JP3537106B2 - Electric double layer capacitor electrode and method of manufacturing the same - Google Patents

Electric double layer capacitor electrode and method of manufacturing the same

Info

Publication number
JP3537106B2
JP3537106B2 JP34527695A JP34527695A JP3537106B2 JP 3537106 B2 JP3537106 B2 JP 3537106B2 JP 34527695 A JP34527695 A JP 34527695A JP 34527695 A JP34527695 A JP 34527695A JP 3537106 B2 JP3537106 B2 JP 3537106B2
Authority
JP
Japan
Prior art keywords
resin
temperature
heating
electric double
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34527695A
Other languages
Japanese (ja)
Other versions
JPH0974053A (en
Inventor
敏和 竹田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Priority to JP34527695A priority Critical patent/JP3537106B2/en
Publication of JPH0974053A publication Critical patent/JPH0974053A/en
Application granted granted Critical
Publication of JP3537106B2 publication Critical patent/JP3537106B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

PROBLEM TO BE SOLVED: To manufacture a forming electrode without using any binder by heating a resin material within an atmosphere within a specific pressure range, at a melting temperature or higher of the resin, and at a temperature or lower where oxidation reaction starts for tentative baking. SOLUTION: Resin, PVDC, which becomes a raw material is heated at 200-500 deg.C which is equal to or more than the temperature of a heat-absorbing ending point due to a melt point or fusion and at the temperature or less of oxidation reaction point to obtain a tentatively baked resin. Then, the tentatively baked resin is cooled to normal temperatures and is ground by a vibration mill or a roll mill and then a powder tentatively baked resin is boiled in water. Then, the powder tentatively baked resin is subjected to pressurization tentative formation in an atmosphere of a pressure range of 0.01-10kg/cm<2> and is heated and baked at a temperature above the exidation reaction point, namely 500-900 deg.C, to obtain a porous carbon forming body. Therefore, since baking is performed while leaving a proper amount of volatile constituent in a material, a forming electrode can be manufactured without using any binder, thus obtaining a large-capacity capacitor.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は電気二重層コンデン
サ用電極とその製法に関し、特に大静電容量を得るのに
最適な電気二重層コンデンサ用電極とその製法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrode for an electric double layer capacitor and a method for producing the same, and more particularly to an electrode for an electric double layer capacitor which is most suitable for obtaining a large capacitance and a method for producing the same.

【0002】[0002]

【従来の技術】近年、電気二重層に基づく電荷の蓄積、
すなわち電気二重層原理を用いた電気二重層コンデンサ
が開発されて製品化されており、該コンデンサは大静電
容量が得られるため、小型のものは電子機器の半導体メ
モリー用のバックアップ電源から、大型のものは車載の
鉛バッテリの用途の一部にまで使用されている。
2. Description of the Related Art In recent years, accumulation of electric charges based on electric double layers,
That is, electric double-layer capacitors using the electric double-layer principle have been developed and commercialized.Since such capacitors can obtain a large capacitance, a small capacitor can be changed from a backup power supply for a semiconductor memory of an electronic device to a large-sized one. Are used for some of the applications of lead batteries in vehicles.

【0003】この種の電気二重層コンデンサ用の電極材
として、水を混合した炭素粉末を約700℃で加熱しな
がら50kg/cm2 の圧力で加圧する第1の工程で粉
末活性炭を得、次に700〜1000℃の温度50〜8
00kg/cm2 の圧力で加圧成形する第2の工程から
活性炭の成形体を製造する方法を本出願人の出願による
特許文献、特開平3−201520号に開示した。
As an electrode material for this type of electric double layer capacitor, powdered activated carbon is obtained in a first step of pressurizing a carbon powder mixed with water at a pressure of 50 kg / cm 2 while heating it at about 700 ° C. Temperature of 700-1000 ° C 50-8
A method for producing a molded article of activated carbon from the second step of pressure molding at a pressure of 00 kg / cm @ 2 is disclosed in Japanese Patent Application Laid-Open No. 3-201520 filed by the present applicant.

【0004】また、本出願人は、電気二重層コンデンサ
用電極に関して鋭意研究開発を行った結果、ポリ塩化ビ
ニリデン樹脂を非酸化雰囲気中で加熱し、それによって
原子および分子欠陥を生じさせて細孔を形成した電極材
料を開発し、これについて特許出願を行った(特願平6
−67827号)。この材料は、非常に微細な細孔を有
する多孔質炭素材料であって、従来の活性炭に比べ高容
量の電極材料となっている。
In addition, the present applicant has made intensive research and development on electrodes for electric double layer capacitors, and as a result, the polyvinylidene chloride resin was heated in a non-oxidizing atmosphere, thereby causing atomic and molecular defects to generate pores. Electrode material formed with a layer was developed, and a patent application was filed for this (Japanese Patent Application No. Hei 6 (1994)).
-67827). This material is a porous carbon material having very fine pores, and is an electrode material having a higher capacity than conventional activated carbon.

【0005】[0005]

【発明の解決しようとする課題】前述の特開平3−20
1520号に開示されている成形方法では、炭素粉末を
出発原料としているので、固形化に寄与する揮発成分が
炭素化の過程で蒸発してしまい固形化が難しく、成形に
際して大電力又は大エネルギーを必要とするので製造コ
ストが高く、また成形密度を上げられないという問題が
あり、炭素粉末の固形化を助けるためにバインダを使用
すると、コンデンサにした際、バインダの分だけ電気容
量が減少してしまう。また、炭素の原料である樹脂をそ
のまま粉砕、成形してから焼結すると、揮発成分が多す
ぎ、形を保持できない。なぜなら、焼成時に揮発成分が
大量に蒸発し、その蒸発力によって形が崩れてしまうか
らである。つまり、従来の方法では、揮発成分が多すぎ
たり、少なすぎたり、適当な量でないために、炭素粉末
を十分に固形化することができなかったのである。
SUMMARY OF THE INVENTION The above-mentioned Japanese Patent Laid-Open Publication No. Hei 3-20
In the molding method disclosed in No. 1520, since carbon powder is used as a starting material, volatile components contributing to solidification evaporate during the carbonization process, so that solidification is difficult. There is a problem that the production cost is high and the molding density cannot be increased because it is necessary.When a binder is used to help solidify the carbon powder, when a capacitor is used, the electric capacity is reduced by the amount of the binder. I will. Further, when the resin, which is a raw material of carbon, is pulverized, molded and sintered, the volatile component is too large and the shape cannot be maintained. This is because a large amount of volatile components evaporate during firing, and the shape is destroyed by the evaporation power. That is, in the conventional method, the carbon powder could not be sufficiently solidified because the volatile component was too large or too small, or was not in an appropriate amount.

【0006】[0006]

【課題を解決するための手段】この発明は、前記の課題
を解決し、また、製造コストの低減を目的として、ハロ
ゲンを含む熱可塑性樹脂を出発材料として、その樹脂を
圧力範囲0.01〜10kg/cm2の雰囲気で、かつ
その樹脂の融点温度以上、又はその樹脂の融解(軟化流
動)に伴う吸熱反応が終了する温度以上でかつ酸化反応
が始まる温度以下、で加熱し仮焼き樹脂を製造する工程
と、その仮焼き樹脂を常温まで冷却し粉末にし仮焼き粉
末樹脂を製造する工程と、その仮焼き粉末樹脂を加圧成
形後、前記樹脂の酸化反応が始まる温度以上の温度で加
熱し、又は仮焼き粉末樹脂を加圧しながら酸化反応が始
まる温度以上の温度で加熱し、成形炭素体を得る製造工
程とからなることを特徴とする電気二重層コンデンサ電
極の製造方法である。また、本発明は、前記の製造方法
において出発材料としてハロゲンを含まない熱可塑性樹
脂を用い、前記仮焼き粉末樹脂を製造する工程の前又は
前記仮焼き粉末樹脂を製造する工程中にハロゲンを加え
ることを特徴とする電気二重層コンデンサの電極の製造
方法である。さらに本発明は、前記の製造方法によって
得られた電気二重層コンデンサの電極であって、該電極
は細孔径20オングストローム以上細孔が、前記電極の
細孔の全表面積に占める割合が10%以下であることを
特徴とする電気二重層コンデンサの電極である。
SUMMARY OF THE INVENTION This invention is to solve the above problems, also in order to reduce the manufacturing cost, halo
The starting material is a thermoplastic resin containing a gas , and the resin is heated in an atmosphere having a pressure range of 0.01 to 10 kg / cm 2 and at a temperature equal to or higher than the melting point of the resin or melting (softening flow) of the resin. A step of producing a calcined resin by heating at a temperature equal to or higher than the temperature at which the oxidation reaction starts and a temperature equal to or lower than the temperature at which the oxidation reaction starts, a step of cooling the calcined resin to room temperature to powder and producing a calcined powder resin, After molding the resin under pressure, a heating step of heating the resin at a temperature not lower than the temperature at which the oxidation reaction of the resin starts, or heating the calcined powder resin at a temperature not lower than the temperature at which the oxidation reaction starts while pressing the resin, to obtain a molded carbon body And a method for manufacturing an electrode of an electric double layer capacitor. Further, the present invention provides the above-mentioned manufacturing method.
Halogen-Free Thermoplastic Tree as a Starting Material in Agriculture
Using fat, before or before the step of producing the calcined powder resin
Adding halogen during the process of producing the calcined powder resin
Of electrodes for electric double-layer capacitors characterized by the following:
Is the way. The present invention may be manufactured by the manufacturing method of
An electrode of the obtained electric double layer capacitor, wherein said electrode has a ratio of pores having a pore diameter of 20 angstrom or more to the total surface area of the pores of said electrode being 10% or less. This is the electrode of the capacitor .

【0007】[0007]

【発明の実施の形態】上述のように、この発明によれ
ば、樹脂材料を圧力範囲0.01〜10kg/cm2 の
雰囲気で、かつその樹脂の融点温度以上、又はその樹脂
の融解(軟化流動)に伴う吸熱反応が終了する温度以上
で、かつ酸化反応が始まる温度以下、で加熱し仮焼きす
ることにより、材料中の適当量の揮発成分を残した状態
で焼成を行うので、バインダを使用することなく、成形
電極を製造することができ、より大容量のコンデンサを
提供することができる。
As described above, according to the present invention, a resin material is placed in an atmosphere having a pressure range of 0.01 to 10 kg / cm @ 2 and at a temperature not lower than the melting point of the resin or melting (softening flow) of the resin. ), The material is heated at a temperature higher than the temperature at which the endothermic reaction is completed and at a temperature lower than the temperature at which the oxidation reaction starts, and calcined, so that firing is performed in a state where an appropriate amount of volatile components in the material is left. Thus, a shaped electrode can be manufactured without providing a capacitor, and a capacitor with a larger capacity can be provided.

【0008】[0008]

【実施例】この発明の発明者は、電気二重層コンデンサ
の電極として最適な多孔質炭成形体の製造方法を発明す
るため、質量変化が樹脂内の揮発成分の蒸発によるもの
であることに着目し、多孔質炭素を製造するのに適した
粉末状のポリ塩化ビニリデン樹脂(PVDC)を用い
て、加熱時の質量変化及び反応熱の特性を調査し、加熱
時の加熱温度と揮発成分の蒸発量との関係を把握し、成
形に有効な揮発成分が残る加熱温度を得た。図12及び
図13がその結果を示す図であり、これらの図は横軸に
加熱時間を縦軸に質量及び温度を示してある。図12は
PVDCを酸化性雰囲気中(大気中)で加熱した場合の
特性で、図13は非酸化性雰囲気中(窒素ガス中)で加
熱した場合のそれである。これらの図のカ−ブaは加熱
炉の加熱温度で時間軸に対し比例して上昇させ、そのと
きの質量変化(カ−ブb)と反応熱の特性(カ−ブc)
を示している。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The inventor of the present invention has invented a method for manufacturing a porous carbon molded article which is optimal as an electrode of an electric double layer capacitor, and has noticed that the mass change is due to evaporation of volatile components in the resin. Then, using a powdered polyvinylidene chloride resin (PVDC) suitable for producing porous carbon, the mass change and the heat of reaction during heating were investigated, and the heating temperature during heating and the evaporation of volatile components were investigated. The relationship with the amount was grasped, and the heating temperature at which volatile components effective for molding remained was obtained. 12 and 13 show the results. In these figures, the abscissa indicates the heating time, and the ordinate indicates the mass and the temperature. FIG. 12 shows the characteristics when the PVDC is heated in an oxidizing atmosphere (in the air), and FIG. 13 shows the characteristics when the PVDC is heated in a non-oxidizing atmosphere (in a nitrogen gas). The curve a in these figures is increased in proportion to the time axis at the heating temperature of the heating furnace, and the change in mass (curve b) and the characteristic of the reaction heat (curve c) at that time.
Is shown.

【0009】まず、酸化性雰囲気中(大気中)で加熱し
た場合、図12の反応熱(カ−ブc)に着目すると、c
1点で反応熱が減少している。これは溶融による吸熱反
応によるものであり、この点がこの樹脂の融点で、この
点での質量変化はほとんどないこと、つまり、樹脂内の
揮発成分がほとんど蒸発していないことが分かった。こ
の吸熱反応はc2点で終了しており、この点では急激に
質量減少(樹脂内の揮発成分の蒸発)が発生しているこ
とが分かった。ちなみに今回実験したPVDCの場合、
溶融点は175℃であり、溶解による吸熱反応終了点は
230℃であった。上記のc1、c2点は非酸化性雰囲
気中で加熱した場合も同じ現象が発生しておりこのこと
から、c1、c2の反応は酸化、すなわち燃焼を伴う反
応でないことが言える。
First, when heating in an oxidizing atmosphere (in the air), focusing on the reaction heat (curve c) in FIG.
At one point, the heat of reaction has decreased. This is due to an endothermic reaction due to melting, and this point is the melting point of the resin, and it was found that there was almost no change in mass at this point, that is, that volatile components in the resin were hardly evaporated. This endothermic reaction was completed at the point c2, and it was found that a sharp decrease in mass (evaporation of volatile components in the resin) occurred at this point. By the way, in the case of the PVDC tested this time,
The melting point was 175 ° C, and the end point of the endothermic reaction due to dissolution was 230 ° C. The same phenomena occur when the above-mentioned points c1 and c2 are heated in a non-oxidizing atmosphere. From this, it can be said that the reaction of c1 and c2 is not an oxidation, that is, a reaction involving combustion.

【0010】さらに加熱を進めると酸化性雰囲気中(大
気中)で加熱した場合、図12のカ−ブcのc3点で反
応熱が急激に上昇しているが、非酸化性雰囲気中で加熱
した場合この現象の発生がないことが分かった。これら
のことから酸化性雰囲気中(大気中)で加熱した場合の
c3点は酸化による反応であると分かった。ちなみにP
VDCの場合c3点は530℃であった。以上の分析結
果から成形体を製造するには、c1点もしくはc2点の
温度以上でc3点の温度以下で加熱すれば、成形に寄与
する揮発成分を残した材料を得ることができることが分
かった。
When the heating is further advanced, when the heating is performed in an oxidizing atmosphere (in the air), the reaction heat sharply increases at a point c3 of the curve c in FIG. 12, but the heating is performed in a non-oxidizing atmosphere. It was found that this phenomenon did not occur. From these facts, it was found that the point c3 when heated in an oxidizing atmosphere (in the air) was a reaction due to oxidation. By the way, P
In the case of VDC, the c3 point was 530 ° C. From the above analysis results, it was found that, in order to manufacture a molded body, a material having a volatile component contributing to molding can be obtained by heating at a temperature higher than the temperature of the point c1 or c2 and lower than the temperature of the point c3. .

【0011】以上の知見を基に、実施例1として図1に
示す製造方法で電気二重層コンデンサの電極を製造し、
そのコンデンサ性能を測定した。図1について説明をす
る。まず原料となる樹脂、PVDCを前述した融点(c
1点)もしくは融解による吸熱終了点(図12のc2
点)の温度以上でかつ酸化反応点(図12のc3点)の
温度以下の250〜300℃で30分間加熱し仮焼き樹
脂を得た。次に、この仮焼き樹脂を常温に冷却し、振動
ミルやロールミル等で粉砕し粉末仮焼き樹脂を得た。こ
の粉末樹脂を水中で煮沸した。この煮沸工程はなくても
良いが煮沸したほうがコンデンサ性能に有効であった。
次に、粉末仮焼き樹脂を加圧仮成形し、それを酸化反応
点(図12のc3点)以上の温度、700℃及び850
℃で加熱焼成し、2種類の多孔質炭素成形体を得た。上
記製造方法の温度のパタ−ンを図11に示す。図11で
は前記焼成温度の保持時間は1〜15分となっている
が、1時間以下であればよい。
Based on the above findings, the electrode of the electric double layer capacitor was manufactured by the manufacturing method shown in FIG.
The capacitor performance was measured. FIG. 1 will be described. First, the resin, PVDC, as a raw material is mixed with the melting point (c
1 point) or end point of heat absorption due to melting (c2 in FIG. 12).
(Point c3) and below the temperature of the oxidation reaction point (point c3 in FIG. 12) at 250 to 300 ° C. for 30 minutes to obtain a calcined resin. Next, the calcined resin was cooled to room temperature and pulverized with a vibration mill or a roll mill to obtain a powder calcined resin. This powder resin was boiled in water. This boiling step was not necessary, but boiling was more effective for capacitor performance.
Next, the powder calcined resin is pressure-temporarily molded, and is subjected to a temperature of 700 ° C. and 850 ° C. or higher than the oxidation reaction point (point c3 in FIG. 12).
Heating and sintering at a temperature of 2 ° C. yielded two types of porous carbon molded bodies. FIG. 11 shows the temperature pattern in the above manufacturing method. In FIG. 11, the holding time of the firing temperature is 1 to 15 minutes, but may be 1 hour or less.

【0012】次に、実施例2として図2に示すように、
実施例1(図1)の加圧仮成形を行わずに、加圧・加熱
焼成した以外は実施例1と同様にして多孔質炭素成形体
を得、電気二重層コンデンサの電極を製造し、そのコン
デンサ性能を測定した。
Next, as a second embodiment, as shown in FIG.
A porous carbon molded body was obtained in the same manner as in Example 1 except that pressure and heat calcination were not performed in Example 1 (FIG. 1), and electrodes of an electric double layer capacitor were manufactured. The capacitor performance was measured.

【0013】実施例3として図3に示すように、実施例
1(図1)の仮焼き樹脂を得る第1の加熱工程を水蒸気
雰囲気下で、加熱時の圧力を無加圧から20kg/cm
2 の範囲で印加し、第2の加熱処理後に電解液を煮沸含
浸し、マイクロ波処理を実施した以外は実施例1と同様
にして多孔質炭素成形体を得、電気二重層コンデンサの
電極を製造し、その細孔径の分布及びコンデンサ性能を
測定した。
As a third embodiment, as shown in FIG. 3, the first heating step of obtaining the calcined resin of the first embodiment (FIG. 1) is carried out in a steam atmosphere, and the pressure during heating is increased from no pressure to 20 kg / cm.
2 and the electrolyte was boiled and impregnated after the second heat treatment, and a porous carbon molded body was obtained in the same manner as in Example 1 except that microwave treatment was performed. It was manufactured and its pore size distribution and capacitor performance were measured.

【0014】実施例4の製造方法の工程図を図4に示
す。本実施例では、樹脂はハロゲンを含まない熱可塑性
のポリブチレンテレフタレート(以下、PBTと表わ
す。)として、製造方法は実施例3(図3)の仮焼き樹
脂を得る第1の加熱工程を塩化水素雰囲気下で、加熱時
の圧力を3kg/cm2 印加した以外は実施例3と同様
にして多孔質炭素成形体を得、電気二重層コンデンサの
電極を製造し、そのコンデンサ性能を測定した。
FIG. 4 shows a process chart of the manufacturing method according to the fourth embodiment. In this embodiment, the resin is made of thermoplastic polybutylene terephthalate (hereinafter referred to as PBT) containing no halogen, and the first heating step of obtaining the calcined resin of Example 3 (FIG. 3) is carried out by chloride. A porous carbon molded body was obtained in the same manner as in Example 3 except that a pressure during heating of 3 kg / cm 2 was applied in a hydrogen atmosphere, electrodes of an electric double layer capacitor were manufactured, and the capacitor performance was measured.

【0015】実施例5の製造方法の工程図を図5に示
す。本実施例では、樹脂はPBTとして、製造方法は実
施例3(図3)の仮焼き樹脂を得る第1の加熱工程の前
に、PBTと塩酸水溶液とを混合する工程を追加した以
外はは実施例3と同様にして多孔質炭素成形体を得、電
気二重層コンデンサの電極を製造し、そのコンデンサ性
能を測定した。
FIG. 5 shows a process chart of the manufacturing method according to the fifth embodiment. In this example, the resin was PBT, and the manufacturing method was the same as that of Example 3 (FIG. 3) except that a step of mixing PBT and an aqueous hydrochloric acid solution was added before the first heating step of obtaining the calcined resin. A porous carbon molded body was obtained in the same manner as in Example 3, electrodes of an electric double layer capacitor were manufactured, and the capacitor performance was measured.

【0016】また、比較のため、PVDCを700〜9
00℃、非酸化雰囲気中で炭化したものを、バインダ
(テフロン樹脂)を混合して成形して多孔質炭素成形体
を得、同様にコンデンサ性能を測定した。さらに市販の
活性炭6種類(AからFの記号で表す。)について細孔
径の分布及びコンデンサ性能を測定した。
For comparison, PVDC was set at 700-9.
What was carbonized in a non-oxidizing atmosphere at 00 ° C. was mixed with a binder (Teflon resin) and molded to obtain a porous carbon molded body, and the capacitor performance was measured in the same manner. Furthermore, the distribution of the pore diameter and the capacitor performance were measured for six types of commercially available activated carbon (represented by symbols A to F).

【0017】これらの電極の電気二重層コンデンサの静
電容量の実験結果を図6に示す。図6において実施例3
については第1の加熱時の圧力が無加圧のものと静電容
量が最大となった圧力3.0kg/cm2 のものとの結
果を記載してある。図6の結果から、実施例1は、バイ
ンダが無く、しかも加熱焼成時に加圧しなくても比較例
と同等の性能となることがわかり、実施例2は加圧・加
熱焼成を行うことにより比較例に比し1.3〜1.6倍
の静電容量を得られ、実施例3は加圧、水蒸気雰囲気中
で仮焼きをし、成形焼成後にマイクロ波処理を施すこと
により比較例の約3倍の容量増加につながることが分か
った。マイクロ波を使わない場合は、大気中において2
00℃で1h程熱処理を行うことで同じになることが分
かっている。ここでは時間を短くできるマイクロ波を用
いた。さらに、実施例4及び5については実施例3と同
等の容量であることが分かった。実施例4及び5におい
てハロゲンを含まない樹脂としてPBTを例示したが、
ポリエチレンテレフタレート、ポリシクロヘキサンテレ
フタレートについても電気二重層コンデンサの電極を製
造し、そのコンデンサ性能を測定した結果、実施例4、
5と同等の性能を得ることができた。また、実施例4で
は、塩化水素雰囲気中で加圧・加熱処理を実施したが、
フッ素又は臭素又はヨウ素雰囲気中でも実施例4と同等
の性能が得られた。さらに、実施例5において樹脂と混
合する溶液を塩酸水溶液の代わりに、フッ素又は臭素又
はヨウ素の水溶液を用いたものについても実施例5と同
等の性能を得ることができた。ここで、比較のため実施
例4において、塩化水素雰囲気の代わりに硫酸雰囲気で
処理したもの、実施例5において、塩酸水溶液の代わり
に希硫酸を混合したものをそれぞれ試作し電気二重層コ
ンデンサの電極を製造し、そのコンデンサ性能を測定し
たが、いずれも実施例4、5に比較し20〜40%低い
静電容量であった。以上のことから、電気二重層コンデ
ンサの電極としてハロゲンを含む熱可塑性樹脂を原材料
とするか、ハロゲンを含まない熱可塑性樹脂では製造工
程において適切な時期に適切な方法でハロゲンを添加す
ることにより静電容量の大なる電極を製造できることが
判明した。
FIG. 6 shows the experimental results of the capacitance of the electric double layer capacitor of these electrodes. Embodiment 3 in FIG.
The results are described for the case where the pressure at the time of the first heating is non-pressurized and the case where the capacitance is 3.0 kg / cm <2> at which the capacitance is maximized. From the results shown in FIG. 6, it was found that Example 1 had no binder, and had the same performance as the comparative example without pressurizing during heating and firing. A capacitance of 1.3 to 1.6 times as large as that of the example can be obtained. In the example 3, the calcination is performed under pressure and in a steam atmosphere, and a microwave treatment is performed after the forming and firing. It has been found that this leads to a three-fold increase in capacity. If microwaves are not used, 2
It is known that the same result can be obtained by performing the heat treatment at 00 ° C. for about 1 hour. Here, a microwave capable of shortening the time was used. Further, it was found that the capacities of Examples 4 and 5 were equivalent to those of Example 3. In Examples 4 and 5, PBT was exemplified as a resin containing no halogen.
For polyethylene terephthalate and polycyclohexane terephthalate, electrodes of an electric double layer capacitor were manufactured, and the performance of the capacitor was measured.
A performance equivalent to 5 was obtained. In Example 4, the pressure and heat treatment was performed in a hydrogen chloride atmosphere.
Performance equivalent to that of Example 4 was obtained even in a fluorine, bromine, or iodine atmosphere. Furthermore, the same performance as in Example 5 could be obtained also in the case of using a solution mixed with the resin in Example 5 instead of the aqueous hydrochloric acid solution, using an aqueous solution of fluorine, bromine, or iodine. Here, for comparison, in Example 4, a sample treated with a sulfuric acid atmosphere instead of a hydrogen chloride atmosphere, and in Example 5, a mixture of dilute sulfuric acid instead of a hydrochloric acid aqueous solution were trial-produced. Was manufactured, and the capacitor performance was measured. In each case, the capacitance was lower by 20 to 40% than in Examples 4 and 5. Based on the above, static electricity can be obtained by using a halogen-containing thermoplastic resin as a raw material for the electrodes of an electric double layer capacitor, or adding a halogen by a suitable method at an appropriate time in the manufacturing process of a thermoplastic resin containing no halogen. It has been found that an electrode having a large capacitance can be manufactured.

【0018】図7に実施例3で第1の加熱工程の加圧力
を変化させた場合の静電容量を、図8に第1の加熱工程
の加圧力を変化させた場合の全表面積に対する細孔径2
0オングストローム以上の細孔の表面積の割合を示す。
図7から第1の加熱工程の加圧力を変化させた場合、静
電容量は圧力3.0kg/cm2 で最大を示し、無加圧
及び圧力10kg/cm2 以上では容量が最小であるこ
とが分かった。また、図8から第1の加熱工程の加圧力
を変化させた場合、全表面積に対する細孔径20オング
ストローム以上の細孔の表面積の割合は圧力3.0kg
/cm2 で最小を示し、無加圧及び圧力10kg/cm
2 以上では全表面積に対する細孔径20オングストロー
ム以上の細孔の表面積の割合が大であることが分かっ
た。ちなみに直径が20オングストローム以上である細
孔の表面積に注目した理由は、細孔径の分類として20
オングストロームを境とすることが一般に行われている
ためである。例えば、1972年には、IUPAC(In
ternational Unionof Pore and Applied Chemistry )
により、マクロ孔:500オングストローム以上、メソ
孔:500〜20オングストローム、ミクロ孔:20〜
8オングストローム、サブミクロ孔:8オングストロー
ム以下という細孔の分類が定められている。
FIG. 7 shows the capacitance when the pressure in the first heating step is changed in the third embodiment, and FIG. 8 shows the fine capacitance with respect to the total surface area when the pressure in the first heating step is changed. Hole diameter 2
The ratio of the surface area of pores of 0 Å or more is shown.
FIG. 7 shows that when the pressing force in the first heating step was changed, the capacitance was maximum at a pressure of 3.0 kg / cm 2, and was minimum at no pressure and at a pressure of 10 kg / cm 2 or more. Was. When the pressure in the first heating step was changed from FIG. 8, the ratio of the surface area of the pores having a pore diameter of 20 Å or more to the total surface area was 3.0 kg.
/ Cm2, minimum pressure, no pressure and pressure 10kg / cm2
In the case of 2 or more, it was found that the ratio of the surface area of pores having a pore diameter of 20 Å or more to the total surface area was large. Incidentally, the reason for paying attention to the surface area of pores having a diameter of 20 angstroms or more is as follows.
This is because Angstrom is commonly used as a boundary. For example, in 1972, IUPAC (In
ternational Unionof Pore and Applied Chemistry)
Macropore: 500 Å or more, mesopore: 500 to 20 Å, micropore: 20 to
8 angstrom, sub-micropore: Classification of pores of 8 angstrom or less is defined.

【0019】図9に、上記実施例3の第1の加熱工程の
加圧力が無加圧のものと、圧力3.0kg/cm2 のも
の、及び7種類の市販活性炭A〜Gの全表面積に対する
細孔径20オングストローム以上の細孔の表面積の割合
と、静電容量を示す。図10は図9のデータをグラフで
示したもので、横軸は全表面積に対する細孔径20オン
グストローム以上の細孔の表面積の割合を、縦軸は静電
容量である。これらの図から全表面積に対する細孔径2
0オングストローム以上の細孔の表面積の割合が10%
以下で静電容量の増加が顕著であることが分かった。
FIG. 9 shows that the pressing force in the first heating step of the third embodiment is not pressurized, the pressure is 3.0 kg / cm 2, and the total surface area of seven types of commercially available activated carbons A to G is shown. The ratio of the surface area of pores having a pore diameter of 20 angstroms or more and the capacitance are shown. FIG. 10 is a graph of the data of FIG. 9, wherein the horizontal axis represents the ratio of the surface area of the pores having a pore diameter of 20 Å or more to the total surface area, and the vertical axis represents the capacitance. From these figures, the pore size 2 with respect to the total surface area
The ratio of the surface area of pores of 0 Å or more is 10%
It was found that the increase in capacitance was remarkable below.

【0020】[0020]

【発明の効果】上述のように、この発明によれば、樹脂
材料を圧力範囲0.01〜10kg/cm2 の雰囲気
で、かつその樹脂の融点温度以上で、かつ酸化反応が始
まる温度以下、で加熱し仮焼きすることにより、材料中
の適当量の揮発成分を残した状態で焼成を行うので、バ
インダを使用することなく、成形電極を製造することが
でき、より大容量のコンデンサを提供することができ
る。また、高性能の電極が要求される場合は、樹脂材料
を圧力範囲0.01〜10kg/cm2 の雰囲気で、か
つその樹脂の融解(軟化流動)に伴う吸熱反応が終了す
る温度以上で、かつ酸化反応が始まる温度以下、で加熱
し仮焼きし、その仮焼きした樹脂を同時加圧・加熱焼成
することにより得ることができる。上記樹脂材料として
は、ハロゲンを含む熱可塑性樹脂が最適であるが、ハロ
ゲンを含まない熱可塑性樹脂についても、適切な手段で
ハロゲンを添加することによりハロゲンを含む樹脂と同
等な性能を発揮する成形電極を製造することができる。
第一の加熱温度を「その樹脂の融解(軟化流動)に伴う
吸熱反応が終了する温度以上」とする理由は、樹脂の融
解が終了する温度以下で加熱を行うと、炭素内部の細孔
が潰されてしまい表面積が稼げないからである。さら
に、バインダを使用して成形した電極ではバインダが劣
化する問題点があるのに対し、この発明の電極にはその
欠点がない。さらに、仮焼き工程を水蒸気雰囲気中で熱
処理を行うことにより静電容量のさらなる向上ができ
る。
As described above, according to the present invention, the resin material is placed in an atmosphere having a pressure range of 0.01 to 10 kg / cm @ 2, at a temperature not lower than the melting point of the resin and not higher than the temperature at which the oxidation reaction starts. By heating and calcining, firing is performed with an appropriate amount of volatile components remaining in the material, so that a molded electrode can be manufactured without using a binder, and a capacitor with a larger capacity is provided. be able to. When a high-performance electrode is required, the resin material is placed in an atmosphere having a pressure range of 0.01 to 10 kg / cm 2, at a temperature not lower than the temperature at which the endothermic reaction accompanying melting (softening flow) of the resin is completed, and It can be obtained by heating and calcining at a temperature not higher than the temperature at which the oxidation reaction starts, and simultaneously calcining and calcining the calcined resin. As the above-mentioned resin material, a thermoplastic resin containing halogen is most suitable. However, a thermoplastic resin containing no halogen also exhibits the same performance as a resin containing halogen by adding halogen by an appropriate means. Electrodes can be manufactured.
The reason why the first heating temperature is set to “above the temperature at which the endothermic reaction accompanying the melting (softening flow) of the resin ends” is that if heating is performed at a temperature below the temperature at which the melting of the resin ends, the pores inside the carbon become It is because it is crushed and the surface area cannot be gained. Further, while an electrode formed using a binder has a problem in that the binder is deteriorated, the electrode of the present invention has no disadvantage. Furthermore, by performing the heat treatment in the steam atmosphere in the calcining step, the capacitance can be further improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の実施例1の多孔質炭素成形体の製造
過程を示す工程図である。
FIG. 1 is a process chart showing a manufacturing process of a porous carbon molded body of Example 1 of the present invention.

【図2】この発明の実施例2の多孔質炭素成形体の製造
過程を示す工程図である。
FIG. 2 is a process chart showing a production process of a porous carbon molded body according to Embodiment 2 of the present invention.

【図3】この発明の実施例3の多孔質炭素成形体の製造
過程を示す工程図である。
FIG. 3 is a process chart showing a manufacturing process of a porous carbon molded body according to Embodiment 3 of the present invention.

【図4】この発明の実施例4の多孔質炭素成形体の製造
過程を示す工程図である。
FIG. 4 is a process chart showing a process for producing a porous carbon molded body according to Example 4 of the present invention.

【図5】この発明の実施例5の多孔質炭素成形体の製造
過程を示す工程図である。
FIG. 5 is a process chart showing a manufacturing process of a porous carbon molded body of Example 5 of the present invention.

【図6】この発明の実施例の多孔質炭素成形体の電気的
性能を実験した一デ−タを示す図である。
FIG. 6 is a view showing one data obtained by testing the electrical performance of the porous carbon molded body according to the embodiment of the present invention.

【図7】この発明の実施例3の多孔質炭素成形体の第1
の加熱工程の加圧力を変化させた場合の静電容量を表す
図である。
FIG. 7 shows a first example of the porous carbon molded body according to the third embodiment of the present invention.
FIG. 6 is a diagram illustrating capacitance when the pressure in the heating step is changed.

【図8】この発明の実施例3の多孔質炭素成形体の第1
の加熱工程の加圧力を変化させた場合の全表面積に対す
る細孔径20オングストローム以上の細孔の表面積の割
合を表す図である。
FIG. 8 shows a first example of the porous carbon molded body according to the third embodiment of the present invention.
FIG. 4 is a diagram showing the ratio of the surface area of pores having a pore diameter of 20 Å or more to the total surface area when the pressure in the heating step is changed.

【図9】この発明の実施例3の多孔質炭素成形体の第1
の加熱工程の加圧力が無加圧のものと、圧力3.0kg
/cm2 のもの、及び7種類の市販活性炭A〜Gの全表
面積に対する細孔径20オングストローム以上の細孔の
表面積の割合と、静電容量を示す。
FIG. 9 shows a first example of the porous carbon molded body according to the third embodiment of the present invention.
Pressure in the heating process of no pressure and 3.0 kg
/ Cm 2, and the ratio of the surface area of pores having a pore diameter of 20 Å or more to the total surface area of seven types of commercially available activated carbons A to G, and the capacitance.

【図10】図9のデータをグラフで示したものである。FIG. 10 is a graph showing the data of FIG. 9;

【図11】この発明の実施例の多孔質炭素成形体の製造
過程の温度パタ−ンを示す図である。
FIG. 11 is a diagram showing a temperature pattern in a process of manufacturing a porous carbon molded body according to an embodiment of the present invention.

【図12】大気中での加熱による樹脂の質量変化と反応
熱の実験結果を示すグラフである。
FIG. 12 is a graph showing experimental results of a change in mass of a resin due to heating in the atmosphere and a heat of reaction.

【図13】窒素ガス中での加熱による樹脂の質量変化と
反応熱の実験結果を示すグラフである。
FIG. 13 is a graph showing experimental results of a change in resin mass and a heat of reaction caused by heating in a nitrogen gas.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01G 9/058 C04B 35/52 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) H01G 9/058 C04B 35/52

Claims (8)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ハロゲンを含む熱可塑性樹脂を原料とし
て、その樹脂をその樹脂の軟化開始温度以上で、かつ酸
化反応が始まる温度以下の第1の加熱温度で、圧力範囲
0.01〜10kg/cm 2 の雰囲気で加熱し仮焼き樹
脂を製造する工程と、その仮焼き樹脂を常温まで冷却し
粉末にし仮焼き粉末樹脂を製造する工程と、その仮焼き
粉末樹脂を加圧成形する工程と、前記樹脂の酸化反応が
始まる温度以上の第2の加熱温度で加熱し成形炭素体を
得る製造工程と、からなることを特徴とする電気二重層
コンデンサ電極の製造方法。
1. A pressure range of a thermoplastic resin containing a halogen as a raw material at a first heating temperature not lower than a softening start temperature of the resin and not higher than a temperature at which an oxidation reaction starts.
A step of producing a calcined resin by heating in an atmosphere of 0.01 to 10 kg / cm 2 , a step of cooling the calcined resin to room temperature to powder and producing a calcined powder resin, and adding the calcined powder resin. 2. A method for producing an electrode for an electric double layer capacitor, comprising: a step of pressure molding; and a step of producing a molded carbon body by heating at a second heating temperature equal to or higher than a temperature at which an oxidation reaction of the resin starts.
【請求項2】前記第1の加熱温度が、その樹脂の融解
(軟化流動)に伴う吸熱反応が終了する温度以上で、か
つ酸化反応が始まる温度以下の温度であることを特徴と
する請求項1に記載の電気二重層コンデンサ電極の製造
方法。
2. The method according to claim 1, wherein the first heating temperature is equal to or higher than the temperature at which the endothermic reaction accompanying the melting (softening flow) of the resin is completed and equal to or lower than the temperature at which the oxidation reaction starts. 2. The method for producing an electric double layer capacitor electrode according to item 1.
【請求項3】 前記樹脂材料がポリ塩化ビニリデン樹脂
であることを特徴とする請求項1又は2記載の電気二重
層コンデンサ電極の製造方法。
3. A process according to claim 1 or 2, wherein the electric double layer capacitor electrode, wherein the resin material is polyvinylidene chloride resin.
【請求項4】 ハロゲンを含まない熱可塑性樹脂を原料
として、その樹脂をその樹脂の融解(軟化流動)に伴う
吸熱反応が終了する温度以上で、かつ酸化反応が始まる
温度以下の第1の加熱温度で、圧力範囲0.01〜10
kg/cm 2 の雰囲気で加熱し仮焼き樹脂を製造する工
程と、その仮焼き樹脂を常温まで冷却し粉末にし仮焼き
粉末樹脂を製造する工程と、その仮焼き粉末樹脂を加圧
成形する工程と、前記樹脂の酸化反応が始まる温度以上
の第2の加熱温度で加熱し成形炭素体を得る製造工程と
からなり、前記仮焼き粉末樹脂を製造する工程の前又は
前記仮焼き粉末樹脂を製造する工程中にハロゲンを加え
ることを特徴とする電気二重層コンデンサ電極の製造方
法。
4. A raw material comprising a halogen-free thermoplastic resin.
As the resin melts (softens and flows)
Above the temperature at which the endothermic reaction ends, and the oxidation reaction starts
At a first heating temperature below the temperature, a pressure range of 0.01 to 10
Process to produce calcined resin by heating in an atmosphere of kg / cm 2
Cool the calcined resin down to room temperature to powder and calcine
Powder resin manufacturing process and pressurizing the calcined powder resin
Molding step and the temperature at which the oxidation reaction of the resin starts
A heating step of heating at the second heating temperature to obtain a molded carbon body;
Consisting of, before the step of producing the calcined powder resin or
Adding halogen during the process of producing the calcined powder resin
For manufacturing electric double layer capacitor electrodes
Law.
【請求項5】 前記仮焼き樹脂の製造工程を水蒸気雰囲
気中で行うことを特徴とする請求項1〜4のいずれかに
記載の電気二重層コンデンサ電極の製造方法。
5. The method for producing an electric double layer capacitor electrode according to claim 1, wherein the step of producing the calcined resin is performed in a steam atmosphere.
【請求項6】 前記第1の加熱温度が200℃から50
0℃であることを特徴とする請求項1〜5のいずれかに
記載の電気二重層コンデンサ電極の製造方法。
6. The method according to claim 1, wherein the first heating temperature is from 200 ° C. to 50 ° C.
The method for producing an electric double layer capacitor electrode according to any one of claims 1 to 5, wherein the temperature is 0 ° C.
【請求項7】 前記第2の加熱温度が500℃から90
0℃であることを特徴とする請求項1〜6のいずれかに
記載の電気二重層コンデンサ電極の製造方法。
7. The method according to claim 7, wherein the second heating temperature is from 500 ° C. to 90 ° C.
The method for producing an electric double layer capacitor electrode according to any one of claims 1 to 6, wherein the temperature is 0 ° C.
【請求項8】 請求項1〜7のいずれかに記載の製造方
法によって製造された電気二重層コンデンサの電極であ
って、該電極は細孔径20オングストローム以上細孔
が、前記電極の細孔の全表面積に占める割合が10%以
下であることを特徴とする電気二重層コンデンサの電
極。
8. The production method according to claim 1,
Electrode of an electric double layer capacitor manufactured by
The electrode of the electric double layer capacitor, wherein the ratio of the pores having a pore diameter of 20 angstroms or more to the total surface area of the pores of the electrode is 10% or less.
JP34527695A 1995-03-30 1995-12-07 Electric double layer capacitor electrode and method of manufacturing the same Expired - Fee Related JP3537106B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34527695A JP3537106B2 (en) 1995-03-30 1995-12-07 Electric double layer capacitor electrode and method of manufacturing the same

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP7409995 1995-03-30
JP7-161300 1995-06-27
JP7-74099 1995-06-27
JP16130095 1995-06-27
JP34527695A JP3537106B2 (en) 1995-03-30 1995-12-07 Electric double layer capacitor electrode and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH0974053A JPH0974053A (en) 1997-03-18
JP3537106B2 true JP3537106B2 (en) 2004-06-14

Family

ID=27301414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34527695A Expired - Fee Related JP3537106B2 (en) 1995-03-30 1995-12-07 Electric double layer capacitor electrode and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3537106B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100979641B1 (en) * 2002-02-06 2010-09-02 터치스톤 리서치 래버러토리 리미티드 Microwave assisted treatment of carbon foam

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001118753A (en) 1999-10-21 2001-04-27 Matsushita Electric Ind Co Ltd Activated carbon for electric double layered capacitor and manufacturing method therefor
ES2741602T3 (en) * 2014-01-21 2020-02-11 Cabot Corp Activated carbon of fine particle size
US11355741B2 (en) * 2018-12-20 2022-06-07 Ppg Industries Ohio, Inc. Battery electrode coatings applied by waterborne electrodeposition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100979641B1 (en) * 2002-02-06 2010-09-02 터치스톤 리서치 래버러토리 리미티드 Microwave assisted treatment of carbon foam

Also Published As

Publication number Publication date
JPH0974053A (en) 1997-03-18

Similar Documents

Publication Publication Date Title
Liu et al. Ultrafast porous carbon activation promises high‐energy density supercapacitors
JP6071261B2 (en) Porous carbon material, method for producing the same, and electric double layer capacitor using the same
JP5041351B2 (en) Method for producing negative electrode active material for lithium ion secondary battery and negative electrode active material for lithium ion secondary battery
Merin et al. Biomass‐derived activated carbon for high‐performance supercapacitor electrode applications
JP3537106B2 (en) Electric double layer capacitor electrode and method of manufacturing the same
CN110577207A (en) preparation method of nitrogen and phosphorus co-doped carbon nanosheet
KR101956993B1 (en) High performance mesoporous activated carbon and method for preparing the same
KR101484304B1 (en) Graphene coated with aluminum oxide, preparative method threrefor and nano-composite containing the same
JP2000138140A (en) Manufacture of carbon porous body for electric double layer capacitor polarizable electrode
KR102177976B1 (en) Method for manufacturing graphene composite, eletrode active material and secondary battery including the same
Yan et al. A reactive template synthesis of hierarchical porous carbon and its application to supercapacitor electrodes
US11043338B2 (en) Manufacturing method of porous composite electrode and organic removal method of porous composite electrode
KR102040379B1 (en) Method for manufacturing activated carbon for electrode material
JPH09213590A (en) Active carbon for electrode of electric double layer capacitor and its manufacture
JP2003203829A (en) Active carbon for electric double-layer capacitor, and method for manufacturing the same
EP0735554A2 (en) Electrode for electric double layer capacitor and method of manufacturing the same
JP4096653B2 (en) Method for producing activated carbon, polarizable electrode and electric double layer capacitor
JPH11307405A (en) Electric double layer capacitor and electrode and activated carbon and its manufacture
Qiu et al. Graphene‐containing ordered mesoporous carbons synthesized by one‐pot aqueous route and its electrochemical performance
KR102539683B1 (en) Preparation method for activated carbon with multi pore structure and activated carbon with multi pore structure prepared by the same
JP3527789B2 (en) Electrode for electric double layer capacitor and its manufacturing method
JP7130750B2 (en) Manufacturing method of activated carbon for electrode material
JPH09171946A (en) Electric double-layered capacitor electrode and manufacture thereof
JP2006216748A (en) Carbon composite powder for electrode for electric dipole layer capacitor and manufacturing method for carbon composite powder and electric dipole layer capacitor using carbon composite powder
KR101958302B1 (en) Method of Grapheme Electrode For Supercapacitor

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040311

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040315

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080326

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090326

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090326

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100326

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100326

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100326

Year of fee payment: 6

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100326

Year of fee payment: 6

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100326

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100326

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110326

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110326

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120326

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120326

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140326

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees