JPH097154A - Magnetic recording medium and magnetic recorder using the same - Google Patents

Magnetic recording medium and magnetic recorder using the same

Info

Publication number
JPH097154A
JPH097154A JP15737195A JP15737195A JPH097154A JP H097154 A JPH097154 A JP H097154A JP 15737195 A JP15737195 A JP 15737195A JP 15737195 A JP15737195 A JP 15737195A JP H097154 A JPH097154 A JP H097154A
Authority
JP
Japan
Prior art keywords
magnetic
recording medium
magnetic recording
glass substrate
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15737195A
Other languages
Japanese (ja)
Inventor
Kazusukatsu Igarashi
万壽和 五十嵐
Tomoo Yamamoto
朋生 山本
Yuzuru Hosoe
譲 細江
Nobuyuki Inaba
信幸 稲葉
Masaaki Futamoto
正昭 二本
Kiwamu Tanahashi
究 棚橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP15737195A priority Critical patent/JPH097154A/en
Publication of JPH097154A publication Critical patent/JPH097154A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)
  • Magnetic Heads (AREA)

Abstract

PURPOSE: To obtain a magnetic recording medium which has stable magnetic characteristics even if a substrate temp. is raised and is capable of executing a high- density recording by using a glass substrate of which the value satisfying a specific condition equation attains a specific value or above at the time of IR rays of a required wavelength are passed through the substrate. CONSTITUTION: This magnetic recording medium is obtd. by laminating a ground surface layer, magnetic layer and protective layer by vapor deposition on the glass substrate 1 which effectively absorbs IR rays to attain >=0.3[1/cm] in the value satisfying the conditions of the equation at the time of allowing the IR rays of the wavelength of 3μ to pass the substrate perpendicularly thereto via a heater 5 and has the thickness (d) ad reflectivity R stable to the temp. rise. Since such substrate 1 is used, the substrate 1 is stabilized even at the time of the temp. rise by heating, vapor deposition, etc., and the formation of magnetic layers having stable characteristics is possible. The magnetic recording medium which is capable of making high-density recording of >=1 giga bit per 1 square inch by using magnetoresistance(MR) elements, etc., and has the stable magnetic characteristics is obtd. In the equation, Io: the intensity of incident light, I: the intensity of transmitted light.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、磁気記録媒体およびこ
れを用いた磁気記憶装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic recording medium and a magnetic storage device using the same.

【0002】[0002]

【従来の技術】情報化社会の進行と共に、日常的に扱う
情報量は増加の一途を辿っている。これに伴って、磁気
記録装置に対する高密度,高記録容量化の要求が強くな
っている。代表的な磁気記録装置である磁気ディスク装
置を高密度化していった場合、一般に、従来の電磁誘導
型磁気ヘッドでは、再生出力が低下し、再生が困難にな
る。このため、特開昭51−44917 号公報に記載の様に、
記録用磁気ヘッドと再生用磁気ヘッドを別にし、再生用
磁気ヘッドとして、高記録密度化した場合にも高い出力
の得られる磁気抵抗効果を利用した磁気ヘッドを用いる
ことが検討されている。この磁気抵抗効果型の磁気ヘッ
ドは再生出力が高く、かつ、ヘッドの抵抗が低いため発
生する熱雑音が小さい。
2. Description of the Related Art With the progress of the information society, the amount of information handled on a daily basis is steadily increasing. Along with this, there is a strong demand for higher density and higher recording capacity for magnetic recording devices. When the density of a magnetic disk device, which is a typical magnetic recording device, is increased, in general, the reproduction output of a conventional electromagnetic induction type magnetic head is reduced, making reproduction difficult. Therefore, as described in JP-A-51-44917,
It is considered to use a magnetic head that utilizes a magnetoresistive effect that can obtain a high output even when the recording density is increased, by separating the recording magnetic head and the reproducing magnetic head. The magnetoresistive effect type magnetic head has a high reproduction output and a low head resistance, so that the thermal noise generated is small.

【0003】このため、従来、電磁誘導型磁気ヘッドか
ら発生する大きなノイズに隠れていた磁気記録媒体に起
因するノイズが装置全体のノイズに対して大きな割合を
占めるようになる。したがって、磁気抵抗効果型磁気ヘ
ッドを用いて高記録密度化を実現するには、磁気記録媒
体に起因するノイズ(媒体ノイズ)を低減する必要があ
る。媒体ノイズの低減化には媒体の保磁力を高めてやる
必要があるが、パソコン等に使われる耐衝撃性の高いガ
ラス基板を用いると十分な保磁力が得られないという問
題があった。
For this reason, the noise caused by the magnetic recording medium, which is conventionally hidden by the large noise generated from the electromagnetic induction type magnetic head, accounts for a large proportion of the noise of the entire apparatus. Therefore, in order to realize high recording density using the magnetoresistive magnetic head, it is necessary to reduce noise (medium noise) caused by the magnetic recording medium. Although it is necessary to increase the coercive force of the medium in order to reduce the medium noise, there is a problem that a sufficient coercive force cannot be obtained when a glass substrate having high impact resistance used for personal computers and the like is used.

【0004】これに対し、特願平6−49090号明細書で、
ガラス基板上に導電膜を形成し、これにバイアス電圧を
印加しながら磁性膜を成膜して必要な保磁力を確保する
方法を提案し、さらに特願平6−272480 号明細書で、磁
気ディスク全面にわたって安定したバイアス電圧を印加
するための方法を示した。
On the other hand, in Japanese Patent Application No. 6-49090,
We proposed a method of forming a conductive film on a glass substrate and applying a bias voltage to it to form a magnetic film to secure the necessary coercive force. A method for applying a stable bias voltage over the entire surface of the disk has been shown.

【0005】[0005]

【発明が解決しようとする課題】ガラス基板上に成膜す
る方法は、媒体ノイズの低減化のため基板温度を上げて
成膜すると、磁気特性にばらつきがあり、さらに磁気デ
ィスク面内で磁気特性に分布が発生するという問題があ
った。
In the method of forming a film on a glass substrate, when the film is formed by raising the substrate temperature in order to reduce the medium noise, there are variations in the magnetic characteristics, and further, the magnetic characteristics in the plane of the magnetic disk. There was a problem that there was a distribution in.

【0006】本発明の目的は、ガラス基板を用い、基板
温度を上げても安定な磁気特性を有する高密度記録に好
適な磁気記録媒体、およびこれを用いて1平方インチあ
たり1ギガビット以上の記録密度を実現する磁気記録装
置を提供することにある。
An object of the present invention is to use a glass substrate, a magnetic recording medium suitable for high density recording which has stable magnetic characteristics even when the substrate temperature is raised, and a recording of 1 Gbit or more per square inch using the same. It is to provide a magnetic recording device that realizes a high density.

【0007】[0007]

【課題を解決するための手段】上記目的は、基板に用い
るガラスの赤外線の吸収率を高めることによって達成さ
れる。上記磁気記録媒体と、磁気記録媒体駆動部と、磁
気ヘッドと、磁気ヘッド駆動部と、記録再生信号処理系
を有する磁気記録装置で、再生用磁気ヘッドとしてMR
(磁気抵抗)型又はGMR(巨大磁気抵抗)型磁気ヘッ
ドを用いることにより、1平方インチあたり1ギガビッ
ト以上の記録密度を実現する磁気記録装置を提供するこ
とが可能となる。
The above object can be achieved by increasing the infrared absorption rate of the glass used for the substrate. In the magnetic recording device having the magnetic recording medium, the magnetic recording medium drive section, the magnetic head, the magnetic head drive section, and the recording / reproducing signal processing system, an MR is used as a reproducing magnetic head.
By using a (magnetoresistance) type or GMR (giant magnetoresistance) type magnetic head, it is possible to provide a magnetic recording device that realizes a recording density of 1 gigabit per square inch or more.

【0008】[0008]

【作用】図1を用いて本発明の原理を説明する。加熱ヒ
ータ5より放射された入射光2(強度Io)は、厚さ
d,屈折率nのガラス1を通って透過光3となる。この
際、透過光3(強度I)の強度は、ガラス1へ入る時と
ガラス1から出る時に反射4(反射率R)し、さらにガ
ラス1内で吸収されるため、
The principle of the present invention will be described with reference to FIG. Incident light 2 (intensity Io) emitted from the heater 5 passes through the glass 1 having the thickness d and the refractive index n to become the transmitted light 3. At this time, the intensity of the transmitted light 3 (intensity I) is reflected 4 (reflectance R) when entering the glass 1 and when exiting the glass 1, and is further absorbed in the glass 1.

【0009】[0009]

【数1】 I=Io(1−R)2EXP(−Cd) …(数1) へと減衰する。Cは定数である。ガラス基板の温度上昇
に寄与するのは、ガラス1内での吸収量
## EQU1 ## I = Io (1-R) 2 EXP (-Cd) (Equation 1) C is a constant. The amount of absorption in the glass 1 contributes to the temperature rise of the glass substrate.

【0010】[0010]

【数2】 Iabs=Io(1−R)(1−EXP(−Cd)) …(数2) である。## EQU00002 ## Iabs = Io (1-R) (1-EXP (-Cd)) (Equation 2).

【0011】ガラス基板の加熱で、磁気特性が不安定な
理由について検討した結果、従来基板に用いているガラ
ス1の赤外線の透過性が高いため、基板を加熱しても温
度上昇が緩やかで、ばらつきが発生するとの結論に達し
た。そこで、ガラス基板を安定に加熱する方法を種々検
討し、ガラスの赤外線の吸収率を高くすることが有効で
あることを見いだした。特に、加熱ヒータ5の赤外線ス
ペクトル強度のピークにおけるガラスの赤外線吸収が著
しい場合に、加熱時間が短く、かつ安定した加熱が実現
できた。
As a result of investigating the reason why the magnetic characteristics are unstable when the glass substrate is heated, the glass 1 used for the conventional substrate has a high infrared transmittance, so that the temperature rise is gentle even when the substrate is heated. We have come to the conclusion that variability will occur. Therefore, various methods of stably heating the glass substrate have been studied, and it has been found that increasing the infrared absorption rate of glass is effective. In particular, when the infrared absorption of the glass was remarkable at the peak of the infrared spectrum intensity of the heater 5, the heating time was short and stable heating could be realized.

【0012】図2は、加熱ヒータに1kW,1.5 kW
の電力を投入したときの、赤外線放射強度の波長依存性
を示したものである。それぞれの電力に対してほぼ、8
00K,1000Kの黒体放射で近似できる。図より、
どちらの分布でもほぼ、波長3〜3.5 μにピークがあ
り、この波長の赤外線を有効に吸収させることが重要で
あることがわかる。
FIG. 2 shows that the heater has 1 kW and 1.5 kW.
It shows the wavelength dependence of the infrared radiation intensity when the power is applied. 8 for each power
It can be approximated by blackbody radiation of 00K and 1000K. From the figure,
In either distribution, there is a peak at a wavelength of 3 to 3.5 μ, and it can be seen that it is important to effectively absorb infrared rays having this wavelength.

【0013】数2によれば、吸収率を上げるには、定数
Cを大きくしてやればよい。通常の加熱ヒータを用い、
1分間で基板温度を室温から300℃程度に加熱するに
は、この値が0.3[1/cm]以上である必要がある。
According to the equation (2), the constant C may be increased in order to increase the absorption rate. Using a normal heater,
In order to heat the substrate temperature from room temperature to about 300 ° C. in 1 minute, this value needs to be 0.3 [1 / cm] or more.

【0014】ガラス基板中に含まれるCo,Ni,C
r,Fe,La,Y,Gd,Yb,Lu,Ce,Sm,
Eu,Tb,Dy,Ho、またはTmなどの遷移金属元
素が1リットルあたり0.01 モル以上含まれると、上
記の温度上昇が得られる。ただし、1リットルあたり
0.5 モルを超えて含まれても吸収率はそれほど増加せ
ず、むしろ、金属が還元されて吸収量が不安定となった
り、表面強化層ができにくくなったりして問題である。
Co, Ni, C contained in the glass substrate
r, Fe, La, Y, Gd, Yb, Lu, Ce, Sm,
When the transition metal element such as Eu, Tb, Dy, Ho, or Tm is contained in an amount of 0.01 mol or more per liter, the above temperature rise can be obtained. However, even if it is contained in an amount of more than 0.5 mol per liter, the absorptivity does not increase so much, and rather the metal is reduced and the absorptivity becomes unstable, or it becomes difficult to form the surface strengthening layer. It's a problem.

【0015】B,P,Vは、Si同様酸化物ガラスの網
目形成成分であり、Siと容易に置換してガラスの主成
分になる。Bが1リットルあたり1モル以上20モル未
満,Pが1リットルあたり0.5モル以上10モル未
満,Vが1リットルあたり0.1モル以上5モル未満で
あると、十分な赤外線吸収量が得られる。特に、Bが含
まれていると硬度が増し、耐食性が向上する。さらに、
アルカリ成分(網目修飾成分)を低減すると、熱膨張係
数が下げられる。Bが含まれていると波長6〜8μ,P
が含まれていると約8μ,Vが含まれていると約1μ
に、赤外線吸収ピークが発生する。Vを含むガラスは、
緑色をしている。ガラスの網目形成成分には、このほか
Ge,Asなどがあるが、これらが含まれていても本発
明の効果に影響はない。
B, P, and V are network-forming components of oxide glass, like Si, and easily replace Si to become the main component of glass. When B is 1 mol or more and less than 20 mols per liter, P is 0.5 mols or more and less than 10 mols per liter, and V is 0.1 mols or more and less than 5 mols per liter, a sufficient infrared absorption amount is obtained. To be In particular, when B is contained, the hardness is increased and the corrosion resistance is improved. further,
When the alkali component (network modification component) is reduced, the coefficient of thermal expansion is lowered. When B is included, the wavelength is 6 to 8 μ, P
Approximately 8μ when V is included and approximately 1μ when V is included
Infrared absorption peak occurs. The glass containing V is
It has a green color. Other components of the glass network include Ge and As, but the inclusion of these does not affect the effect of the present invention.

【0016】ガラス中にLiが含まれていると、Li−
O結合の相互振動エネルギの遷移に基づく吸収で波長4
〜7μの赤外線を吸収しやすくなる。Liが1リットル
あたり0.5 モル以上あれば、基板加熱に十分な吸収率
になるが、10モルを超えるとガラスが不安定となり、
成分が析出したりする。
If Li is contained in the glass, Li-
Absorption based on the transition of mutual vibrational energy of O-bond has a wavelength of 4
It becomes easy to absorb infrared rays of ~ 7μ. If Li is 0.5 mol or more per liter, the absorptivity is sufficient for heating the substrate, but if it exceeds 10 mol, the glass becomes unstable,
Ingredients may precipitate.

【0017】本発明の磁気記録媒体は十分かつ安定な保
磁力を確保できるので、通常のインダクティブ型再生用
磁気ヘッドと組み合わせることにより1平方インチあた
り700メガビット以上、さらにMR(磁気抵抗)型又
はGMR(巨大磁気抵抗)型磁気ヘッドと組み合わせる
ことにより、1平方インチあたり1ギガビット以上の記
録密度を実現する磁気記録装置を提供することが可能と
なる。MR型又はGMR型の磁気ヘッドは高感度なの
で、ヘッド走行方向に測定した残留磁束密度Brと磁性
膜の総膜厚tとの積Brtの値が100Gμ以下で使用
しないと、ヘッドからもノイズが発生してしまう。
Since the magnetic recording medium of the present invention can secure a sufficient and stable coercive force, by combining it with an ordinary inductive type reproducing magnetic head, 700 megabits per square inch or more, and further MR (magnetoresistive) type or GMR type. By combining with a (giant magnetic resistance) type magnetic head, it is possible to provide a magnetic recording device that realizes a recording density of 1 gigabit per square inch or more. Since the MR type or GMR type magnetic head has high sensitivity, noise is also generated from the head unless the value of the product Brt of the residual magnetic flux density Br measured in the head traveling direction and the total thickness t of the magnetic film is 100 Gμ or less. Will occur.

【0018】本発明によると、ガラス基板の加熱が容易
になるので、従来ポリカーボネイト上に室温で成膜して
いた光磁気記録用磁性膜を高温で形成することができ、
異方性磁界Hkを高めることができる。Hkが高いと、
小さな磁化反転領域の形成が可能となるので、本発明の
磁気記録媒体と、磁気記録媒体駆動部と、光発生部と検
出部、およびその駆動部と、記録再生信号処理系を組み
合わせることにより、1平方インチあたり2ギガビット
以上の記録密度を実現する磁気記録装置を提供すること
が可能となる。
According to the present invention, since heating of the glass substrate is facilitated, the magnetic film for magneto-optical recording, which was conventionally formed on polycarbonate at room temperature, can be formed at high temperature.
The anisotropic magnetic field Hk can be increased. When Hk is high,
Since it is possible to form a small magnetization reversal region, by combining the magnetic recording medium of the present invention, the magnetic recording medium drive unit, the light generation unit and the detection unit, and the drive unit, the recording and reproduction signal processing system, It is possible to provide a magnetic recording device that realizes a recording density of 2 gigabits or more per square inch.

【0019】本発明は、加熱されたガラス基板に膜を形
成することによって所定の特性を得るようなすべてのプ
ロセスに対して有効である。
The present invention is effective for all processes in which a desired property is obtained by forming a film on a heated glass substrate.

【0020】[0020]

【実施例】【Example】

(実施例1)以下、本発明の一実施例を図3を用いて説
明する。まず、図のように、厚さ(d=)0.3〜1mmの
両面研磨した平行板強化ガラス1を、対面する加熱ヒー
タ5の中心に平行に配置し、加熱試験を行った。加熱ヒ
ータ5には、1.5kW の電力を投入し、室温からの昇
温率と厚さなどによるばらつきを調べた(加熱特性
値)。表1は、種々の組成からなる板ガラスの加熱特性
値を示したもので、吸収特性値も併せて示してある。
(Embodiment 1) An embodiment of the present invention will be described below with reference to FIG. First, as shown in the figure, a double-sided polished parallel plate tempered glass 1 having a thickness (d =) of 0.3 to 1 mm was arranged in parallel to the center of the facing heater 5, and a heating test was conducted. Electric power of 1.5 kW was applied to the heater 5, and variations due to the rate of temperature increase from room temperature and the thickness were examined (heating characteristic value). Table 1 shows the heating characteristic values of the plate glass having various compositions, and the absorption characteristic values are also shown.

【0021】ただし、吸収特性値Abは、フィルタによ
り得られた波長3μ,半値幅約1μの赤外線をガラス面
に垂直に入射させ、入射強度Ioと透過強度Iを用い
て、式Ab=(1/d)log e(Io(1−R)2/I)より
算出している。このうち、反射率Rは、プルフリヒの方
法により、屈折率nを測定し、式R=(1−n)2/(1+
n)2より求めたが、屈折率はnほかの方法を用いて測定
してもよいし、実際の反射光から反射率を直接算出して
も、ほぼ同じ値が得られる。表1の最初には、現在磁気
ディスクで一般に用いられているNiP−Al基板の加
熱特性値も併せて示している。従来ガラス(試料No.
1)では、吸収特性値Abが0.1 と低いため、温度上
昇はNiP−Al基板の1割程度にすぎない。
However, the absorption characteristic value Ab is expressed by the formula Ab = (1) using the incident intensity Io and the transmission intensity I when infrared rays obtained by the filter and having a wavelength of 3 μ and a half value width of about 1 μ are made incident vertically. / D) loge (Io (1-R) 2 / I). Among them, the reflectance R is obtained by measuring the refractive index n by the Pulfrich method, and using the formula R = (1-n) 2 / (1+
Although it was obtained from n) 2 , the refractive index may be measured by using a method other than n, or substantially the same value can be obtained by directly calculating the reflectance from the actual reflected light. At the beginning of Table 1, the heating characteristic values of the NiP-Al substrate generally used in magnetic disks at present are also shown. Conventional glass (Sample No.
In 1), since the absorption characteristic value Ab is as low as 0.1, the temperature rise is only about 10% that of the NiP-Al substrate.

【0022】[0022]

【表1】 [Table 1]

【0023】表より、試料No.1の従来ガラスの組成
に、Coを微量添加(試料No.2〜4)すると加熱特性値
は著しく向上し、Coが0.01 モル/リットルで従来
ガラスの3倍の温度上昇度が得られた。このときの吸収
特性値Abは、0.3 である。温度上昇度は、Co添加
量がそれほど多くないときには、添加量に比例して大き
くなるが、0.5 モル/リットルを越えると、添加量ほ
ど大きくならず、また、ばらつきも増大する。これは、
金属イオンの凝集がおこり、ガラスの形成過程における
酸化または還元環境の影響が大きく出るためである。
From the table, when a small amount of Co is added to the composition of the conventional glass of sample No. 1 (samples No. 2 to 4), the heating characteristic value is remarkably improved, and the content of Co is 0.01 mol / liter. A temperature rise of 3 times was obtained. The absorption characteristic value Ab at this time is 0.3. When the amount of Co added is not so large, the degree of temperature rise increases in proportion to the amount added, but when it exceeds 0.5 mol / liter, it does not increase as much as the added amount, and the variation also increases. this is,
This is because the aggregation of metal ions occurs, and the influence of the oxidizing or reducing environment in the glass formation process is large.

【0024】同様にしてNi(試料No.5〜7),Cr
(試料No.8〜10),Fe(試料No.11〜13)な
どの3d遷移金属元素を添加しても同等の結果が得られ
た。また、La(試料No.14〜16),Sm(試料N
o.17〜19)やY,Gd,Yb,Lu,Ce,Eu,
Tb,Dy,Ho、またはTmなどの希土類元素を添加
すると、温度上昇度は3d遷移金属元素添加の場合と変
わらないが、温度上昇度のばらつきが低下する。これ
は、主に、4f電子が内核にあるため、ガラスの形成過
程における酸化または還元環境の影響が少ないためであ
る。
Similarly, Ni (sample Nos. 5 to 7), Cr
Similar results were obtained even when 3d transition metal elements such as (Sample No. 8 to 10) and Fe (Sample No. 11 to 13) were added. In addition, La (Sample No. 14 to 16), Sm (Sample N
17-19), Y, Gd, Yb, Lu, Ce, Eu,
When a rare earth element such as Tb, Dy, Ho, or Tm is added, the degree of temperature rise is the same as when the 3d transition metal element is added, but the variation in the degree of temperature rise is reduced. This is mainly because 4f electrons are in the inner core, so that the influence of the oxidizing or reducing environment in the glass formation process is small.

【0025】遷移金属元素は、添加する総量を0.5 モ
ル/リットル以上にすれば、2種類またはそれ以上の組
み合わせでも、同等の結果が得られた。Co添加の場合
には青,Ni添加の場合には黄褐色,Cr添加の場合に
は黄緑,Fe添加の場合には青緑〜褐色に着色し、ま
た、Sm,Ce,Eu,Tb,Dy,Ho,Tm添加の
場合には淡黄色となった。Ceを含む場合には、さらに
微量のTi,V,Cu,Agが含有されていると、紫外
線の照射により色が変化し、温度上昇度も変わるようで
ある。また、ガラス中にClやSが0.2〜0.5モル/
リットル含まれると赤外線の吸収量が増加し、特にFe
が含まれている場合には、数倍になる。また、ガラス中
にCが含まれていると、温度上昇度のばらつきが減少す
るようである。
Equivalent results were obtained with a combination of two or more transition metal elements, provided that the total amount of the transition metal elements added was 0.5 mol / liter or more. When Co is added, it is colored blue, when Ni is added, it is yellowish brown, when Cr is added, it is yellowish green, when Fe is added, it is colored bluish green to brown, and Sm, Ce, Eu, Tb, In the case of adding Dy, Ho and Tm, it became pale yellow. When Ce is contained, if a trace amount of Ti, V, Cu, or Ag is further contained, it seems that the color changes due to the irradiation of ultraviolet rays and the degree of temperature rise also changes. Further, Cl or S in the glass is 0.2 to 0.5 mol /
When it is contained in liters, the absorption of infrared rays increases, especially Fe
If is included, it will be several times. Further, when C is contained in the glass, it seems that the variation in the temperature rise degree is reduced.

【0026】ガラスの網目形成成分であるSiをB,
P,V等で置換(試料No.20〜22)しても赤外線吸収
特性が改善する。Bが1リットルあたり1モル以上20
モル未満,Pが1リットルあたり0.5 モル以上10モ
ル未満,Vが1リットルあたり0.1 モル以上5モル未
満であると、十分な赤外線吸収量が得られる。特に、B
が含まれていると硬度が増し、耐食性が向上する。さら
に、アルカリ成分(網目修飾成分)を低減すると、熱膨
張係数が下げられる。Vを含むガラスは、緑色をしてい
る。このとき、赤外線吸収量の波長依存性を調べると、
Bが含まれていると波長6〜8μ,Pが含まれていると
約8μ,Vが含まれていると約1μで最大となった。ガ
ラスの網目形成成分には、このほかGe,Asなどがあ
るが、これらが含まれていても本発明の効果に影響はな
かった。
Si, which is a glass network forming component, is
Even if it is replaced with P, V, etc. (Sample Nos. 20 to 22), the infrared absorption characteristics are improved. B is 1 mol or more per liter 20
If it is less than 0.5 mol, P is 0.5 mol or more and less than 10 mol per liter, and V is 0.1 mol or more and less than 5 mol per liter, a sufficient infrared absorption amount can be obtained. In particular, B
When included, the hardness increases and the corrosion resistance improves. Furthermore, when the alkali component (network modifying component) is reduced, the coefficient of thermal expansion is lowered. The glass containing V has a green color. At this time, when examining the wavelength dependence of the infrared absorption amount,
When B was contained, the wavelength was 6 to 8 μ, when P was contained, it was about 8 μ, and when V was contained, it was about 1 μ, which was the maximum. Ge, As and the like are also included in the glass network forming component, but the inclusion of these did not affect the effect of the present invention.

【0027】ガラスの網目修飾成分であるNaをLiに
置換(試料No.23)しても赤外線吸収特性が改善す
る。Liが1リットルあたり0.5 モル以上あれば、基
板加熱に十分な吸収率になるが、10モルを超えるとガ
ラスが不安定となり、成分が析出したりする。このと
き、赤外線吸収量の波長依存性を調べると4〜7μで最
大となった。
Even when Na, which is a component for modifying the network of glass, is replaced with Li (Sample No. 23), the infrared absorption characteristics are improved. If the amount of Li is 0.5 mol or more per liter, the absorptivity will be sufficient for heating the substrate, but if it is more than 10 mol, the glass will become unstable and components will precipitate. At this time, when the wavelength dependence of the infrared absorption amount was examined, it became the maximum at 4 to 7 μ.

【0028】次に、Co添加の試料No.3を基板ガラス
1として、図4に示すような多層磁気記録媒体を作成し
た。図3に示した加熱ヒータ5を真空容器にいれ、1k
Wの電力で10秒間加熱した後、導電膜10,磁性膜1
3、および、保護膜16をスパッタリング法により、成
膜し、さらにその上に潤滑層を形成した。ここで、導電
膜10は厚さ5nmのTa膜で、磁性膜13は厚さ20
nmのCo−18at%Cr−8at%Pt+SiO2
金層である。また保護膜16は、厚さ20nmの炭素と
した。潤滑層は吸着性のパーフルオロアルキルエーテル
である。スパッタガスは全膜形成工程でアルゴンを用い
たが、ネオン,キセノン,クリプトン等の希ガスを用い
ると100エルステッド程度の保磁力の増大効果があ
る。また、磁性膜13の形成に先立ち酸素プラズマ処理
を行うとさらに100エルステッド程度の保磁力が増大
する。潤滑層形成前には、カーボン保護膜上にテフロン
微粒子を付着させ、プラズマエッチングし、10nmの
長さのテクスチャを形成してもよい。磁性膜13の材質
としては、CoCrPtの代わりに、CoCrPtTa,C
oPt,CoNi,CoFe,CoCr,CoIr,C
oW,CoRe,CoNiZr,CoCrTa,CoN
iCr,SmCoあるいはYCoを用いた場合にも同等
の効果が得られた。
Next, using Co-added sample No. 3 as the substrate glass 1, a multilayer magnetic recording medium as shown in FIG. 4 was prepared. Put the heater 5 shown in FIG.
After heating for 10 seconds with a power of W, the conductive film 10 and the magnetic film 1
3 and the protective film 16 were formed by a sputtering method, and a lubricating layer was further formed thereon. Here, the conductive film 10 is a Ta film having a thickness of 5 nm, and the magnetic film 13 has a thickness of 20.
nm Co-18 at% Cr-8 at% Pt + SiO 2 alloy layer. The protective film 16 was made of carbon having a thickness of 20 nm. The lubricating layer is an adsorbent perfluoroalkyl ether. Argon was used as the sputtering gas in the entire film forming process, but if a rare gas such as neon, xenon, or krypton is used, the coercive force is increased by about 100 Oersted. If the oxygen plasma treatment is performed prior to the formation of the magnetic film 13, the coercive force of about 100 Oersted is further increased. Before forming the lubricating layer, Teflon fine particles may be attached onto the carbon protective film and plasma-etched to form a texture having a length of 10 nm. As the material of the magnetic film 13, instead of CoCrPt, CoCrPtTa, C
oPt, CoNi, CoFe, CoCr, CoIr, C
oW, CoRe, CoNiZr, CoCrTa, CoN
The same effect was obtained when iCr, SmCo or YCo was used.

【0029】保磁力は、連続して作成した100枚の媒
体で、すべて2150〜2250エルステッドの範囲の
中に入っていた。これは、従来ガラス基板(試料No.
1)を用いたときの1800〜2200エルステッドに
比べて、良好な結果である。また、加熱に関しても、従
来ガラス基板では、5kWの電力で30秒間以上必要で
あったことに比べると、1/15以下の省エネを達成し
ている。基板にはCo添加の試料No.3のほか、試料N
o.2〜19や、他の遷移金属を添加してもよい。ただ
し、この際には、温度上昇度を考慮して、投入電力と加
熱時間を調整する必要がある。
The coercive force was within the range of 2150 to 2250 Oersted for all 100 continuously produced media. This is a conventional glass substrate (Sample No.
This is a good result as compared with 1800 to 2200 Oersted when 1) was used. Regarding heating, the conventional glass substrate achieves energy saving of 1/15 or less as compared with the case where a power of 5 kW was required for 30 seconds or more. For the substrate, in addition to Co-added sample No. 3, sample N
o.2 to 19 and other transition metals may be added. However, in this case, it is necessary to adjust the input power and the heating time in consideration of the temperature rise degree.

【0030】本実施例では、ガラス網目修飾成分として
NaOを用いた例を示したが、Naに代わってK,M
g,Ca,Baなどのアルカリ金属,アルカリ土類金属
またはその混合成分が含まれていても、本発明の効果に
支障はない。ただし、Mg成分が多いと失透するようで
ある。
In this embodiment, an example in which NaO is used as the glass network modifying component is shown, but K and M are used instead of Na.
Even if an alkali metal such as g, Ca, or Ba, an alkaline earth metal, or a mixed component thereof is contained, the effect of the present invention is not hindered. However, it seems that devitrification occurs when the amount of Mg component is large.

【0031】本発明で用いた板ガラスは、すべて化学的
に表面強化を行っており、表面から30〜50μの範囲
でK組成が、より内部に比べて多くなっている。中間成
分のAlが少ないと、この強化層を厚くすることができ
ない。強化層の厚みは、板ガラスの厚みに比べて十分薄
いので、本発明の効果に支障はない。
The plate glass used in the present invention is chemically surface-strengthened, and the K composition in the range of 30 to 50 μm from the surface is larger than that in the interior. If the amount of Al as an intermediate component is small, this reinforcing layer cannot be thickened. Since the thickness of the reinforcing layer is sufficiently smaller than the thickness of the plate glass, the effect of the present invention is not hindered.

【0032】(実施例2)以下、本発明の他の一実施例
を図5を用いて説明する。本実施例の磁気記録媒体は、
図のように、表1のNi添加試料No.6に、さらに微量
のK,Mg,Caを添加した強化ガラス基板1の両面
に、スパッタリング法により形成された、100nm−
Cr導電膜10,30nm−CrTi下地膜12,30
nm−Co−16at%Cr−10at%Pt−3at
%Ta合金磁性膜13、および、20nm−プラズマC
VDによるダイヤモンドライクカーボン保護膜16と、
さらにその上に形成された潤滑層とにより構成される。
潤滑層は吸着性のパーフルオロアルキルエーテルであ
る。X線回折法によると磁性膜は六方晶で、そのc軸は
面内にあることが分かった。Cr導電膜10は、基板よ
り大きめのターゲットを用いてスパッタ成膜した。磁性
膜13の成膜時には、基板保持部3を通して−300ボ
ルトのバイアス電圧を印加した。ダイヤモンドライクカ
ーボン保護膜16は、作業ガスとしてメタンを用いてプ
ラズマCVD法によって作成した。ガラス基板1の加熱
は、スパッタリング成膜の前に、図3に示した加熱ヒー
タ5に1kWの電力を投入し、12秒間行った。
(Embodiment 2) Another embodiment of the present invention will be described below with reference to FIG. The magnetic recording medium of this embodiment is
As shown in the figure, the Ni-added sample No. 6 in Table 1 was further formed on both surfaces of the tempered glass substrate 1 to which a small amount of K, Mg, and Ca was added, by a sputtering method.
Cr conductive film 10, 30 nm-CrTi base film 12, 30
nm-Co-16 at% Cr-10 at% Pt-3 at
% Ta alloy magnetic film 13 and 20 nm-plasma C
Diamond-like carbon protective film 16 by VD,
Further, it is constituted by a lubricating layer formed thereon.
The lubricating layer is an adsorbent perfluoroalkyl ether. According to the X-ray diffraction method, it was found that the magnetic film was a hexagonal crystal and its c-axis was in the plane. The Cr conductive film 10 was formed by sputtering using a target larger than the substrate. At the time of forming the magnetic film 13, a bias voltage of −300 V was applied through the substrate holder 3. The diamond-like carbon protective film 16 was formed by a plasma CVD method using methane as a working gas. The glass substrate 1 was heated for 12 seconds by applying a power of 1 kW to the heater 5 shown in FIG. 3 before the sputtering film formation.

【0033】カー効果を用いて保磁力を測定すると、保
磁力は両面とも2900〜3000エルステッドの範囲
に入っていた。ガラス基板1の面とりをしておくと、保
磁力のばらつきが抑制できる。
When the coercive force was measured by using the Kerr effect, the coercive force was in the range of 2900 to 3000 Oersted on both surfaces. If the glass substrate 1 is chamfered, variations in coercive force can be suppressed.

【0034】次に、記録再生特性を測定した。媒体と磁
気ヘッドの相対速度を12m/s,浮上スペーシングを
50nmとし、実効ギャップ長が350nmの記録用電
磁誘導型薄膜磁気ヘッドと再生用磁気抵抗効果型磁気ヘ
ッドを複合した磁気ヘッドを用いて評価した。その結果
媒体ノイズは、従来ガラス基板を用いた場合に比べて、
約1割低減された。出力半減記録密度(D50)は、従
来ガラス基板を用いた場合の80kFCIに比べて、1
20kFCIへと改善された。この結果、1平方インチ
あたり1ギガビットを越える記録密度で記録再生ができ
ることがわかった。
Next, the recording / reproducing characteristics were measured. Using a magnetic head that combines a recording electromagnetic induction thin-film magnetic head and a reproducing magnetoresistive magnetic head with a relative velocity between the medium and the magnetic head of 12 m / s, a floating spacing of 50 nm, and an effective gap length of 350 nm. evaluated. As a result, the medium noise is lower than that of the conventional glass substrate.
It was reduced by about 10%. Output half density (D50) is 1 compared to 80kFCI when using a conventional glass substrate.
It was improved to 20kFCI. As a result, it was found that recording / reproduction can be performed with a recording density exceeding 1 gigabit per 1 square inch.

【0035】(実施例3)実施例1,2に示した媒体を
基板の両面に形成したディスク4枚と再生部に(巨大)
磁気抵抗効果を有する複合型薄膜磁気ヘッド7個とNi
−Fe合金を記録再生用磁極とするサーボ用の薄膜ヘッ
ドとを組み合わせた磁気記録装置を試作した。本装置
は、図6に示すように磁気記録媒体101,磁気記録媒
体駆動部102,磁気ヘッド103,磁気ヘッド駆動部
105,記録再生信号系104などの部品から構成され
る。この磁気記録装置を使用し、浮上スペーシング50
nmでエラーが発生するまでの平均時間を求めたとこ
ろ、信頼性が高いことを実証できた。また、本実施例で
試作した磁気記録装置はヘッド浮上量が低いため、信号
の記録再生における位相マージンが広くなり、従来媒体
を用いた浮上スペーシング80nmの装置に比べて面記
録密度を3倍に高めることができ、小型で大容量の磁気
記録装置を提供できた。本装置を用いてトラック幅が3
μ以下のMRヘッドで再生した場合に130kBPI以
上の高い記録密度でS/Nが3以上、さらにオーバーラ
イト(O/W)特性が26dB以上の大容量磁気記録装
置が得られた。特に、4kTPI以上の高記録密度時に
も本実施例の媒体はトラック幅方向の書きにじみが十分
に行われるため、高いS/Nが得られた。また、テクス
チャを保護膜の加工により形成するため、サーボ信号の
品位も高く、良好なヘッド位置決めが可能であった。
(Embodiment 3) The medium shown in Embodiments 1 and 2 is used for four discs formed on both sides of a substrate and a reproducing section (giant).
7 composite type thin film magnetic heads with magnetoresistive effect and Ni
A magnetic recording device was manufactured in combination with a servo thin film head using a —Fe alloy as a recording / reproducing magnetic pole. As shown in FIG. 6, this apparatus comprises components such as a magnetic recording medium 101, a magnetic recording medium driving unit 102, a magnetic head 103, a magnetic head driving unit 105, and a recording / reproducing signal system 104. Using this magnetic recording device, levitating spacing 50
When the average time until the error occurred in nm was obtained, it was possible to prove that the reliability was high. Also, the magnetic recording device prototyped in this example has a low head flying height, so that the phase margin in recording and reproducing signals is widened, and the surface recording density is three times that of a conventional flying spacing 80 nm device using a medium. Thus, a small-sized and large-capacity magnetic recording device could be provided. With this device, the track width is 3
When reproducing with an MR head of .mu. or less, a high capacity magnetic recording device having a high recording density of 130 kBPI or more, an S / N of 3 or more, and an overwrite (O / W) characteristic of 26 dB or more was obtained. In particular, even at a high recording density of 4 kTPI or higher, the medium of the present embodiment sufficiently bleeds in the track width direction, so that a high S / N was obtained. Further, since the texture is formed by processing the protective film, the quality of the servo signal is high, and good head positioning is possible.

【0036】本実施例における磁気記録装置を、1メー
トルの高さから木製の床に静かに落下させた後、同様の
測定を行ったが、落下前後で記録再生特性の違いは見ら
れなかった。
The magnetic recording apparatus of this embodiment was gently dropped from a height of 1 meter onto a wooden floor, and the same measurement was carried out. However, no difference in the recording / reproducing characteristics was observed before and after the drop. .

【0037】(実施例4)Bを含む試料No.20を基板
ガラス1として、1kWの電力で10秒間加熱した後、
真空蒸着法により、TeFeCo磁性膜を形成した。こ
の光磁気記録用磁性膜は、垂直磁気異方性を持ち、従来
のポリカーボネイト上に室温で成膜したものに比べて、
異方性磁界Hkを1.3倍 に高めることができた。この
磁気記録媒体と、磁気記録媒体駆動部と、光発生部と検
出部、およびその駆動部と、記録再生信号処理系を組み
合わせることにより、従来より60%小さな磁化反転領
域を形成することができた。
(Example 4) Sample No. 20 containing B was used as the substrate glass 1 and heated at a power of 1 kW for 10 seconds.
A TeFeCo magnetic film was formed by the vacuum evaporation method. This magnetic film for magneto-optical recording has perpendicular magnetic anisotropy, and compared with a conventional film formed on polycarbonate at room temperature,
The anisotropic magnetic field Hk could be increased 1.3 times. By combining this magnetic recording medium, the magnetic recording medium drive section, the light generation section and the detection section, and the drive section, and the recording / reproduction signal processing system, it is possible to form a magnetization reversal region that is 60% smaller than the conventional one. It was

【0038】[0038]

【発明の効果】本発明によれば、ガラス基板上でも、十
分かつ安定な保磁力を確保した高密度記録に好適な磁気
記録媒体、およびこれを用いて1平方インチあたり1ギ
ガビット以上の記録密度を実現する磁気記録装置を提供
することが可能となる。
According to the present invention, a magnetic recording medium suitable for high-density recording which secures sufficient and stable coercive force even on a glass substrate, and a recording density of 1 gigabit per square inch or more using the same. It is possible to provide a magnetic recording device that realizes

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の原理の説明図。FIG. 1 is an explanatory diagram of the principle of the present invention.

【図2】ヒータからの赤外線スペクトルを示す説明図。FIG. 2 is an explanatory diagram showing an infrared spectrum from a heater.

【図3】ヒータの説明図。FIG. 3 is an explanatory diagram of a heater.

【図4】本発明の一実施例を示す磁気記録媒体の説明
図。
FIG. 4 is an explanatory diagram of a magnetic recording medium showing an embodiment of the present invention.

【図5】本発明の第二実施例を示す磁気記録媒体の説明
図。
FIG. 5 is an explanatory diagram of a magnetic recording medium showing a second embodiment of the present invention.

【図6】本発明の一実施例を実現する装置の説明図。FIG. 6 is an explanatory diagram of an apparatus for realizing an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…ガラス基板、2…入射光、3…透過光、4…反射
光、5…ヒータ。
1 ... Glass substrate, 2 ... Incident light, 3 ... Transmitted light, 4 ... Reflected light, 5 ... Heater.

フロントページの続き (72)発明者 稲葉 信幸 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 二本 正昭 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 棚橋 究 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内Front Page Continuation (72) Inventor Nobuyuki Inaba 1-280 Higashi Koikeku, Kokubunji, Tokyo Inside Hitachi Central Research Laboratory (72) Inventor Masaaki Nihon 1-280 Higashi Koikeku, Kokubunji, Tokyo Hitachi Central Research Co., Ltd. In-house (72) Inventor, Tanahashi, Kokubunji, Tokyo 1-280, Higashi-Kengikubo, Central Research Laboratory, Hitachi, Ltd.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】ガラス基板上に下地膜,磁性膜,保護膜の
順に積層されている磁気記録媒体において、前記ガラス
基板として波長3μの赤外線を垂直に透過させた時、入
射光強度をIo,透過光強度をI,反射率をR,ガラス
基板の厚みをdとするとき、(1/d)log e(Io(1
−R)2/I)の値が0.3[1/cm]以上であるガラス
基板を用いることを特徴とする磁気記録媒体。
1. A magnetic recording medium in which a base film, a magnetic film, and a protective film are laminated in this order on a glass substrate, and when the glass substrate transmits infrared rays having a wavelength of 3 μ vertically, the incident light intensity is Io, When the transmitted light intensity is I, the reflectance is R, and the thickness of the glass substrate is d, (1 / d) log e (Io (1
A magnetic recording medium characterized by using a glass substrate having a value of −R) 2 / I) of 0.3 [1 / cm] or more.
【請求項2】ガラス基板上に下地膜,磁性膜,保護膜の
順に積層されている磁気記録媒体において、前記ガラス
基板中に含まれるCo,Ni,Cr,Fe,La,Y,
Gd,Yb,Lu,Ce,Sm,Eu,Tb,Dy,H
o、またはTmの合計値が1リットルあたり0.01モ
ル以上,0.5モル未満であることを特徴とする磁気記
録媒体。
2. A magnetic recording medium in which a base film, a magnetic film, and a protective film are laminated in this order on a glass substrate, and Co, Ni, Cr, Fe, La, Y, contained in the glass substrate.
Gd, Yb, Lu, Ce, Sm, Eu, Tb, Dy, H
A magnetic recording medium having a total value of o or Tm of 0.01 mol or more and less than 0.5 mol per liter.
【請求項3】ガラス基板上に下地膜,磁性膜,保護膜の
順に積層されている磁気記録媒体において、前記ガラス
基板中に含まれるBが1リットルあたり1モル以上,2
0モル未満であることを特徴とする磁気記録媒体。
3. A magnetic recording medium in which a base film, a magnetic film, and a protective film are laminated on a glass substrate in this order, and B contained in the glass substrate is 1 mol or more per liter.
A magnetic recording medium characterized by being less than 0 mol.
【請求項4】ガラス基板上に下地膜,磁性膜,保護膜の
順に積層されている磁気記録媒体において、前記ガラス
基板中に含まれるPが1リットルあたり0.5 モル以
上,10モル未満であることを特徴とする磁気記録媒
体。
4. A magnetic recording medium in which a base film, a magnetic film, and a protective film are laminated in this order on a glass substrate, and the P contained in the glass substrate is 0.5 mol or more and less than 10 mol per liter. A magnetic recording medium characterized by the following.
【請求項5】ガラス基板上に下地膜,磁性膜,保護膜の
順に積層されている磁気記録媒体において、前記ガラス
基板中に含まれるVが1リットルあたり0.1 モル以
上,5モル未満であることを特徴とする磁気記録媒体。
5. A magnetic recording medium in which a base film, a magnetic film, and a protective film are laminated in this order on a glass substrate, and V contained in the glass substrate is 0.1 mol or more and less than 5 mol per liter. A magnetic recording medium characterized by the following.
【請求項6】ガラス基板上に下地膜,磁性膜,保護膜の
順に積層されている磁気記録媒体において、前記ガラス
基板中に含まれるLiが1リットルあたり0.5 モル以
上,10モル未満であることを特徴とする磁気記録媒
体。
6. A magnetic recording medium in which a base film, a magnetic film, and a protective film are laminated in this order on a glass substrate, and the Li contained in the glass substrate is 0.5 mol or more and less than 10 mol per liter. A magnetic recording medium characterized by the following.
【請求項7】前記磁気記録媒体と、前記磁気記録媒体の
駆動部と、磁気ヘッドと、前記磁気ヘッドの駆動部と、
記録再生信号処理系を有し、請求項1ないし6のいずれ
かに記載の磁気記録媒体を用い、望ましくはヘッド走行
方向に測定した残留磁束密度Brと磁性膜の総膜厚tと
の積Brtの値が100ガウス・μ以下であり、再生用
磁気ヘッドとして磁気抵抗効果型ヘッドまたは巨大磁気
抵抗効果型ヘッドを用いる磁気記録装置。
7. A magnetic recording medium, a drive unit for the magnetic recording medium, a magnetic head, and a drive unit for the magnetic head,
7. A product Brt of a residual magnetic flux density Br measured in the head traveling direction and a total film thickness t of the magnetic film, preferably using a magnetic recording medium according to any one of claims 1 to 6 having a recording / reproducing signal processing system. Is 100 Gauss · μ or less, and a magnetoresistive head or a giant magnetoresistive head is used as a reproducing magnetic head.
【請求項8】前記磁気記録媒体と、前記磁気記録媒体の
駆動部と、光発生部と検出部、およびその駆動部と、記
録再生信号処理系を有し、請求項1ないし6のいずれか
に記載の磁気記録媒体を用いる磁気記録装置。
8. A magnetic recording medium, a drive unit for the magnetic recording medium, a light generation unit, a detection unit, and a drive unit for the magnetic recording medium, and a recording / reproducing signal processing system. A magnetic recording device using the magnetic recording medium according to.
JP15737195A 1995-06-23 1995-06-23 Magnetic recording medium and magnetic recorder using the same Pending JPH097154A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15737195A JPH097154A (en) 1995-06-23 1995-06-23 Magnetic recording medium and magnetic recorder using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15737195A JPH097154A (en) 1995-06-23 1995-06-23 Magnetic recording medium and magnetic recorder using the same

Publications (1)

Publication Number Publication Date
JPH097154A true JPH097154A (en) 1997-01-10

Family

ID=15648202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15737195A Pending JPH097154A (en) 1995-06-23 1995-06-23 Magnetic recording medium and magnetic recorder using the same

Country Status (1)

Country Link
JP (1) JPH097154A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004288228A (en) * 2003-01-31 2004-10-14 Hoya Corp Substrate for information recording medium, information recording medium, and its manufacturing method
JP2006236563A (en) * 2003-01-31 2006-09-07 Hoya Corp Substrate for information recording medium, information recording medium, and its manufacturing method
JP2007164985A (en) * 2003-01-31 2007-06-28 Hoya Corp Substrate for information recording medium, information recording medium and its manufacturing method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004288228A (en) * 2003-01-31 2004-10-14 Hoya Corp Substrate for information recording medium, information recording medium, and its manufacturing method
JP2006236563A (en) * 2003-01-31 2006-09-07 Hoya Corp Substrate for information recording medium, information recording medium, and its manufacturing method
US7208238B2 (en) 2003-01-31 2007-04-24 Hoya Corporation Substrate for information recording medium, information recording medium and process for producing information recording medium
JP2007164985A (en) * 2003-01-31 2007-06-28 Hoya Corp Substrate for information recording medium, information recording medium and its manufacturing method
US7972662B2 (en) 2003-01-31 2011-07-05 Hoya Corporation Substrate for information recording medium, information recording medium and process for producing information recording medium

Similar Documents

Publication Publication Date Title
JP2003085727A (en) Magnetic recording medium and magnetic memory device
JP2001014633A (en) Information recording medium and magnetic storage device and magneto-optical storage device using the same
US6686071B2 (en) Magnetic recording medium and magnetic recording apparatus using the same
EP1050877A1 (en) Opto-magnetic recording medium and its manufacturing method, and opto-magnetic information recording/reproducing device
JPH097154A (en) Magnetic recording medium and magnetic recorder using the same
JP3886011B2 (en) Magnetic recording medium, recording method therefor, and magnetic recording apparatus
US6898158B2 (en) Information recording medium and information recording and reproducing slider
US7352658B2 (en) Method for recording information data to a recording medium by irradiation with a light beam and application of a magnetic field
JP3908771B2 (en) Magnetic recording medium, recording method therefor, and magnetic recording apparatus
JP2000315310A (en) Information recording medium and slider for recording and reproducing information
Nakada et al. Low temperature crystal growth of MnBi films
JP7336786B2 (en) Assisted magnetic recording medium and magnetic storage device
JPH08221827A (en) Magneto-optical recording medium
JP2001250223A (en) Magnetic recording medium and magnetic recorder
US5589282A (en) Magneto-optical recording medium
JP2727582B2 (en) Perpendicular magnetization film
JP3381960B2 (en) Magneto-optical recording medium
JP2528184B2 (en) Magneto-optical recording medium
JPH09312043A (en) Magneto-optical recording medium and is production
JP2002063712A (en) Magnetic recording medium and magnetic recording apparatus using the same
Inomata et al. Synthetic ferrimagnetic media: Effects of thermally assisted writing
JPH01243225A (en) Magnetic recording medium
JP2002008219A (en) Magnetic recording medium and magnetic recorder with the same
NA et al. EXCHANGE COUPLED NdxTbY (FeCo)(1-(X+ Y)) LAYERS FOR MAGNETO-OPTIC APPLICATIONS
Shima et al. Super-Resolution Readout for Magneto-Optical Disk by Optimizing the Deposition Condition of Non-Magnetic Mask Layer