minimum capacity at no pressure and at a pressure of 10 kg / cm2 or more. It was Further, when the pressure applied in the first heating step is changed from FIG. 8, the ratio of the surface area of pores having a pore diameter of 20 angstroms or more to the total surface area is 3.0 kg of pressure.
/ Cm2 shows the minimum, no pressure and pressure 10kg / cm
It was found that the ratio of the surface area of pores having a pore diameter of 20 angstroms or more to the total surface area was large when the ratio was 2 or more. By the way, the reason for paying attention to the surface area of pores having a diameter of 20 angstroms or more is 20
This is because it is generally practiced to use Angstrom as a boundary. For example, in 1972, IUPAC (In
ternational Unionof Pore and Applied Chemistry)
Macro pores: 500 Å or more, mesopores: 500 to 20 Å, micropores: 20 to
8 angstrom, sub-micropore: A classification of pores of 8 angstrom or less is defined.

【0019】図9に、上記実施例3の第1の加熱工程の
加圧力が無加圧のものと、圧力3.0kg/cm2 のも
の、及び7種類の市販活性炭A〜Gの全表面積に対する
細孔径20オングストローム以上の細孔の表面積の割合
と、静電容量を示す。図10は図9のデータをグラフで
示したもので、横軸は全表面積に対する細孔径20オン
グストローム以上の細孔の表面積の割合を、縦軸は静電
容量である。これらの図から全表面積に対する細孔径2
0オングストローム以上の細孔の表面積の割合が10%
以下で静電容量の増加が顕著であることが分かった。
FIG. 9 shows that the applied pressure in the first heating step of Example 3 was not applied, the pressure was 3.0 kg / cm 2, and the total surface area of seven types of commercially available activated carbons A to G. The capacitance and the ratio of the surface area of pores having a pore diameter of 20 Å or more are shown. FIG. 10 is a graph showing the data of FIG. 9, in which the horizontal axis represents the ratio of the surface area of pores having a pore diameter of 20 Å or more to the total surface area, and the vertical axis represents the capacitance. From these figures, the pore size to the total surface area is 2
The ratio of the surface area of pores of 0 angstrom or more is 10%
It was found below that the increase in capacitance was significant.

【0020】[0020]

【発明の効果】上述のように、この発明によれば、樹脂
材料を圧力範囲0.01〜10kg/cm2 の雰囲気
で、かつその樹脂の融点温度以上で、かつ酸化反応が始
まる温度以下、で加熱し仮焼きすることにより、材料中
の適当量の揮発成分を残した状態で焼成を行うので、バ
インダを使用することなく、成形電極を製造することが
でき、より大容量のコンデンサを提供することができ
る。また、高性能の電極が要求される場合は、樹脂材料
を圧力範囲0.01〜10kg/cm2 の雰囲気で、か
つその樹脂の融解(軟化流動)に伴う吸熱反応が終了す
る温度以上で、かつ酸化反応が始まる温度以下、で加熱
し仮焼きし、その仮焼きした樹脂を同時加圧・加熱焼成
することにより得ることができる。上記樹脂材料として
は、ハロゲンを含む熱可塑性樹脂が最適であるが、ハロ
ゲンを含まない熱可塑性樹脂についても、適切な手段で
ハロゲンを添加することによりハロゲンを含む樹脂と同
等な性能を発揮する成形電極を製造することができる。
第一の加熱温度を「その樹脂の融解(軟化流動)に伴う
吸熱反応が終了する温度以上」とする理由は、樹脂の融
解が終了する温度以下で加熱を行うと、炭素内部の細孔
が潰されてしまい表面積が稼げないからである。さら
に、バインダを使用して成形した電極ではバインダが劣
化する問題点があるのに対し、この発明の電極にはその
欠点がない。さらに、仮焼き工程を水蒸気雰囲気中で熱
処理を行うことにより静電容量のさらなる向上ができ
る。
As described above, according to the present invention, the resin material is kept in an atmosphere having a pressure range of 0.01 to 10 kg / cm @ 2, at a temperature above the melting point of the resin and below the temperature at which the oxidation reaction starts. By heating and calcining, firing is performed in a state where an appropriate amount of volatile components in the material remains, so that a molded electrode can be manufactured without using a binder, and a capacitor with a larger capacity is provided. be able to. When a high-performance electrode is required, the resin material should be in an atmosphere with a pressure range of 0.01 to 10 kg / cm2, and at a temperature higher than the temperature at which the endothermic reaction due to melting (softening flow) of the resin ends. It can be obtained by heating at a temperature not higher than the temperature at which the oxidation reaction starts and calcining, and simultaneously calcinating and heating and baking the calcined resin. As the above-mentioned resin material, a thermoplastic resin containing halogen is most suitable, but also for a thermoplastic resin containing no halogen, by adding halogen by an appropriate means, molding that exhibits the same performance as the resin containing halogen The electrodes can be manufactured.
The reason for setting the first heating temperature to "above the temperature at which the endothermic reaction accompanying the melting (softening flow) of the resin ends" is when heating below the temperature at which the resin melting ends, the pores inside the carbon It is because it is crushed and the surface area cannot be earned. Further, while the electrode formed by using the binder has a problem that the binder deteriorates, the electrode of the present invention does not have the drawback. Furthermore, by performing heat treatment in a steam atmosphere in the calcining step, the capacitance can be further improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例1の多孔質炭素成形体の製造
過程を示す工程図である。
FIG. 1 is a process drawing showing a process for producing a porous carbon molded body according to Example 1 of the present invention.

【図2】この発明の実施例2の多孔質炭素成形体の製造
過程を示す工程図である。
FIG. 2 is a process drawing showing a process for producing a porous carbon compact according to Example 2 of the present invention.

【図3】この発明の実施例3の多孔質炭素成形体の製造
過程を示す工程図である。
FIG. 3 is a process drawing showing a process for producing a porous carbon molded body according to Example 3 of the present invention.

【図4】この発明の実施例4の多孔質炭素成形体の製造
過程を示す工程図である。
FIG. 4 is a process drawing showing a process for producing a porous carbon molded body of Example 4 of the present invention.

【図5】この発明の実施例5の多孔質炭素成形体の製造
過程を示す工程図である。
FIG. 5 is a process drawing showing a process for manufacturing a porous carbon molded body of Example 5 of the present invention.

【図6】この発明の実施例の多孔質炭素成形体の電気的
性能を実験した一デ−タを示す図である。
FIG. 6 is a view showing one data in which the electrical performance of the porous carbon molded body of the example of the present invention was tested.

【図7】この発明の実施例3の多孔質炭素成形体の第1
の加熱工程の加圧力を変化させた場合の静電容量を表す
図である。
FIG. 7 shows a first porous carbon compact according to Example 3 of the present invention.
It is a figure showing the electrostatic capacity at the time of changing the pressurizing force of the heating process of.

【図8】この発明の実施例3の多孔質炭素成形体の第1
の加熱工程の加圧力を変化させた場合の全表面積に対す
る細孔径20オングストローム以上の細孔の表面積の割
合を表す図である。
FIG. 8 is a first porous carbon compact according to Example 3 of the present invention.
FIG. 6 is a diagram showing the ratio of the surface area of pores having a pore diameter of 20 Å or more to the total surface area when the pressure applied in the heating step is changed.

【図9】この発明の実施例3の多孔質炭素成形体の第1
の加熱工程の加圧力が無加圧のものと、圧力3.0kg
/cm2 のもの、及び7種類の市販活性炭A〜Gの全表
面積に対する細孔径20オングストローム以上の細孔の
表面積の割合と、静電容量を示す。
FIG. 9 shows a first porous carbon compact according to Example 3 of the present invention.
No pressure applied in the heating process, and pressure of 3.0 kg
/ Cm @ 2, and the ratio of the surface area of pores having a pore diameter of 20 angstroms or more to the total surface area of 7 types of commercially available activated carbons A to G, and the capacitance.

【図10】図9のデータをグラフで示したものである。FIG. 10 is a graph showing the data of FIG.

【図11】この発明の実施例の多孔質炭素成形体の製造
過程の温度パタ−ンを示す図である。
FIG. 11 is a view showing a temperature pattern in the manufacturing process of the porous carbon molded body of the example of the present invention.

【図12】大気中での加熱による樹脂の質量変化と反応
熱の実験結果を示すグラフである。
FIG. 12 is a graph showing the experimental results of the change in resin mass and the heat of reaction due to heating in the atmosphere.

【図13】窒素ガス中での加熱による樹脂の質量変化と
反応熱の実験結果を示すグラフである。
FIG. 13 is a graph showing experimental results of resin mass change and reaction heat due to heating in nitrogen gas.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】樹脂を原料として、その樹脂をその樹脂の
軟化開始温度以上で、かつ酸化反応が始まる温度以下の
第1の加熱温度で加熱し仮焼き樹脂を製造する工程と、
その仮焼き樹脂を常温まで冷却し粉末にし仮焼き粉末樹
脂を製造する工程と、その仮焼き粉末樹脂を加圧成形す
る工程と、前記樹脂の酸化反応が始まる温度以上の第2
の加熱温度で加熱し成形炭素体を得る製造工程と、から
なることを特徴とする電気二重層コンデンサ電極の製造
方法。
1. A step of producing a calcined resin by using a resin as a raw material, heating the resin at a first heating temperature which is equal to or higher than a softening start temperature of the resin and is equal to or lower than a temperature at which an oxidation reaction starts,
A step of cooling the calcined resin to room temperature to form a powder, producing the calcined powder resin, a step of press-molding the calcined powder resin, and a second temperature above the temperature at which the oxidation reaction of the resin begins.
And a manufacturing step of obtaining a shaped carbon body by heating at a heating temperature of 1. The method for manufacturing an electric double layer capacitor electrode, comprising:
【請求項2】前記第1の加熱温度が、その樹脂の融解
(軟化流動)に伴う吸熱反応が終了する温度以上で、か
つ酸化反応が始まる温度以下の温度であることを特徴と
する請求項1に記載の電気二重層コンデンサ電極の製造
方法。
2. The first heating temperature is equal to or higher than a temperature at which an endothermic reaction associated with melting (softening flow) of the resin is completed and below a temperature at which an oxidation reaction is started. 1. The method for manufacturing the electric double layer capacitor electrode according to 1.
【請求項3】前記仮焼き樹脂を製造する工程が、圧力範
囲0.01〜10kg/cm2 の雰囲気であることを特
徴とする請求項1又請求項2に記載の電気二重層コンデ
ンサ電極の製造方法。
3. The production of an electric double layer capacitor electrode according to claim 1, wherein the step of producing the calcined resin is performed in an atmosphere having a pressure range of 0.01 to 10 kg / cm 2. Method.
【請求項4】前記仮焼き樹脂の製造工程を水蒸気雰囲気
中で行うことを特徴とする請求項1乃至請求項3に記載
の電気二重層コンデンサ電極の製造方法。
4. The method for producing an electric double layer capacitor electrode according to claim 1, wherein the step of producing the calcined resin is performed in a steam atmosphere.
【請求項5】前記第1の加熱温度が200℃から500
℃であることを特徴とする請求項1乃至請求項4に記載
の電気二重層コンデンサ電極の製造方法。
5. The first heating temperature is 200 ° C. to 500 ° C.
5. The method for producing an electric double layer capacitor electrode according to claim 1, wherein the temperature is at a temperature of ° C.
【請求項6】前記第2の加熱温度が500℃から900
℃であることを特徴とする請求項1乃至請求項5に記載
の電気二重層コンデンサ電極の製造方法。
6. The second heating temperature is from 500.degree. C. to 900.
6. The method for producing an electric double layer capacitor electrode according to claim 1, wherein the temperature is at a temperature of ° C.
【請求項7】前記樹脂材料がハロゲンを含む熱可塑性樹
脂であることを特徴とする請求項1乃至請求項6に記載
の電気二重層コンデンサ電極の製造方法。
7. The method of manufacturing an electric double layer capacitor electrode according to claim 1, wherein the resin material is a thermoplastic resin containing halogen.
【請求項8】前記樹脂材料がポリ塩化ビニリデン樹脂で
あることを特徴とする請求項1乃至請求項7に記載の電
気二重層コンデンサ電極の製造方法。
8. The method of manufacturing an electric double layer capacitor electrode according to claim 1, wherein the resin material is polyvinylidene chloride resin.
【請求項9】前記樹脂材料がハロゲンを含まない熱可塑
性樹脂であり、前記仮焼き粉末樹脂を製造する工程の前
又は前記仮焼き粉末樹脂を製造する工程中にハロゲンを
加えることを特徴とする請求項1乃至請求項6に記載の
電気二重層コンデンサ電極の製造方法。
9. The resin material is a halogen-free thermoplastic resin, and halogen is added before the step of producing the calcined powder resin or during the step of producing the calcined powder resin. A method for manufacturing the electric double layer capacitor electrode according to claim 1.
【請求項10】樹脂を炭化した電気二重層コンデンサの
電極であって、該電極は細孔径20オングストローム以
上細孔が、前記電極の細孔の全表面積に占める割合が1
0%以下であることを特徴とする電気二重層コンデンサ
の電極。
10. An electrode of an electric double layer capacitor obtained by carbonizing a resin, wherein the ratio of pores having a pore diameter of 20 Å or more to the total surface area of the pores of the electrode is 1.
An electrode of an electric double layer capacitor, which is 0% or less.
JP34527695A 1995-03-30 1995-12-07 Electric double layer capacitor electrode and method of manufacturing the same Expired - Fee Related JP3537106B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34527695A JP3537106B2 (en) 1995-03-30 1995-12-07 Electric double layer capacitor electrode and method of manufacturing the same

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP7409995 1995-03-30
JP7-161300 1995-06-27
JP7-74099 1995-06-27
JP16130095 1995-06-27
JP34527695A JP3537106B2 (en) 1995-03-30 1995-12-07 Electric double layer capacitor electrode and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH0974053A true JPH0974053A (en) 1997-03-18
JP3537106B2 JP3537106B2 (en) 2004-06-14

Family

ID=27301414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34527695A Expired - Fee Related JP3537106B2 (en) 1995-03-30 1995-12-07 Electric double layer capacitor electrode and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3537106B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6592838B1 (en) 1999-10-21 2003-07-15 Matsushita Electric Industrial Co., Ltd. Activated carbon for use in electric double layer capacitor and method of producing the same
JP2005516883A (en) * 2002-02-06 2005-06-09 タッチストーン リサーチ ラボラトリー, エルティーディー. Microwave-assisted treatment of carbon foam
JP2018118902A (en) * 2014-01-21 2018-08-02 キャボット コーポレイションCabot Corporation Fine particle size activated carbon
JP2022514102A (en) * 2018-12-20 2022-02-09 ピーピージー・インダストリーズ・オハイオ・インコーポレイテッド Battery electrode coating applied by water-based electrodeposition

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6592838B1 (en) 1999-10-21 2003-07-15 Matsushita Electric Industrial Co., Ltd. Activated carbon for use in electric double layer capacitor and method of producing the same
JP2005516883A (en) * 2002-02-06 2005-06-09 タッチストーン リサーチ ラボラトリー, エルティーディー. Microwave-assisted treatment of carbon foam
JP2018118902A (en) * 2014-01-21 2018-08-02 キャボット コーポレイションCabot Corporation Fine particle size activated carbon
JP2022514102A (en) * 2018-12-20 2022-02-09 ピーピージー・インダストリーズ・オハイオ・インコーポレイテッド Battery electrode coating applied by water-based electrodeposition

Also Published As

Publication number Publication date
JP3537106B2 (en) 2004-06-14

Similar Documents

Publication Publication Date Title
US11370665B2 (en) Method for producing activated carbon
US5956225A (en) Activated carbon, process for the preparation thereof and electric double layer-type capacitor electrode
JP6373761B2 (en) Non-aqueous lithium storage element
JP4616052B2 (en) Electrode material for electric double layer capacitor and manufacturing method thereof, electrode for electric double layer capacitor, and electric double layer capacitor
JP6029675B2 (en) Lithium ion capacitor
WO2015042016A1 (en) Ultracapacitor with improved aging performance
JP2004175660A (en) Activated carbon, method of manufacturing the same and polarizable electrode
CN110577207B (en) Preparation method of nitrogen and phosphorus co-doped carbon nanosheet
KR102539683B1 (en) Preparation method for activated carbon with multi pore structure and activated carbon with multi pore structure prepared by the same
KR101970134B1 (en) Electrode comprising activated carbon and graphene sheet, method of manufacturing the electrode, and super capacitor comprising the electrode
JPH0974053A (en) Electrical double-layer capacitor electrode and its manufacture
KR101956993B1 (en) High performance mesoporous activated carbon and method for preparing the same
CN111825070B (en) In-situ hybridized coordination polymer derived porous flower-like Co 2 P 2 O 7 Preparation method of/C composite material
KR102177976B1 (en) Method for manufacturing graphene composite, eletrode active material and secondary battery including the same
JP2004014762A (en) Carbon material for electric double layered capacitor and its manufacturing method
JPH09213590A (en) Active carbon for electrode of electric double layer capacitor and its manufacture
JP2007153639A (en) Activated carbon precursor, activated carbon and method for manufacturing the same, and polarizable electrode and electric double-layer capacitor
JP2003203829A (en) Active carbon for electric double-layer capacitor, and method for manufacturing the same
KR20200065994A (en) Method for manufacturing electrode material for capacitors
Prasetya et al. Synthesis and Characterization of Supercapacitor Electrode from Fiber of Borassus flabelifer L by Activation Method
JP3543490B2 (en) Manufacturing method of electric double layer capacitor electrode
KR102648028B1 (en) Activated carbon containing graphene domain and their application products comprising the same
EP0735554A2 (en) Electrode for electric double layer capacitor and method of manufacturing the same
JP2006216748A (en) Carbon composite powder for electrode for electric dipole layer capacitor and manufacturing method for carbon composite powder and electric dipole layer capacitor using carbon composite powder
JP6597754B2 (en) Method for producing activated carbon

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040311

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040315

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080326

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090326

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090326

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100326

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100326

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100326

Year of fee payment: 6

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100326

Year of fee payment: 6

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100326

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100326

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110326

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110326

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120326

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120326

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140326

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees