JPH0968359A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPH0968359A
JPH0968359A JP15414496A JP15414496A JPH0968359A JP H0968359 A JPH0968359 A JP H0968359A JP 15414496 A JP15414496 A JP 15414496A JP 15414496 A JP15414496 A JP 15414496A JP H0968359 A JPH0968359 A JP H0968359A
Authority
JP
Japan
Prior art keywords
opening
expansion valve
degree
side expansion
opening degree
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15414496A
Other languages
Japanese (ja)
Inventor
Masataka Ozeki
正高 尾関
Hiroshi Kitayama
浩 北山
Takayuki Takatani
隆幸 高谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co, Matsushita Electric Industrial Co Ltd filed Critical Matsushita Refrigeration Co
Priority to JP15414496A priority Critical patent/JPH0968359A/en
Publication of JPH0968359A publication Critical patent/JPH0968359A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/21Refrigerant outlet evaporator temperature

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To control temperature in an air conditioned space and degree of superheat of refrigerant at a compressor intake in a well balanced manner. SOLUTION: For the purpose of controlling temperature in an air conditioned space a first travel determining means 16a determines travel of an application side expansion valve 8a, and for the purpose of controlling degree of superheat of refrigerant at an outlet of an application side heat exchanger a change amount of travel of the application side expansion valve 8a is calculated and a travel value determined by itself at a previous control is added to the calculated value. A second travel determining means 18a thereby determines a travel at the time of next control and a fuzzy operator 17a derives by calculation, from travel values determined by the two determining means by using a membership function having degree of superheat at the outlet of the application side heat exchanger as a parameter, the travel of the application side expansion valve 8a and controls the travel of the application side expansion valve 8a by using derived values.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、空調空間の温度制
御と冷媒の圧縮機吸入過熱度制御の2つの制御をバラン
スよく行うための空気調和装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioner for performing well-balanced control between temperature control of an air-conditioned space and compressor suction superheat control of refrigerant.

【0002】[0002]

【従来の技術】圧縮機、熱源側熱交換器、熱源側膨張弁
等からなる熱源ユニットと利用側熱交換器、利用側膨張
弁等からなる複数の利用側ユニットとを配管で接続して
なる空気調和装置においては、空調空間の温度制御のみ
ならず、圧縮機保護の為に冷媒の圧縮機吸入過熱度制御
も行う必要がある。そして、上記装置が冷房機である場
合には、空調空間の温度制御と冷媒の利用側熱交換器出
口(圧縮機吸入)過熱度の制御とは、利用側膨張弁の開
閉により行い、また、暖房機である場合には、空調空間
の温度制御は利用側膨張弁の開閉により、冷媒の圧縮機
吸入過熱度の制御は主として熱源側膨張弁の開閉により
行っている。
2. Description of the Related Art A heat source unit including a compressor, a heat source side heat exchanger, a heat source side expansion valve and the like and a plurality of use side units including a use side heat exchanger and a use side expansion valve are connected by piping. In the air conditioner, it is necessary to perform not only the temperature control of the air-conditioned space but also the compressor suction superheat degree control of the refrigerant in order to protect the compressor. When the device is a cooling machine, the temperature control of the air-conditioned space and the control of the refrigerant use side heat exchanger outlet (compressor suction) superheat degree are performed by opening and closing the use side expansion valve, and In the case of a heater, the temperature control of the air-conditioned space is performed by opening / closing the utilization side expansion valve, and the control of the refrigerant suction superheat degree of the refrigerant is mainly performed by opening / closing the heat source side expansion valve.

【0003】従来、冷房機の場合の上記の制御として
は、ファジイ論理により、図6に示すメンバ−シップ関
数により行う方法が知られている(例えば、特開平3−
204568号公報)。上記従来の方法では、空調空間
温度制御装置(PID型)が、検出された空調空間の温
度を設定温度に一致させるように利用側膨張弁の開度の
変化量を演算し、現在(前回制御時)の利用側膨張弁開
度に加算して、次回の利用側膨張弁開度を決定し、利用
側過熱度制御装置(PID型)が、検出された利用側熱
交換器出口過熱度を設定過熱度に一致させるように利用
側膨張弁の開度の変化量を演算し、現在(前回制御時)
の利用側膨張弁開度に加算して、次回の利用側膨張弁開
度を決定する。そして、図6に示すように、検出時の過
熱度が最適過熱度Tdes以上の場合は、空調空間温度
制御装置が決定した利用側膨張弁開度のみにより実際の
利用側膨張弁の開閉操作を行い、最小許容過熱度Tmi
n以下の場合は、利用側過熱度制御装置が決定した利用
側膨張弁開度のみにより実際の利用側膨張弁の開閉操作
を行い、最適過熱度Tdesと最小許容過熱度Tmin
の間の場合は、両制御装置が決定した2つの利用側膨張
弁開度を基にファジイ演算により算出した開度によって
実際の利用側膨張弁の開閉操作を行っていた。
Conventionally, as the above-mentioned control in the case of an air conditioner, a method is known in which a fuzzy logic is used and a membership function shown in FIG.
No. 204568). In the above conventional method, the air-conditioned space temperature control device (PID type) calculates the amount of change in the opening degree of the use-side expansion valve so that the detected temperature of the air-conditioned space matches the set temperature, and the current (previous control Time)) to determine the next use-side expansion valve opening, and the use-side superheat degree control device (PID type) detects the detected use-side heat exchanger outlet superheat degree. The amount of change in the opening of the expansion valve on the use side is calculated so that it matches the set superheat degree, and the current
To the next use-side expansion valve opening degree. Then, as shown in FIG. 6, when the superheat degree at the time of detection is equal to or higher than the optimum superheat degree Tdes, the actual opening / closing operation of the use side expansion valve is performed only by the use side expansion valve opening determined by the air conditioning space temperature control device. Performed, minimum allowable superheat Tmi
In the case of n or less, the actual use-side expansion valve opening / closing operation is performed only by the use-side expansion valve opening determined by the use-side superheat degree control device to obtain the optimum superheat degree Tdes and the minimum allowable superheat degree Tmin.
In the case of between, the actual opening / closing operation of the usage-side expansion valve was performed by the opening calculated by fuzzy calculation based on the two usage-side expansion valve openings determined by both control devices.

【0004】また、従来、暖房機の場合の上記の制御
は、冷媒の圧縮機吸入過熱度を、検出した圧縮機吸入口
手前の冷媒の物理量(圧縮機吸入口温度と熱源側熱交換
器入口温度、圧縮機の吸入圧力と吸入温度等)から求
め、求めた過熱度を目標過熱度に一致させるように熱源
側膨張弁の開閉操作をなすことにより行っていた(例え
ば、特開平4−203854号公報)。
Further, conventionally, the above-mentioned control in the case of a heater is performed by detecting the superheat degree of refrigerant suction into the compressor, and detecting the physical quantity of the refrigerant in front of the compressor suction port (compressor inlet temperature and heat source side heat exchanger inlet). Temperature, the suction pressure and suction temperature of the compressor, etc.), and the heat source side expansion valve is opened / closed so that the obtained superheat degree matches the target superheat degree (for example, JP-A-4-203854). Issue).

【0005】[0005]

【発明が解決しようとする課題】しかしながら、冷房機
の場合、上記従来の制御方法で運転を行うと、過熱度が
最適過熱度Tdesと許容最小過熱度Tminの間の状
態であり、空調空間温度制御装置の演算する利用側熱膨
張弁開度変化の方向と利用側熱交換器出口過熱度制御装
置の演算する利用側熱膨張弁開度変化の方向とが相反す
る方向の場合、実際に制御される利用側膨張弁の開度
は、両制御装置の決定した開度の間の値となり、その開
度変化量は、両制御装置が演算した変化量よりも小さく
なるため、両制御装置にとってその積分効果が減少し、
両制御装置からみた制御性が低くなる。特に、利用側熱
交換器出口過熱度制御装置側の制御性が低くなることに
より、利用側熱交換器出口過熱度が、なかなか、Tde
s以上にならず、装置本来の目的である空調空間の温度
制御が適切に行えないといった問題点があった。
However, in the case of the air conditioner, when the operation is performed by the above conventional control method, the superheat degree is between the optimum superheat degree Tdes and the allowable minimum superheat degree Tmin, and the air conditioning space temperature is When the direction of change in the opening degree of the use side thermal expansion valve calculated by the control device and the direction of change in the use side heat expansion valve opening degree calculated by the use side heat exchanger outlet superheat degree control direction are opposite directions, actual control is performed. The opening degree of the usage-side expansion valve is a value between the opening degrees determined by both control devices, and the opening change amount is smaller than the change amount calculated by both control devices. Its integration effect diminishes,
The controllability seen from both control devices becomes low. In particular, the controllability on the side of the usage-side heat exchanger outlet superheat degree control device becomes low, so that the usage-side heat exchanger outlet superheat degree is rather low.
However, there is a problem that the temperature control of the air-conditioned space, which is the original purpose of the apparatus, cannot be properly performed.

【0006】一方、暖房機の場合、熱源側膨張弁を上記
従来の方法で制御すると、冷媒の圧縮機吸入過熱度はゼ
ロ未満にはならない為、かわき度がどんなに小さい状態
であっても、制御偏差が過熱度ゼロ時以上には大きくな
らず、したがって、十分な制御動作が行えないので、圧
縮機吸入過熱度をなかなか目標値に一致させることがで
きないといった問題点があった。また、圧縮機吸入過熱
度が目標値と一致していない場合は、必ず目標値と検出
値の差分の開閉制御が行われるので、熱源側膨張弁の開
閉動作が急激にまたは必要以上頻繁に行われることにな
り、冷凍サイクルが安定しにくいといった問題点があっ
た。さらに、圧縮機吸入過熱度が目標値と一致した状態
では、熱源側膨張弁の開度変更は行われないため、例え
ば、利用側膨張弁が全開となっていてより多くの冷媒が
必要な時でも、利用側ユニットに十分な冷媒が供給され
ないといった問題点もあった。
On the other hand, in the case of a heater, when the heat source side expansion valve is controlled by the above-mentioned conventional method, the compressor suction superheat degree of the refrigerant does not become less than zero. Therefore, even if the dryness degree is small, it is controlled. The deviation does not become larger than that when the superheat degree is zero, and therefore a sufficient control operation cannot be performed, so that there is a problem that the compressor suction superheat degree cannot be easily matched with the target value. If the compressor intake superheat does not match the target value, the opening / closing control of the difference between the target value and the detected value will always be performed, so the opening / closing operation of the heat source side expansion valve will be performed suddenly or more frequently than necessary. Therefore, there is a problem that the refrigeration cycle is difficult to stabilize. Further, when the compressor suction superheat degree matches the target value, the opening degree of the heat source side expansion valve is not changed.For example, when the usage side expansion valve is fully opened and more refrigerant is needed. However, there is also a problem that sufficient refrigerant is not supplied to the use side unit.

【0007】本発明は、上記問題点に鑑み、冷房機にお
いて、利用側熱交換器出口過熱度がファジイ領域にある
場合に、速やかに、利用側熱交換器出口過熱度制御を終
えて、空調空間の温度制御に移行することができる空気
調和装置を提供することを目的とする。さらに、本発明
は、暖房機において、冷媒の圧縮機吸入過熱度がゼロの
状態であっても、そのときの冷媒のかわき度に応じた制
御動作を行い、もって、速やかに、圧縮機吸入過熱度を
適正範囲に入れ、かつ、安定した冷凍サイクルが実現で
き、加えて、空調空間の温度制御状態をも考慮した熱源
側膨張弁の制御を行うことのできる空気調和装置を提供
することを目的とする。
In view of the above problems, the present invention promptly terminates the use side heat exchanger outlet superheat degree control in the air conditioner when the use side heat exchanger outlet superheat degree is in the fuzzy region. An object of the present invention is to provide an air conditioner capable of shifting to temperature control of space. Further, in the present invention, even if the compressor suction superheat degree of the refrigerant is zero in the heater, the control operation is performed according to the refrigerant dryness at that time, so that the compressor suction superheat is promptly performed. It is an object of the present invention to provide an air conditioner that can control the heat source side expansion valve in consideration of the temperature control state of the air-conditioned space, in addition to realizing a stable refrigeration cycle by setting the temperature within an appropriate range. And

【0008】[0008]

【課題を解決するための手段】上記目的を達成するた
め、請求項1記載の空気調和装置は、圧縮機、熱源側熱
交換器を有する熱源ユニットと、利用側膨張弁、利用側
熱交換器を有する一つまたは複数の利用側ユニットと、
前記両ユニットを接続するガス側配管、液側配管とから
なり、前記圧縮機で圧縮された冷媒が、前記熱源側熱交
換器で外気と熱交換した後、前記液側配管および前記利
用側膨張弁を介して前記利用側熱交換器に流入し、前記
利用側熱交換器で当該利用側ユニットが設置されている
空調空間の空気と熱交換した後、前記ガス側配管を介し
て前記圧縮機に還流するように冷媒回路を構成してなる
空気調和装置において、前記空調空間の温度を検出する
空調空間温度検出手段と、前記空調空間の目標温度を設
定する目標温度設定手段と、冷媒の前記利用側熱交換器
の出口における過熱度を検出する利用側熱交換器出口過
熱度検出手段と、冷媒の前記利用側熱交換器の出口にお
ける目標過熱度を設定する目標過熱度設定手段と、前記
空調空間温度検出手段が検出する空調空間温度が前記目
標温度設定手段で設定されている温度に等しくなるよう
に前記利用側膨張弁の開度値を決定する第1開度決定手
段と、前記利用側熱交換器出口過熱度検出手段が検出す
る過熱度が前記目標過熱度設定手段で設定されている目
標過熱度に等しくなるように前記利用側膨張弁の開度変
化量を算出し、算出値に前回制御時に自己の決定した前
記利用側膨張弁の開度値を加えることにより、次回制御
時の前記利用側膨張弁の開度値を決定する第2開度決定
手段と、前記利用側熱交換器出口過熱度検出手段が検出
する過熱度が第1のしきい値より小さい場合、及び、第
2のしきい値より大きい場合には、前記第2開度決定手
段により決定された開度値を用いて前記利用側膨張弁の
開度を制御し、前記利用側熱交換器出口過熱度検出手段
が検出する過熱度が第1のしきい値と第2のしきい値の
間の第3のしきい値より大きく、第3のしきい値と第2
のしきい値の間の第4のしきい値より小さい場合には、
前記第1開度決定手段により決定された開度値を用いて
前記利用側膨張弁の開度を制御し、前記利用側熱交換器
出口過熱度検出手段が検出する過熱度が第1のしきい値
と第3のしきい値の間、及び、第4のしきい値と第2の
しきい値の間である場合には、前記第1、2開度決定手
段が決定した両開度値から、過熱度を変数とするメンバ
−シップ関数により求められた開度値を用いて前記利用
側膨張弁の開度を制御する制御手段とを有する。
In order to achieve the above object, an air conditioner according to claim 1 is a heat source unit having a compressor, a heat source side heat exchanger, a use side expansion valve, and a use side heat exchanger. One or more user side units having
The gas side pipe connecting both units, the liquid side pipe, the refrigerant compressed by the compressor, after heat exchange with the outside air in the heat source side heat exchanger, the liquid side pipe and the use side expansion After flowing into the heat exchanger on the use side through a valve and exchanging heat with the air in the air-conditioned space in which the user unit on the use side is installed, the compressor is passed through the gas side pipe. In an air conditioner having a refrigerant circuit configured to recirculate into the air conditioner, an air conditioning space temperature detecting means for detecting a temperature of the air conditioning space, a target temperature setting means for setting a target temperature of the air conditioning space, and the refrigerant Use side heat exchanger outlet superheat detection means for detecting the superheat degree at the outlet of the use side heat exchanger, a target superheat degree setting means for setting a target superheat degree at the outlet of the use side heat exchanger of the refrigerant, and Air conditioning space temperature detection First opening degree determining means for determining an opening degree value of the use side expansion valve so that the air-conditioned space temperature detected by the stage becomes equal to the temperature set by the target temperature setting means, and the use side heat exchanger The opening change amount of the use-side expansion valve is calculated so that the superheat degree detected by the outlet superheat degree detecting means becomes equal to the target superheat degree set by the target superheat degree setting means, and the calculated value is calculated at the time of the previous control. Second opening degree determining means for determining the opening value of the usage-side expansion valve at the next control by adding the opening value of the usage-side expansion valve determined by itself, and the usage-side heat exchanger outlet overheat When the degree of superheat detected by the degree detecting means is smaller than the first threshold value and is larger than the second threshold value, the opening value determined by the second opening determining means is used. The usage-side heat exchanger is controlled by controlling the opening degree of the usage-side expansion valve. Superheat detecting mouth superheat degree detecting means is greater than the third threshold value between the first and second thresholds, and the third threshold value the second
Less than the fourth threshold between the thresholds of
The opening degree of the utilization side expansion valve is controlled using the opening degree value determined by the first opening degree determining means, and the superheat degree detected by the utilization side heat exchanger outlet superheat degree detecting means is the first level. If it is between the threshold value and the third threshold value and between the fourth threshold value and the second threshold value, both opening degrees determined by the first and second opening degree determining means Control means for controlling the opening degree of the utilization side expansion valve using an opening degree value obtained from a membership function based on the value of superheat.

【0009】これによって、第1開度決定手段は、空調
空間温度が目標温度に等しくなるように利用側膨張弁の
開度値を決定し、第2開度決定手段は、利用側熱交換器
出口過熱度が目標過熱度に等しくなるように利用側膨張
弁の開度変化量を算出し、算出値に前回制御時に自己の
決定した開度値を加えて次回制御時の利用側膨張弁の開
度値を決定し、冷媒の利用側熱交換器出口過熱度が第1
のしきい値より小さいか第2のしきい値より大きい場合
には、前記第2開度決定手段が決定した開度値により利
用側膨張弁の開度制御を行い、冷媒の利用側熱交換器出
口過熱度が第3のしきい値より大きく第4のしきい値よ
り小さい場合には、前記第1開度決定手段が決定した開
度値により利用側膨張弁の開度制御を行い、冷媒の利用
側熱交換器出口過熱度が第1のしきい値と第3のしきい
値の間もしくは第4のしきい値と第2のしきい値の間で
ある場合には、前記第1、2開度決定手段が決定した両
開度値から、過熱度を変数とするメンバ−シップ関数に
より求められた開度値により利用側膨張弁の開度制御を
行う。したがって、利用側熱交換器出口過熱度が目標過
熱度と等しくない時には、第2開度決定手段が決定する
開度値は、実際に目標とする開度値より算出された開度
変化量分大きな(または小さな)値となり、当該開度値
が利用側膨張弁の開度制御に用いられる場合には、当該
開度値による制御性が高くなり、特に利用側熱交換器出
口過熱度が、第1のしきい値と第3のしきい値の間もし
くは第4のしきい値と第2のしきい値の間にある時に
は、第2開度決定手段が目的とする過熱度制御を速やか
に終えて、利用側熱交換器出口過熱度を第3のしきい値
と第4のしきい値の間にいれることが出来、第1開度決
定手段が目的とする空調空間温度制御に移行することが
できる。
As a result, the first opening degree determining means determines the opening degree value of the utilization side expansion valve so that the air conditioning space temperature becomes equal to the target temperature, and the second opening degree determining means determines the utilization side heat exchanger. Calculate the amount of change in the opening of the expansion valve on the use side so that the outlet superheat becomes equal to the target superheat, add the calculated opening value to the calculated value, and then add The opening value is determined, and the superheat degree at the refrigerant use side heat exchanger outlet is the first
Is smaller than the threshold value or larger than the second threshold value, the opening degree of the use side expansion valve is controlled according to the opening degree value determined by the second opening degree determining means, and the refrigerant side heat exchange is performed. When the outlet superheat degree is larger than the third threshold value and smaller than the fourth threshold value, the opening degree of the utilization side expansion valve is controlled by the opening degree value determined by the first opening degree determining means, When the refrigerant use side heat exchanger outlet superheat degree is between the first threshold value and the third threshold value or between the fourth threshold value and the second threshold value, The opening control of the use-side expansion valve is performed based on the opening values obtained by the membership function having the degree of superheat as a variable from the opening values determined by the 1 and 2 opening determining means. Therefore, when the usage-side heat exchanger outlet superheat degree is not equal to the target superheat degree, the opening degree value determined by the second opening degree determining means is equal to the opening degree change amount calculated from the actual target opening degree value. When the opening value is a large (or small) value and is used for controlling the opening of the usage-side expansion valve, the controllability by the opening value is high, and in particular, the usage-side heat exchanger outlet superheat degree is When it is between the first threshold value and the third threshold value or between the fourth threshold value and the second threshold value, the second degree-of-opening deciding means promptly performs the target superheat degree control. After that, the superheat degree at the outlet of the heat exchanger on the use side can be set between the third threshold value and the fourth threshold value, and the first opening degree determining means shifts to the intended air conditioning space temperature control. can do.

【0010】また、請求項2記載の空気調和装置は、請
求項1記載の空気調和装置に対して、第2開度決定手段
は、さらに、利用側熱交換器出口過熱度検出手段が検出
する過熱度が、第3のしきい値より大きく第4のしきい
値より小さい適正範囲にある状態が一定時間以上継続し
て前記適正範囲外となった後の1回目の制御時には、自
己の決定した利用側膨張弁の開度値に代えて前回制御時
に第1開度決定手段の決定した利用側膨張弁の開度値を
用いて、次回制御時の利用側膨張弁の開度値を決定する
開度決定部を有する。
The air conditioner according to a second aspect of the present invention is the air conditioner according to the first aspect, wherein the second opening degree determining means and the utilization side heat exchanger outlet superheat degree detecting means further detect. During the first control after the state in which the degree of superheat is in the proper range larger than the third threshold value and smaller than the fourth threshold value is outside the proper range for a certain period of time or longer, the self-determination is made. The opening value of the usage-side expansion valve for the next control is determined by using the opening value of the usage-side expansion valve determined by the first opening determination means during the previous control instead of the opening value of the usage-side expansion valve It has a degree-of-opening determination part.

【0011】これによって、冷媒の利用側熱交換器出口
過熱度が適正範囲にある状態が一定時間以上継続、即
ち、第1開度決定手段が決定した開度値により利用側膨
張弁の開度制御が行われる状態が一定時間以上継続した
後、利用側熱交換器出口過熱度が適正範囲外となり第2
開度決定手段による制御が再開されると、再開後の1回
目の制御時には、第2開度決定手段は、利用側熱交換器
出口過熱度が目標過熱度に等しくなるように利用側膨張
弁の開度変化量を算出し、算出値に前回制御時に第1開
度決定手段の決定した利用側膨張弁の開度値を加えて利
用側膨張弁の開度値を決定する。したがって、利用側熱
交換器出口過熱度が適正範囲にあった間の第1開度決定
手段の室温制御によって利用側膨張弁の開度が大きく変
わっても、第2開度決定手段による利用側過熱度制御の
制御積分効果が除去されるので、第2開度決定手段によ
る利用側過熱度制御が再開される場合には、利用側過熱
度制御をスムーズに再開させることができる。
As a result, the state in which the superheat degree at the outlet of the heat exchanger of the use side of the refrigerant is in the proper range continues for a certain period of time, that is, the opening degree of the use side expansion valve is determined by the opening degree value determined by the first opening degree determining means. After the control is continued for a certain period of time or more, the superheat degree at the outlet of the heat exchanger on the use side is out of the proper range.
When the control by the opening degree determining means is restarted, at the time of the first control after the restart, the second opening degree determining means causes the utilization side expansion valve so that the utilization side heat exchanger outlet superheat degree becomes equal to the target superheat degree. The opening change amount of the use side expansion valve is calculated by adding the opening change amount of the use side expansion valve to the calculated value at the time of the previous control. Therefore, even if the opening degree of the usage-side expansion valve is largely changed by the room temperature control of the first opening degree determining means while the usage-side heat exchanger outlet superheat degree is within the proper range, the usage side by the second opening degree determining means is changed. Since the control integration effect of the superheat degree control is removed, when the use side superheat degree control by the second opening degree determining means is restarted, the use side superheat degree control can be smoothly restarted.

【0012】また、請求項3記載の空気調和装置は、圧
縮機、熱源側熱交換器、熱源側膨張弁を有する熱源ユニ
ットと、利用側膨張弁、利用側熱交換器を有する一つま
たは複数の利用側ユニットと、前記両ユニットを接続す
るガス側配管、液側配管とからなり、前記圧縮機で圧縮
された冷媒が、前記ガス側配管を介して、前記利用側ユ
ニットに送出され、送出された冷媒は、前記利用側熱交
換器で当該利用側ユニットが配置されている空調空間の
空気と熱交換した後、前記利用側膨張弁、前記液側配
管、前記熱源側膨張弁を介して前記利用側熱交換器に流
入し、前記利用側熱交換器で外気と熱交換した後、前記
圧縮機に還流するよう冷媒回路を構成してなる空気調和
装置において、冷媒の前記圧縮機吐出過熱度を検出する
圧縮機吐出過熱度検出手段と、冷媒の前記圧縮機の吐出
口における目標過熱度を設定する目標過熱度設定手段
と、前記圧縮機吐出過熱度検出手段が検出する過熱度が
前記目標過熱度設定手段で設定されている過熱度に等し
くなるように前記熱源側膨張弁の開度値を決定する熱源
側膨張弁開度決定手段と、前記圧縮機吐出過熱度検出手
段が検出する過熱度が第1のしきい値より小さい場合、
及び、第2のしきい値より大きい場合には、前記熱源側
膨張弁開度決定手段により決定された開度値を用いて前
記熱源側膨張弁の開度を制御し、前記圧縮機吐出過熱度
検出手段が検出する過熱度が第1のしきい値と第2のし
きい値の間の第3のしきい値より大きく、第3のしきい
値と第2のしきい値の間の第4のしきい値より小さい場
合には、現在の開度値を維持するように前記熱源側膨張
弁の開度を制御し、前記圧縮機吐出過熱度検出手段が検
出する過熱度が第1のしきい値と第3のしきい値の間、
及び、第4のしきい値と第2のしきい値の間である場合
には、現在の開度値と前記熱源側膨張弁開度決定手段が
決定した開度値とから、過熱度を変数とするメンバ−シ
ップ関数により求められた開度値を用いて前記熱源側膨
張弁の開度を制御する制御手段とを有する。
The air conditioner according to a third aspect of the present invention is one or more including a heat source unit having a compressor, a heat source side heat exchanger, and a heat source side expansion valve, and a use side expansion valve and a use side heat exchanger. Of the use side unit, a gas side pipe connecting the both units, a liquid side pipe, the refrigerant compressed by the compressor is sent to the use side unit via the gas side pipe, The refrigerant is heat-exchanged with the air in the air-conditioned space in which the usage-side unit is arranged in the usage-side heat exchanger, and then through the usage-side expansion valve, the liquid-side pipe, and the heat-source-side expansion valve. In an air conditioner configured to flow into the use-side heat exchanger, exchange heat with the outside air in the use-side heat exchanger, and then return to the compressor, the compressor discharge overheat of the refrigerant. Compressor discharge superheat detection Means, a target superheat degree setting means for setting a target superheat degree of the refrigerant at the discharge port of the compressor, and a superheat degree detected by the compressor discharge superheat degree detecting means are set by the target superheat degree setting means. The heat source side expansion valve opening degree determining means for determining the opening degree value of the heat source side expansion valve so as to be equal to the superheat degree, and the superheat degree detected by the compressor discharge superheat degree detecting means are higher than a first threshold value. If small,
And when it is larger than the second threshold value, the opening degree of the heat source side expansion valve is controlled by using the opening degree value determined by the heat source side expansion valve opening degree determining means, and the compressor discharge overheat is controlled. The degree of superheat detected by the degree detecting means is larger than the third threshold value between the first threshold value and the second threshold value, and the superheat degree between the third threshold value and the second threshold value is When it is smaller than the fourth threshold value, the opening degree of the heat source side expansion valve is controlled so as to maintain the current opening value, and the superheat degree detected by the compressor discharge superheat degree detecting means is the first. Between the third threshold and
If it is between the fourth threshold value and the second threshold value, the degree of superheat is calculated from the current opening value and the opening value determined by the heat source side expansion valve opening determining means. And a control means for controlling the opening degree of the heat source side expansion valve by using the opening degree value obtained by the membership function as a variable.

【0013】これによって、熱源側膨張弁開度決定手段
は、冷媒の圧縮機吐出過熱度が目標過熱度に等しくなる
ように熱源側膨張弁の開度値を決定し、冷媒の圧縮機吐
出過熱度が第1のしきい値より小さいか第2のしきい値
より大きい場合には、前記熱源側膨張弁開度開度決定手
段が決定した開度値により熱源側膨張弁の開閉制御を行
い、冷媒の圧縮機吐出過熱度が第3のしきい値より大き
く第4のしきい値より小さい場合には、現在の開度値を
維持するように熱源側膨張弁の開閉制御を行い、冷媒の
圧縮機吐出過熱度が第1のしきい値と第3のしきい値の
間もしくは第4のしきい値と第2のしきい値の間である
場合には、現在の開度値と前記熱源側膨張弁開度開度決
定手段が決定した開度値とから、過熱度を変数とするメ
ンバ−シップ関数により求められた開度値により熱源側
膨張弁の開度制御を行うので、熱源側膨張弁の開閉動作
が必要以上頻繁にまたは急激に行われることがない。
Thus, the heat source side expansion valve opening degree determining means determines the opening degree value of the heat source side expansion valve so that the refrigerant compressor discharge superheat degree becomes equal to the target superheat degree, and the refrigerant compressor discharge superheat degree. When the degree is smaller than the first threshold value or larger than the second threshold value, the heat source side expansion valve opening / closing control is performed according to the opening value determined by the heat source side expansion valve opening degree determining means. If the compressor discharge superheat degree of the refrigerant is larger than the third threshold value and smaller than the fourth threshold value, the heat source side expansion valve is controlled to open and close so as to maintain the current opening value, If the compressor discharge superheat degree is between the first threshold value and the third threshold value or between the fourth threshold value and the second threshold value, Membership function with the degree of superheat as a variable from the opening value determined by the heat source side expansion valve opening degree determining means Since the opening control of the heat source side expansion valve by more the obtained opening values, never closing operation of the heat source side expansion valve is frequently or rapidly performed unnecessarily.

【0014】また、請求項4記載の空気調和装置は、請
求項3記載の空気調和装置に対して、利用側膨張弁の開
度状態を検出し、開度状態に応じて熱源側膨張弁の開度
値を決定する開度調節手段を備え、制御手段において、
現在の開度値に代えて前記開度調節手段が決定する開度
値を用いる。これによって、開度調節手段は、利用側膨
張弁の開度状態に応じて熱源側膨張弁の開度値を決定
し、熱源側膨張弁開度決定手段は、冷媒の圧縮機吐出過
熱度が目標過熱度に等しくなるように熱源側膨張弁の開
度値を決定し、冷媒の圧縮機吐出過熱度が第1のしきい
値より小さいか第2のしきい値より大きい場合には、前
記熱源側膨張弁開度開度決定手段が決定した開度値によ
り熱源側膨張弁の開閉制御を行い、冷媒の圧縮機吐出過
熱度が第3のしきい値より大きく第4のしきい値より小
さい場合には、前記開度調節手段が決定した開度値によ
り熱源側膨張弁の開閉制御を行い、冷媒の圧縮機吐出過
熱度が第1のしきい値と第3のしきい値の間もしくは第
4のしきい値と第2のしきい値の間である場合には、前
記開度調節手段が決定した開度値と前記熱源側膨張弁開
度決定手段が決定した開度値とから、過熱度を変数とす
るメンバ−シップ関数により求められた開度値により熱
源側膨張弁の開度制御を行うので、利用側ユニットへの
冷媒の供給不足を効果的に防止することができる。
The air conditioner according to claim 4 is different from the air conditioner according to claim 3 in that the opening state of the use-side expansion valve is detected and the heat source-side expansion valve is opened according to the opening state. An opening adjustment means for determining an opening value is provided, and in the control means,
The opening value determined by the opening adjusting means is used instead of the current opening value. Thereby, the opening degree adjusting means determines the opening degree value of the heat source side expansion valve according to the opening degree state of the utilization side expansion valve, and the heat source side expansion valve opening degree determining means determines the compressor discharge superheat degree of the refrigerant. The opening degree value of the heat source side expansion valve is determined so as to be equal to the target superheat degree, and when the refrigerant compressor discharge superheat degree is smaller than the first threshold value or larger than the second threshold value, The opening degree value of the heat source side expansion valve opening degree determining means controls the opening and closing of the heat source side expansion valve, and the compressor discharge superheat degree of the refrigerant is larger than the third threshold value and larger than the fourth threshold value. If it is smaller, the heat source side expansion valve is opened / closed by the opening value determined by the opening adjustment means, and the refrigerant compressor discharge superheat degree is between the first threshold value and the third threshold value. Alternatively, when it is between the fourth threshold value and the second threshold value, the opening value determined by the opening adjusting means. From the opening value determined by the heat source side expansion valve opening determining means, the opening degree of the heat source side expansion valve is controlled by the opening value obtained by the membership function having the degree of superheat as a variable. It is possible to effectively prevent insufficient supply of the refrigerant to the unit.

【0015】また、請求項5記載の空気調和装置は、請
求項4記載の空気調和装置に対して、開度調節手段は、
利用側膨張弁の少なくとも一つの開度が全開の場合に、
現在の熱源側膨張弁の開度に一定の開度を加えることに
より前記熱源側膨張弁の開度値を決定する。これによっ
て、開度調節手段は、利用側膨張弁の少なくとも一つの
開度が全開であると、現在の熱源側膨張弁の開度に一定
の開度を加えて熱源側膨張弁の開度値を決定し、熱源側
膨張弁開度決定手段は、冷媒の圧縮機吐出過熱度が目標
過熱度に等しくなるように熱源側膨張弁の開度値を決定
し、冷媒の圧縮機吐出過熱度が第1のしきい値より小さ
いか第2のしきい値より大きい場合には、前記熱源側膨
張弁開度決定手段が決定した開度値により熱源側膨張弁
の開閉制御を行い、冷媒の圧縮機吐出過熱度が第3のし
きい値より大きく第4のしきい値より小さい場合には、
前記開度調節手段が決定した開度値により熱源側膨張弁
の開閉制御を行い、冷媒の圧縮機吐出過熱度が第1のし
きい値と第3のしきい値の間もしくは第4のしきい値と
第2のしきい値の間である場合には、前記開度調節手段
が決定した開度値と前記熱源側膨張弁開度決定手段が決
定した開度値とから、過熱度を変数とするメンバ−シッ
プ関数により求められた開度値により熱源側膨張弁の開
度制御を行うので、利用側ユニットへの冷媒の供給不足
を効果的に防止することができる。
The air conditioner according to claim 5 is different from the air conditioner according to claim 4 in that the opening degree adjusting means is
When at least one opening of the use side expansion valve is fully opened,
The opening degree value of the heat source side expansion valve is determined by adding a certain opening degree to the current opening degree of the heat source side expansion valve. With this, when at least one opening of the use-side expansion valve is fully opened, the opening adjustment means adds a certain opening to the current opening of the heat-source-side expansion valve to determine the opening value of the heat-source-side expansion valve. The heat source side expansion valve opening degree determining means determines the opening value of the heat source side expansion valve so that the compressor discharge superheat degree of the refrigerant becomes equal to the target superheat degree, and the compressor discharge superheat degree of the refrigerant is When it is smaller than the first threshold value or larger than the second threshold value, the heat source side expansion valve opening / closing control is performed according to the opening value determined by the heat source side expansion valve opening degree determining means, and the refrigerant is compressed. When the machine discharge superheat degree is larger than the third threshold value and smaller than the fourth threshold value,
The opening / closing control of the heat source side expansion valve is performed according to the opening value determined by the opening adjustment means, and the refrigerant compressor discharge superheat degree is between the first threshold value and the third threshold value or the fourth threshold value. When it is between the threshold value and the second threshold value, the degree of superheat is calculated from the opening value determined by the opening adjustment means and the opening value determined by the heat source side expansion valve opening determination means. Since the opening degree of the heat source side expansion valve is controlled by the opening degree value obtained by the membership function as a variable, it is possible to effectively prevent the supply shortage of the refrigerant to the usage side unit.

【0016】[0016]

【実施の形態】以下、本発明の実施の形態について、図
面を用いて詳細に説明する。図1は、本発明の実施の形
態に係る空気調和装置の全体構成図である。図に示すよ
うに、本装置は、大別して、熱源ユニット5と三つの空
調空間A、B、Cにそれぞれ配置された3台の利用側ユ
ニット6a、6b、6c、からなる利用側ユニット群6
と両者を接続するガス管路13、液側管路14とから構
成されている。
Embodiments of the present invention will be described in detail below with reference to the drawings. FIG. 1 is an overall configuration diagram of an air conditioner according to an embodiment of the present invention. As shown in the figure, the present apparatus is roughly classified into a heat source unit 5 and a use side unit group 6 including three use side units 6a, 6b, 6c respectively arranged in three air-conditioned spaces A, B, and C.
And a gas line 13 and a liquid side line 14 that connect the two.

【0017】熱源ユニット5は、図1に示すように、圧
縮機1、四方弁2、熱源側熱交換器3、熱源側送風ファ
ン3a、熱源側膨張弁8、アキュムレ−タ4、吐出過熱
度検出器27、吐出過熱度目標設定器28、熱源側膨張
弁開度制御装置50を備えている。利用側ユニット群6
を構成する3台の利用側ユニット6a、6b、6cは、
何れも同様な構成なので、ここでは、利用側ユニット6
aを代表として説明を行う。利用側ユニット6aは、図
1に示すように、利用側熱交換器7a、利用側膨張弁8
a、利用側送風ファン11a、空調空間温度センサ−1
0a、空調温度設定器15a、利用側熱交換器出口過熱
度検出器20a、利用側過熱度目標設定器21a、冷房
運転時利用側膨張弁開度制御装置30a、暖房運転時利
用側膨張弁開度制御装置40aを備えている。
As shown in FIG. 1, the heat source unit 5 includes a compressor 1, a four-way valve 2, a heat source side heat exchanger 3, a heat source side blower fan 3a, a heat source side expansion valve 8, an accumulator 4, and a discharge superheat degree. A detector 27, a discharge superheat degree target setting device 28, and a heat source side expansion valve opening degree control device 50 are provided. User side unit group 6
The three use side units 6a, 6b, 6c constituting the
Both have the same configuration, so here, the user side unit 6
The description will be made with a as a representative. As shown in FIG. 1, the usage-side unit 6a includes a usage-side heat exchanger 7a and a usage-side expansion valve 8
a, user side blower fan 11a, air conditioning space temperature sensor-1
0a, air conditioning temperature setting device 15a, use side heat exchanger outlet superheat detector 20a, use side superheat degree target setting device 21a, use side expansion valve opening control device 30a during cooling operation, use side expansion valve opening during heating operation A degree control device 40a is provided.

【0018】上記構成からなる本空気調和装置におい
て、冷房運転時には、圧縮機1で圧縮された冷媒は、四
方弁2によって点線で示す矢印の方向に流路規制され、
熱源側熱交換器3に流入し、ここで、熱源側送風ファン
3aで送られた外気と熱交換して凝縮し、液冷媒とな
る。熱源側熱交換器3を出た冷媒は、全開となっている
熱源側膨張弁8を通過し、液側管路14により、各利用
側膨張弁8a、8b、8cの開度に応じて、それぞれの
利用側ユニット6a、6b、6cに分配される。分配さ
れた冷媒は、各利用側膨張弁8a、8b、8cで減圧さ
れ、ガス・液の2相冷媒となり、各利用側熱交換器7
a、7b、7cに流れ込む。各利用側熱交換器7a、7
b、7cで、冷媒は、各利用側送風ファン11a、11
b、11cで送られた空調空間の空気と熱交換し、蒸発
してガス冷媒となり、ガス側管路13を通り、四方弁2
を介し、アキュムレ−タ4を経由して圧縮機1に還流す
る。
In the air conditioner of the above construction, during the cooling operation, the refrigerant compressed by the compressor 1 is regulated by the four-way valve 2 in the direction of the arrow indicated by the dotted line.
It flows into the heat source side heat exchanger 3, where it exchanges heat with the outside air sent by the heat source side blower fan 3a and condenses to become a liquid refrigerant. The refrigerant that has exited the heat source side heat exchanger 3 passes through the heat source side expansion valve 8 that is fully opened, and the liquid side conduit 14 causes the refrigerant to flow in accordance with the opening degree of each of the use side expansion valves 8a, 8b, and 8c. It is distributed to the respective use side units 6a, 6b, 6c. The distributed refrigerant is decompressed by the use-side expansion valves 8a, 8b, 8c to become a gas / liquid two-phase refrigerant.
It flows into a, 7b, and 7c. Each user side heat exchanger 7a, 7
In b and 7c, the refrigerant is the blower fans 11a and 11 on the use side.
b, 11c exchanges heat with the air in the air-conditioned space, evaporates to become a gas refrigerant, passes through the gas side pipeline 13, and passes through the four-way valve 2
To the compressor 1 via the accumulator 4.

【0019】一方、暖房運転時には、圧縮機1で圧縮さ
れた冷媒は、四方弁2によって実線で示す矢印の方向に
流路規制され、ガス側管路13を通じて、各空調空間温
度センサ−10a、10b、10cが検出する各空調空
間A、B、Cの温度と各空調温度設定器15a、15
b、15cで設定されている温度との差から、暖房運転
時利用側膨張弁開度制御装置40a、40b、40cが
決定する各利用側膨張弁8a、8b、8cの開度に応じ
て、それぞれの利用側ユニット6a、6b、6cに分配
される。分配された冷媒は、各利用側熱交換器7a、7
b、7cで、各利用側送風ファン11a、11b、11
cで送られた空調空間の空気と熱交換し、凝縮して液冷
媒となり、各利用側膨張弁8a、8b、8cの開度に応
じて減圧され、液側管路14を通って熱源側膨張弁8に
流れこむ。熱源側膨張弁8で、冷媒は、その開度に応じ
てさらに減圧され、ガス・液の2相冷媒となって、熱源
側熱交換器3に流入する。冷媒は、熱源側熱交換器3で
熱源側送風ファン3aで送られた外気と熱交換し、蒸発
してガス冷媒となり、四方弁2を介し、アキュムレ−タ
4を経由して圧縮機1に還流する。
On the other hand, during the heating operation, the flow of the refrigerant compressed by the compressor 1 is regulated by the four-way valve 2 in the direction of the arrow shown by the solid line, and through the gas side pipe 13, each air conditioning space temperature sensor-10a, The temperature of each air-conditioned space A, B, C detected by 10b, 10c and each air-conditioning temperature setter 15a, 15
From the difference between the temperatures set in b and 15c, according to the opening degree of each of the use side expansion valves 8a, 8b, 8c determined by the heating side use side expansion valve opening degree control devices 40a, 40b, 40c, It is distributed to the respective use side units 6a, 6b, 6c. The distributed refrigerant is used by each of the use side heat exchangers 7a, 7a.
b and 7c, each of the use side blower fans 11a, 11b, 11
The heat exchange is performed with the air in the air-conditioned space, which is condensed into a liquid refrigerant, which is decompressed according to the opening degree of each of the use-side expansion valves 8a, 8b, 8c, and passes through the liquid-side conduit 14 to the heat source side. It flows into the expansion valve 8. In the heat source side expansion valve 8, the refrigerant is further decompressed according to its opening degree, becomes a gas / liquid two-phase refrigerant, and flows into the heat source side heat exchanger 3. The refrigerant exchanges heat with the outside air sent by the heat-source-side blower fan 3a in the heat-source-side heat exchanger 3, evaporates to become a gas refrigerant, and passes through the four-way valve 2 and the accumulator 4 to the compressor 1. Bring to reflux.

【0020】以上が、冷媒が理想的な状態変化をしなが
ら循環した場合の、冷房運転時と暖房運転時における1
サイクルである。以下、空調空間の温度制御と冷媒の圧
縮機吸入過熱度制御について、冷房運転時と暖房運転時
とに分けて説明する。 (冷房運転時)冷房運転時の利用側膨張弁開閉制御とし
て、利用側ユニット6aを例にとり説明する。図2に、
利用側ユニット6aの冷房運転時の利用側膨張弁開閉制
御系ブロック図を示す。
The above is 1 in the cooling operation and the heating operation when the refrigerant circulates while changing the ideal state.
It is a cycle. The temperature control of the air-conditioned space and the compressor suction superheat control of the refrigerant will be described below separately for the cooling operation and the heating operation. (Cooling Operation) The usage side expansion valve opening / closing control during the cooling operation will be described by taking the usage side unit 6a as an example. In Figure 2,
The block diagram of the use side expansion valve opening / closing control system at the time of cooling operation of the use side unit 6a is shown.

【0021】図に示すように、冷房運転時の利用側膨張
弁開閉制御系は、空調空間温度センサ−10aと空調温
度設定器15aと利用側熱交換器出口過熱度検出器20
aと利用側過熱度目標設定器21aと冷房運転時利用側
膨張弁開度制御装置30aとから構成されている。空調
空間温度センサ−10aは、利用側送風ファン11aの
空気吸入口における空気温度を測定するものである。
As shown in the figure, the use side expansion valve opening / closing control system during the cooling operation includes an air conditioning space temperature sensor 10a, an air conditioning temperature setting device 15a, and a use side heat exchanger outlet superheat detector 20.
a, a use side superheat degree target setting device 21a, and a use side expansion valve opening degree control device 30a during cooling operation. The air-conditioned space temperature sensor-10a measures the air temperature at the air inlet of the use side blower fan 11a.

【0022】空調温度設定器15aは、本装置使用者
が、所望する空調空間の温度を設定するためのものであ
り、公知の温度設定器が使用される。利用側熱交換器出
口過熱度検出器20aは、温度センサ−(図示せず)が
検出する冷媒の利用側熱交換器出口温度と入口温度から
その差である利用側熱交換器出口過熱度を検出する装置
である。
The air conditioning temperature setting device 15a is used by the user of the apparatus to set a desired temperature of the air conditioning space, and a known temperature setting device is used. The utilization side heat exchanger outlet superheat degree detector 20a indicates the utilization side heat exchanger outlet superheat degree which is the difference between the utilization side heat exchanger outlet temperature and the inlet temperature of the refrigerant detected by a temperature sensor (not shown). It is a device for detecting.

【0023】利用側過熱度目標設定器21aは、利用側
熱交換器の効率と冷凍サイクルの動作安定性を考慮し
て、最も適していると思われる利用側熱交換器出口にお
ける冷媒の過熱度を設定するためのものであり、公知の
温度設定器が使用される。なお、設定値には、後述する
利用側熱交換器出口過熱度の適正範囲内のある過熱度が
用いられる。
The utilization side superheat degree target setter 21a is considered to be most suitable in consideration of the efficiency of the utilization side heat exchanger and the operational stability of the refrigeration cycle, and the degree of superheat of the refrigerant at the outlet of the utilization side heat exchanger. A known temperature setter is used to set the temperature. As the set value, a certain degree of superheat within the appropriate range of the degree of superheat at the outlet of the heat exchanger on the use side described later is used.

【0024】冷房運転時利用側膨張弁開度制御装置30
aは、前記空調空間温度センサ−10aが検出する空調
空間温度と空調温度設定器15aで設定されている設定
温度と利用側熱交換器出口過熱度検出器20aが検出す
る利用側熱交換器出口過熱度と利用側過熱度目標設定器
21aで設定されている利用側熱交換器出口における冷
媒の過熱度とから利用側膨張弁の開度制御を行う装置で
あり、第1前回値記憶器22aと第1開度決定器16a
と第2前回値記憶器24aと第2開度決定器18aとフ
ァジイ演算器17aと記憶内容変更器31aとから構成
されている。
Expansion valve opening control device 30 on the utilization side during cooling operation
a is the air conditioning space temperature detected by the air conditioning space temperature sensor 10a, the set temperature set by the air conditioning temperature setting device 15a, and the use side heat exchanger outlet detected by the use side heat exchanger outlet superheat detector 20a. This is a device for controlling the opening degree of the use-side expansion valve based on the superheat degree and the degree of superheat of the refrigerant at the use-side heat exchanger outlet set by the use-side superheat degree target setting device 21a. And the first opening determiner 16a
And a second previous value storage unit 24a, a second opening degree determination unit 18a, a fuzzy computing unit 17a, and a storage content change unit 31a.

【0025】第1前回値記憶器22aは、利用側膨張弁
8aの開閉制御する度にその開度Uazを記憶しておく装
置である。なお、利用側膨張弁8aは0%(全閉)〜1
00%(全開)の動作範囲を有する。第1開度決定器1
6aは、空調空間温度センサ−10aによって検出され
る空調空間Aの温度を、空調温度設定器15aで設定さ
れている設定温度に一致させるように、現在の利用側膨
張弁8aの開度からの変化量を演算し、演算結果を第1
前回値記憶器22aに記憶されている値Uazに加算する
ことにより利用側膨張弁8aの次回開度U1aを決定する
ためのものであり、公知の速度型PID制御器が使用さ
れる。なお、本装置起動時には、第1開度決定器16a
は、U1a=80%を出力するように設定されている。
The first previous value storage unit 22a is a device for storing the opening degree Uaz of the expansion valve 8a on the utilization side each time the opening / closing control of the expansion valve 8a is controlled. The use-side expansion valve 8a is 0% (fully closed) to 1
It has an operating range of 00% (fully open). First opening determiner 1
6a adjusts the temperature of the air-conditioned space A detected by the air-conditioned space temperature sensor 10a from the current opening degree of the use-side expansion valve 8a so as to match the set temperature set by the air-conditioning temperature setting device 15a. The amount of change is calculated, and the calculation result is the first
This is for determining the next opening U1a of the use side expansion valve 8a by adding it to the value Uaz stored in the previous value storage 22a, and a known speed type PID controller is used. In addition, at the time of starting this device, the first opening determiner 16a
Is set to output U1a = 80%.

【0026】第2前回値記憶器24aは、第2開度決定
器18aが利用側膨張弁22aの開度を決定する度にそ
の値U2azを記憶しておく装置であり、本装置起動時に
は、記憶内容はU2az=80%に設定される。第2開度
決定器18aは、利用側熱交換器出口過熱度検出器20
aによって検出される利用側熱交換器出口過熱度SHa
が、後述する適正範囲外にある場合、利用側熱交換器出
口過熱度SHaを、利用側過熱度目標設定器21aで 設
定されている利用側熱交換器出口における冷媒の過熱度
に一致させるように、利用側膨張弁8aの開度の変化量
を演算し、演算結果を第2前回値記憶器24aに記憶さ
れている値U2azに加算することにより利用側膨張弁8
aの次回開度U2aを決定するためのものであり、公知の
速度型PID制御器が使用される。なお、本装置起動時
には、第2開度決定器18aは、U2a=80%を出力す
るように設定されている。
The second previous value storage device 24a is a device for storing the value U2az each time the second opening degree determiner 18a determines the opening degree of the use side expansion valve 22a. The memory content is set to U2az = 80%. The second opening degree determiner 18a includes a utilization side heat exchanger outlet superheat degree detector 20.
Utilization side heat exchanger outlet superheat degree SHa detected by a
However, when it is out of the appropriate range described later, the utilization side heat exchanger outlet superheat degree SHa is made to match the superheat degree of the refrigerant at the utilization side heat exchanger outlet set by the utilization side superheat degree target setting device 21a. In addition, the change amount of the opening degree of the use-side expansion valve 8a is calculated, and the calculation result is added to the value U2az stored in the second previous value storage unit 24a.
It is for determining the next opening U2a of a, and a known speed type PID controller is used. The second opening degree determiner 18a is set to output U2a = 80% when the apparatus is started.

【0027】ファジイ演算器17aは、第1開度決定器
で決定された開度U1aと第2開度決定器で決定された開
度U2aとから、図3に示す、利用側熱交換器出口過熱度
を変数とするファジイメンバ−シップ関数に基づき、利
用側膨張弁の実際の操作制御開度を決定する装置であ
り、マイクロプロセッサ等から構成される公知の演算装
置が使用される。空調空間温度制御のファジイメンバ−
シップ関数φ1aと利用側熱交換器出口過熱度のファジイ
メンバ−シップ関数φ2aとは、例えば、次式で与えられ
る。
The fuzzy calculator 17a uses the opening U1a determined by the first opening determiner and the opening U2a determined by the second opening determiner to determine the outlet of the utilization side heat exchanger shown in FIG. This is a device for determining the actual operation control opening of the expansion valve on the utilization side based on a fuzzy membership function having the degree of superheat as a variable, and a known arithmetic device composed of a microprocessor or the like is used. Fuzzy member for air conditioning space temperature control
The ship function φ1a and the fuzzy member-ship function φ2a of the user side heat exchanger outlet superheat degree are given by the following equations, for example.

【0028】[0028]

【数1】 [Equation 1]

【0029】[0029]

【数2】 そして、上記関数を用いて、実際に行う利用側膨張弁の
操作制御開度は、次式により算出する。 Ua=φ1a×U1a+φ2a×U2a また、要素のしきい値F1a〜F4aは、利用側熱交換器の
効率と冷媒の利用側熱交換器出口過熱度との関係、およ
び、冷凍サイクルの動作安定性等を考慮して、 F1a=0、F2a=5、F3a=15、F4a=25 と設定し、F1aからF4aの間を利用側熱交換器出口
過熱度の許容範囲とし、F2aからF3aの間を利用側熱交
換器出口過熱度の適正範囲とする。
(Equation 2) Then, using the above function, the operation control opening degree of the actual expansion valve on the use side is calculated by the following equation. Ua = φ1a × U1a + φ2a × U2a In addition, the threshold values F1a to F4a of the elements are the relationship between the efficiency of the heat exchanger on the use side and the superheat degree at the outlet of the heat exchanger on the use side of the refrigerant, and the operation stability of the refrigeration cycle, etc. In consideration of the following, set F1a = 0, F2a = 5, F3a = 15, F4a = 25, and set F1a to F4a as the allowable range of the superheat degree at the outlet of the heat exchanger on the use side, and use the range from F2a to F3a. The superheat degree at the outlet of the side heat exchanger should be within the appropriate range.

【0030】記憶内容変更器31aは、前回の制御時の
利用側膨張弁8aの開度Uazを記憶しており、利用側熱
交換機出口過熱度が一定時間Ta以上継続して適正範囲
内にある場合、言い換えると、利用側膨張弁8aの開度
Ua が第1開度決定器のみによって決定されている(φ
1a=1,φ2a=0)時間が一定時間Ta以上継続してい
る場合、第2前回値記憶器24aに記憶されているU2a
zを前回制御時の利用側膨張弁8aの開度Uazに変更す
る。一定時間Taは、利用側熱交換機出口過熱度の変化
の応答時間に相当する時間が最適であり、例えば2分と
する。
The memory content changer 31a stores the opening Uaz of the use side expansion valve 8a at the time of the previous control, and the use side heat exchanger outlet superheat degree is within a proper range continuously for a certain time Ta or more. In other words, in other words, the opening degree Ua of the use side expansion valve 8a is determined only by the first opening degree determiner (φ
1a = 1, φ2a = 0) time continues for a certain time Ta or more, U2a stored in the second previous value storage 24a
z is changed to the opening degree Uaz of the use side expansion valve 8a at the time of the previous control. The fixed time Ta is optimally the time corresponding to the response time of the change in the superheat degree at the outlet of the heat exchanger on the use side, and is, for example, 2 minutes.

【0031】以上の構成からなる利用側熱膨張弁開閉制
御系の制御内容について、具体的な数値例を挙げなが
ら、説明する。先ず、本装置起動時は、第1開度決定器
16aと第2開度決定器18aはそれぞれ、 U1a=80%、U2a=80% を出力するので、利用側膨張弁の初期開度は、利用側熱
交換器出口過熱度の値にかかわらず、 Ua=80% となる。
The control contents of the utilization side thermal expansion valve opening / closing control system having the above construction will be described with reference to specific numerical examples. First, when the device is started, the first opening determiner 16a and the second opening determiner 18a output U1a = 80% and U2a = 80%, respectively. Ua = 80% regardless of the value of the superheat degree at the outlet of the heat exchanger on the use side.

【0032】そして、起動後の第1回制御時点で、空調
空間Aの温度を下げるため、第1開度決定器16aは、
利用側膨張弁8aの開度変化量として、20%開けるよ
うに演算し、一方、利用側熱交換器出口過熱度を上げる
ため、第2開度決定器18aは、利用側膨張弁8aの開
度変化量として、20%閉めるように演算し、そのとき
の利用側熱交換器出口過熱度SHaが2.5Kであった
とすると、第1開度決定器16aが決定する利用側膨張
弁8aの開度U1aは、 U1a=Uaz+20=80+20=100% となり、第2開度決定器18aが決定する利用側膨張弁
8aの開度U2aは、 U2a=U2az−20=80−20=60% となる。また、数1、数2より、 φ1a=0.5、φ2a=0.5 となるので、最終的にファジイ演算器17aにより得ら
れる利用側膨張弁開度Uaは、 Ua=φ1a×U1a+φ2a×U2a =0.5×100+0.5×60 =80% となり、初期開度が維持される。また、この時点で、第
1前回値記憶器22aには、Uaz=80%が、第2前回
値記憶器24aには、U2az=60%が記憶されてい
る。
In order to lower the temperature of the air-conditioned space A at the time of the first control after startup, the first opening determiner 16a
As a variation of the opening degree of the usage-side expansion valve 8a, it is calculated to open 20%. On the other hand, in order to raise the usage-side heat exchanger outlet superheat degree, the second opening degree determiner 18a causes the usage-side expansion valve 8a to open. Assuming that the use side heat exchanger outlet superheat degree SHa at that time is calculated to be 20% closed as the degree change amount, the use side expansion valve 8a determined by the first opening degree determiner 16a is calculated. The opening U1a is U1a = Uaz + 20 = 80 + 20 = 100%, and the opening U2a of the use side expansion valve 8a determined by the second opening determiner 18a is U2a = U2az-20 = 80-20 = 60%. . Further, from Equations 1 and 2, since φ1a = 0.5 and φ2a = 0.5, the utilization side expansion valve opening Ua finally obtained by the fuzzy calculator 17a is Ua = φ1a × U1a + φ2a × U2a = 0.5 × 100 + 0.5 × 60 = 80%, and the initial opening is maintained. At this time point, Uaz = 80% is stored in the first previous value storage unit 22a, and U2az = 60% is stored in the second previous value storage unit 24a.

【0033】そして、次の第2回制御時点において、上
記前回(第1回)制御時と同様、第1開度決定器16a
は、20%開くよう演算し、第2開度決定器18aは、
20%閉じるよう演算し、そのときの、出口過熱度SH
aが2.5Kであったとすると、第1開度決定器16a
が決定する利用側膨張弁8aの開度U1aは、 U1a=Uaz+20=80+20=100% となり、第2開度決定器18aが決定する利用側膨張弁
8aの開度U2aは、 U2a=U2az−20=60−20=40% となる。また、数1、数2より、 φ1a=0.5、φ2a=0.5 となるので、最終的にファジイ演算器17aにより得ら
れる利用側膨張弁開度Uaは、 Ua=φ1a×U1a+φ2a×U2a =0.5×100+0.5×40 =70% となり、利用側膨張弁8aは、10%分閉じられ、開度
70%となる。
Then, at the time of the next second control, as in the previous (first) control, the first opening determiner 16a.
Is calculated to open 20%, and the second opening degree determiner 18a
Calculated to close 20%, and the outlet superheat degree SH at that time
Assuming that a is 2.5K, the first opening determiner 16a
The opening U1a of the usage-side expansion valve 8a determined by is U1a = Uaz + 20 = 80 + 20 = 100%, and the opening U2a of the usage-side expansion valve 8a determined by the second opening determiner 18a is U2a = U2az-20. = 60-20 = 40%. Further, from Equations 1 and 2, φ1a = 0.5 and φ2a = 0.5, so the usage-side expansion valve opening Ua finally obtained by the fuzzy calculator 17a is Ua = φ1a × U1a + φ2a × U2a = 0.5 × 100 + 0.5 × 40 = 70%, the use side expansion valve 8a is closed by 10%, and the opening degree becomes 70%.

【0034】したがって、空調空間の温度制御の為の第
1開度決定器16aと利用側熱交換器出口過熱度(圧縮
機吸入)制御の為の第2開度決定器18aとが演算する
開度変化量が、装置起動後の第1回制御時と第2回制御
時とで同じであるにもかかわらず、第1回制御時には、
開度が維持され、第2回制御時には開度10%分閉じら
れることになる。
Therefore, the opening degree calculated by the first opening degree determiner 16a for controlling the temperature of the air-conditioned space and the second opening degree determiner 18a for controlling the outlet side superheat degree (compressor suction) of the use side heat exchanger. Although the degree change amount is the same between the first control and the second control after the device is started,
The opening is maintained, and the opening is closed by 10% during the second control.

【0035】つまり、ファジイ演算器17aに、第1開
度決定器16aからは、現在(前回制御時)の開度に開
度変化量を加えた値が入力され、第2開度決定器18a
からは、前回制御時に自己が決定した開度に開度変化量
を加えた値が入力されるので、第2開度決定器18aの
制御動作が積分されていき、その制御性が高くなること
になる。
That is, a value obtained by adding the opening change amount to the current (previous control) opening is input to the fuzzy calculator 17a from the first opening determiner 16a, and the second opening determiner 18a.
Since the value obtained by adding the opening change amount to the opening degree determined by the previous control is input, the control operation of the second opening degree determiner 18a is integrated and the controllability thereof is improved. become.

【0036】その後、利用側熱交換器出口過熱度SHa
が7Kで、第1開度決定器16aにおいて現在の開度を
維持するように演算されその状態が継続したとすると、
この間、第2開度決定器18aは演算を行わない。それ
故、第2前回値記憶器24aには、開度U2azが40%
であることが記憶されたままである。2分以内(一定時
間Ta=2分)に利用側熱交換器出口過熱度SHaが2.
5に変化し、第1開度決定器16aにおいては開度を維
持するように演算され、第2開度決定器においては20
%閉じるように演算された場合、利用側膨張弁8aの前
回の制御における開度Uazは70%なので、第1開度決
定器16aで決定される利用側膨張弁8aの開度U1a
は、 U1a=Uaz+0=70+0=70% となり、第2開度決定器18aが決定する利用側膨張弁
8aの開度U2aは、 U2a=U2az−20=40−20=20% となる。また、数1、数2より、 φ1a=0.5、φ2a=0.5 となるので、最終的にファジイ演算器17aにより得ら
れる利用側膨張弁開度Uaは、 Ua=φ1a×U1a+φ2a×U2a =0.5×70+0.5×20 =45% となり、利用側膨張弁8aは、利用側過熱度制御の制御
積分効果により25%閉じられ45%となる。
After that, the superheat degree SHa at the outlet of the heat exchanger on the use side
Is 7K, and the first opening determiner 16a calculates to maintain the current opening, and that state continues,
During this time, the second opening degree determiner 18a does not perform calculation. Therefore, the opening U2az is 40% in the second previous value memory 24a.
Is still remembered. Within 2 minutes (constant time Ta = 2 minutes), the user side heat exchanger outlet superheat degree SHa is 2.
5, the first opening degree determiner 16a calculates to maintain the opening degree, and the second opening degree determiner calculates 20 degrees.
%, The opening Uaz of the use-side expansion valve 8a in the previous control is 70%, so the opening U1a of the use-side expansion valve 8a determined by the first opening determiner 16a.
Is U1a = Uaz + 0 = 70 + 0 = 70%, and the opening U2a of the utilization side expansion valve 8a determined by the second opening determiner 18a is U2a = U2az-20 = 40-20 = 20%. Further, from Equations 1 and 2, φ1a = 0.5 and φ2a = 0.5, so the usage-side expansion valve opening Ua finally obtained by the fuzzy calculator 17a is Ua = φ1a × U1a + φ2a × U2a = 0.5 × 70 + 0.5 × 20 = 45%, and the use-side expansion valve 8a is closed by 25% to 45% due to the control integration effect of the use-side superheat degree control.

【0037】しかしながら、前記の利用側熱交換器出口
過熱度SHaが7Kである状態が2分以上継続した場合
には、第2前回値記憶器24aに記憶されている値は、
記憶内容変更器31aにより、 U2az=Uaz=70% に変更される。その後に、利用側熱交換器出口過熱度が
2.5Kに変化し、第1開度決定器16aにおいては開
度を維持するように演算され、第2開度決定器において
は20%閉じるように演算された場合、利用側膨張弁8
aの前回の制御における開度Uazは70%なので、第1
開度決定器16aで決定される利用側膨張弁8aの開度
U1aは、 U1a=Uaz+0=70+0=70% となり、第2開度決定器18aが決定する利用側膨張弁
8aの開度U2aは、 U2a=U2az−20=70−20=50% となる。また、数1、数2より、 φ1a=0.5、φ2a=0.5 となるので、最終的にファジイ演算器17aにより得ら
れる利用側膨張弁開度Uaは、 Ua=φ1a×U1a+φ2a×U2a =0.5×70+0.5×50 =60% となり、利用側膨張弁8aは、利用側過熱度制御の制御
積分効果がキャンセルされているため10%閉じられ6
0%となる。
However, when the above-mentioned utilization side heat exchanger outlet superheat degree SHa of 7K continues for 2 minutes or more, the value stored in the second previous value storage unit 24a becomes
U2az = Uaz = 70% is changed by the memory content changer 31a. After that, the use side heat exchanger outlet superheat degree changes to 2.5K, the first opening degree determiner 16a is operated to maintain the opening degree, and the second opening degree determiner closes 20%. If it is calculated as
Since the opening Uaz in the previous control of a is 70%, the first
The opening U1a of the use-side expansion valve 8a determined by the opening determiner 16a is U1a = Uaz + 0 = 70 + 0 = 70%, and the opening U2a of the use-side expansion valve 8a determined by the second opening determiner 18a is , U2a = U2az-20 = 70-20 = 50%. Further, from Equations 1 and 2, φ1a = 0.5 and φ2a = 0.5, so the usage-side expansion valve opening Ua finally obtained by the fuzzy calculator 17a is Ua = φ1a × U1a + φ2a × U2a = 0.5 × 70 + 0.5 × 50 = 60%, and the use-side expansion valve 8a is closed 10% because the control integration effect of the use-side superheat control is canceled.
It becomes 0%.

【0038】つまり、利用側熱交換器出口過熱度SHa
が適正範囲に2分以上継続して入っている場合は、利用
側熱交換器出口過熱度SHaが整定したと判断され、第
2前回値記憶器24aに記憶されている開度が、記憶内
容変更器31aにより前回制御時の利用側膨張弁8aの
開度に変更され、第2開度決定器18aの制御動作の制
御積分効果がキャンセルされることになる。
That is, the user side heat exchanger outlet superheat degree SHa
Is continuously within the proper range for 2 minutes or more, it is determined that the use side heat exchanger outlet superheat degree SHa is settled, and the opening degree stored in the second previous value storage unit 24a is The changer 31a changes the opening degree of the use-side expansion valve 8a during the previous control, and the control integration effect of the control operation of the second opening degree determiner 18a is canceled.

【0039】利用側熱交換器出口過熱度SHaが整定し
ている間に、空調空間の温度制御により利用側膨張弁8
aの開度が、第2前回値記憶器24aに記憶されている
開度と大きくかけ離れすぎてしまった場合や、または利
用側膨張弁8aの開度と第2前回値記憶器24aとの開
度値の大小関係が逆転してしまった後に、利用側熱交換
器出口過熱度SHaが適正範囲をはずれた場合でも、第
2開度決定器18aで演算される利用側膨張弁8aの開
度の値によって、利用側膨張弁8aの開度が不必要に変
更されることはない。また、本来の制御動作と逆の制御
動作がなされるようなことはなく、スムーズに利用側熱
交換器出口過熱度SHaの制御が再開される。
While the outlet-side superheat degree SHa of the use-side heat exchanger is settled, the use-side expansion valve 8 is controlled by controlling the temperature of the air-conditioned space.
If the opening of a is too far from the opening stored in the second previous value storage 24a, or if the opening of the use-side expansion valve 8a and the second previous value storage 24a are opened. Even if the usage-side heat exchanger outlet superheat degree SHa deviates from the proper range after the magnitude relationship has been reversed, the opening degree of the usage-side expansion valve 8a calculated by the second opening degree determiner 18a The value of does not unnecessarily change the opening degree of the use-side expansion valve 8a. Further, the control operation opposite to the original control operation is not performed, and the control of the utilization side heat exchanger outlet superheat degree SHa is smoothly restarted.

【0040】以上のように、冷房運転時において、利用
側熱交換器出口過熱度が許容範囲内で適正範囲外の場合
でも、利用側過熱度制御に制御積分効果が付加されその
制御強度が上がっていくので、出口過熱度を許容範囲内
適正範囲外に長時間停留させることなく、速やかに空調
空間の温度のみの制御に移行することができると共に、
効率のよい運転が可能となる。
As described above, during the cooling operation, even if the use side heat exchanger outlet superheat degree is within the allowable range and outside the appropriate range, the control integration effect is added to the use side superheat degree control to increase the control strength. Therefore, it is possible to quickly shift to the control of only the temperature of the air-conditioned space without stopping the outlet superheat within the allowable range and outside the proper range for a long time.
Efficient operation becomes possible.

【0041】また、上記制御積分効果により出口過熱度
制御の制御性がひとりでに変化するので、空調空間の温
度制御と過熱度制御の制御性の関係の設定を比較的簡単
に行うことができる。さらに、利用側熱交換器出口過熱
度SHaが適正範囲に入っている継続時間によって、利
用側熱交換器出口過熱度SHaが適正範囲に過渡的に入
ったのか、あるいは適正範囲に整定したのかを判断し、
過渡的に入ったと判断できる場合には、再び利用側過熱
度制御が行われるときには、制御積分効果により素早く
利用側熱交換器出口過熱度SHaを適正範囲に入れるこ
とができる。一方、整定したと判断できる場合には、積
分された開度値をキャンセルすることにより、空調空間
の温度制御により変化してしまった利用側膨張弁8aの
開度によらず、利用側過熱度制御をスムーズに再開する
ことができる。 (暖房運転時)図4に、暖房運転時の熱源側膨張弁開閉
制御系ブロック図を示す。
Further, since the controllability of the outlet superheat degree control changes by itself due to the control integration effect, it is possible to relatively easily set the relationship between the temperature control of the air-conditioned space and the controllability of the superheat degree control. Further, depending on how long the usage-side heat exchanger outlet superheat degree SHa is within the proper range, whether the use-side heat exchanger outlet superheat degree SHa has transiently entered the proper range or has been settled to the proper range. Judge,
When it can be determined that the heat has entered transiently, when the use-side superheat degree control is performed again, the use-side heat exchanger outlet superheat degree SHa can be quickly put into an appropriate range by the control integration effect. On the other hand, when it can be determined that the user side has been settled, by canceling the integrated opening degree value, the use side superheat degree does not depend on the opening degree of the use side expansion valve 8a that has changed due to the temperature control of the air-conditioned space. Control can be resumed smoothly. (During heating operation) FIG. 4 shows a block diagram of the heat source side expansion valve opening / closing control system during heating operation.

【0042】図に示すように、暖房運転時の熱源側膨張
弁開閉制御系は、暖房運転時利用側膨張弁開度制御装置
40a、40b、40cと圧縮機吐出過熱度検出器27
と圧縮機吐出過熱度目標設定器28と熱源側膨張弁開度
制御装置50とから構成されている。暖房運転時利用側
膨張弁開度制御装置40a、40b、40cは、空調空
間温度センサ−10a、10b、10cによって検出さ
れる空調空間A、B、Cの温度と対応する空調温度設定
器15a、15b、15cで設定されている各設定温度
との各偏差が減少するように、各利用側膨張弁8a、8
b、8cの開度を制御する装置であり、公知の速度型P
ID制御器から構成され、本制御系においては、毎制御
時に決定される各利用側膨張弁8a、8b、8cの開度
U3a、U3b、U3cを、その都度、後述する開度調整器2
9に出力する。
As shown in the figure, the heat source side expansion valve opening / closing control system during the heating operation includes the utilization side expansion valve opening degree control devices 40a, 40b, 40c and the compressor discharge superheat degree detector 27 during the heating operation.
And a compressor discharge superheat degree target setting device 28 and a heat source side expansion valve opening degree control device 50. The heating-side use side expansion valve opening degree control devices 40a, 40b, 40c include an air conditioning temperature setting device 15a corresponding to the temperatures of the air conditioning spaces A, B, C detected by the air conditioning space temperature sensors 10a, 10b, 10c. The use-side expansion valves 8a and 8a are arranged so that the respective deviations from the respective set temperatures set in 15b and 15c are reduced.
This is a device for controlling the opening degrees of b and 8c, and is a known speed type P
In this control system, the opening degree adjuster 2 which will be described later is constituted by an ID controller, and the opening degrees U3a, U3b, U3c of the use-side expansion valves 8a, 8b, 8c, which are determined at each control, are changed in each case.
Output to 9.

【0043】圧縮機吐出過熱度検出器27は、圧力セン
サ−(図示せず)が検出する圧縮機1の吐出口付近にお
ける冷媒の圧力と温度センサ−(図示せず)が検出する
圧縮機1の吐出口付近における冷媒の温度とから、冷媒
の圧縮機1の吐出口付近における過熱度SHdを検出す
る装置である。ここで、冷媒の圧縮機吐出過熱度と圧縮
機吸入過熱度および乾き度とは、実験的・経験的に対応
付けられているので、圧縮機吐出過熱度を検出すること
により、間接的に、圧縮機吸入過熱度または乾き度を検
出することになる。
The compressor discharge superheat detector 27 is a compressor 1 which is detected by a pressure sensor (not shown) and a temperature sensor (not shown) of the refrigerant near the discharge port of the compressor 1. Is a device for detecting the degree of superheat SHd of the refrigerant near the discharge port of the compressor 1 from the temperature of the refrigerant near the discharge port. Here, since the compressor discharge superheat degree of the refrigerant and the compressor suction superheat degree and the dryness degree are experimentally and empirically associated, by indirectly detecting the compressor discharge superheat degree, Compressor suction superheat or dryness will be detected.

【0044】圧縮機吐出過熱度目標設定器28は、冷凍
サイクルの動作安定性を考慮して、最も適していると思
われる圧縮機吸入過熱度と対応付けられる圧縮機吐出過
熱度を設定するためのものであり、公知の温度設定器か
ら構成される。なお、設定値には、後述する圧縮機吐出
過熱度の適正範囲内のある過熱度が用いられる。熱源側
膨張弁開度制御装置50は、前記暖房運転時利用側膨張
弁開度制御装置40a、40b、40cから入力される
各利用側膨張弁8a、8b、8cの開度U3a、U3b、U
3cと前記圧縮機吐出過熱度検出器27が検出する圧縮機
吐出過熱度と前記圧縮機吐出過熱度目標設定器28で設
定されている圧縮機吐出過熱度とから、熱源側膨張弁の
開閉制御を行う装置であり、第4前回値記憶器19と開
度調整器29と第3前回値記憶器23と熱源側膨張弁開
度決定器16とファジイ演算器17とから構成される。
The compressor discharge superheat target setting unit 28 sets the compressor discharge superheat corresponding to the compressor intake superheat which seems to be most suitable in consideration of the operation stability of the refrigeration cycle. And is composed of a known temperature setting device. As the set value, a superheat degree within a proper range of a compressor discharge superheat degree described later is used. The heat source side expansion valve opening degree control device 50 has opening degrees U3a, U3b, U of the respective use side expansion valves 8a, 8b, 8c input from the heating side use side expansion valve opening degree control devices 40a, 40b, 40c.
3c and the compressor discharge superheat degree detected by the compressor discharge superheat degree detector 27 and the compressor discharge superheat degree set by the compressor discharge superheat degree target setter 28 to open and close the heat source side expansion valve. It is a device for performing the above, and is composed of a fourth previous value storage 19, an opening adjuster 29, a third previous value storage 23, a heat source side expansion valve opening determiner 16, and a fuzzy calculator 17.

【0045】第4前回値記憶器19は、熱源側膨張弁8
の開閉制御する度にその開度Udzを記憶しておく装置で
ある。なお、熱源側膨張弁8は、0%(全閉)〜100
%(全開)の動作範囲を有する。開度調整器29は、暖
房運転時利用側膨張弁開度制御装置40a、40b、4
0cから入力される各利用側膨張弁8a、8b、8cの
開度U3a、U3b、U3cを判別し、前記各利用側膨張弁8
a、8b、8cの少なくとも一つの開度が100%(全
開)の場合、前記第4前回値記憶器19に記憶されてい
る現在(前回制御時)の熱源側膨張弁8の開度Udzに一
定開度加算し、次回開度U2dを決定し、各利用側膨張弁
8a、8b、8cのいずれの開度も全開となっていない
場合には、次回開度U2dに、現在(前回制御時)の熱源
側膨張弁8の開度Udzを採用し、決定する装置である。
なお、本装置起動時には、開度調整器29は、U2d=8
0%を出力するように設定されている。また、一定開度
として1%を設定している。
The fourth previous value storage 19 is used for the heat source side expansion valve 8
This is a device for storing the opening degree Udz every time the opening / closing control is performed. The heat source side expansion valve 8 is 0% (fully closed) to 100%.
% (Fully open) operating range. The opening degree adjuster 29 includes the expansion valve opening degree control devices 40a, 40b, 4 for the utilization side during heating operation.
0c, the opening degree U3a, U3b, U3c of each use side expansion valve 8a, 8b, 8c is discriminated, and each use side expansion valve 8
When at least one of a, 8b, and 8c has an opening of 100% (fully open), the current (previously controlled) opening Udz of the heat source side expansion valve 8 stored in the fourth previous value storage 19 is set. When a constant opening is added to determine the next opening U2d, and none of the usage-side expansion valves 8a, 8b, 8c is fully open, the next opening U2d is set to the current (previous control time). ) Is a device that adopts and determines the opening Udz of the heat source side expansion valve 8).
In addition, when the present apparatus is started, the opening adjuster 29 sets U2d = 8.
It is set to output 0%. Moreover, 1% is set as a fixed opening degree.

【0046】第3前回値記憶器23は、熱源側膨張弁開
度決定器16が熱源側膨張弁8の開度を決定する度にそ
の値U1dzを記憶しておく装置である。熱源側膨張弁開
度決定器16は、圧縮機吐出過熱度検出器27によって
検出される冷媒の圧縮機吐出過熱度SHdを、圧縮機吐
出過熱度目標設定器28で設定されている圧縮機吐出過
熱度に一致させるように、熱源側膨張弁8の開度の変化
量を演算し、演算結果を第3前回値記憶器23に記憶さ
れている値U1dzに加算することにより熱源側膨張弁8
の次回開度U1dを決定するためのものであり、公知の速
度型PID制御器が使用される。なお、本装置起動時に
は、熱源側膨張弁開度決定器16は、U1d=80%を出
力するように設定されている。
The third previous value storage unit 23 is a device for storing the value U1dz every time the heat source side expansion valve opening degree determiner 16 determines the opening degree of the heat source side expansion valve 8. The heat source side expansion valve opening degree determiner 16 sets the compressor discharge superheat degree SHd of the refrigerant detected by the compressor discharge superheat degree detector 27 to the compressor discharge superheat degree target setter 28 that sets the compressor discharge superheat degree SHd. The amount of change in the opening degree of the heat source side expansion valve 8 is calculated so as to match the degree of superheat, and the calculation result is added to the value U1dz stored in the third previous value storage unit 23 to thereby increase the heat source side expansion valve 8
A known speed type PID controller is used to determine the next opening U1d of the. The heat source side expansion valve opening determiner 16 is set to output U1d = 80% when the present apparatus is started.

【0047】ファジイ演算器17は、開度調整器29で
決定された開度U2dと熱源側膨張弁開度決定器16で決
定された開度U1dとから、図5に示す、圧縮機吐出過熱
度を変数とするファジイメンバ−シップ関数に基づき、
熱源側膨張弁の実際の操作制御開度を決定する装置であ
り、マイクロプロセッサ等から構成される公知の演算装
置が使用される。熱源側膨張弁開度決定器が決定する開
度による制御のファジイメンバ−シップφ1dと開度調整
器が決定する開度による制御のファジイメンバ−シップ
φ2dは、例えば、次式で与えられる。
The fuzzy calculator 17 calculates the compressor discharge overheat shown in FIG. 5 from the opening U2d determined by the opening adjuster 29 and the opening U1d determined by the heat source side expansion valve opening determiner 16. Based on the fuzzy membership function with degree as a variable,
This is a device that determines the actual operation control opening degree of the heat source side expansion valve, and a known arithmetic device including a microprocessor or the like is used. The fuzzy membership φ1d for control by the opening determined by the heat source side expansion valve opening determiner and the fuzzy membership φ2d for control by the opening determined by the opening adjuster are given by, for example, the following equations.

【0048】[0048]

【数3】 [Equation 3]

【0049】[0049]

【数4】 そして、上記関数を用いて、実際に行う熱源側膨張弁の
操作制御開度は、次式により算出する。 Ud=φ1d×U1d+φ2d×U2d また、要素のしきい値F1d〜F4dは、冷凍サイクルの動
作安定性を考慮して、適していると思われる圧縮機吸入
過熱度と対応付けられる圧縮機吐出過熱度から、 F1d=10、F2d=15、F3d=30、F4d=50 と設定し、F1dからF4dの間を圧縮機吐出過熱度の許容
範囲とし、F2dからF3dの間を圧縮機吐出過熱度の適正
範囲とする。
[Equation 4] Then, using the above function, the operation control opening degree of the heat source side expansion valve that is actually performed is calculated by the following equation. Ud = φ1d × U1d + φ2d × U2d Further, the threshold values F1d to F4d of the elements are considered to be suitable in consideration of the operation stability of the refrigeration cycle, and the compressor discharge superheat degree associated with the compressor suction superheat degree considered to be suitable. Therefore, set F1d = 10, F2d = 15, F3d = 30, F4d = 50, set F1d to F4d as the allowable range of the compressor discharge superheat, and set F2d to F3d to the proper compressor discharge superheat. Range.

【0050】以上の構成からなる熱源側熱膨張弁開閉制
御系の制御内容について、具体的な数値例を挙げなが
ら、説明する。先ず、本装置起動時は、熱源側膨張弁開
度決定器16と開度調整器29はそれぞれ、 U1d=80%、U2d=80% を出力するので、熱源側膨張弁の初期開度は、圧縮機吐
出過熱度の値にかかわらず、 Ud=80% となる。また、この時点で、第3前回値記憶器23に
は、U1dz=80%が、第4前回値記憶器19には、Ud
z=80%が記憶されている。
The control contents of the heat source side thermal expansion valve opening / closing control system having the above construction will be described with reference to specific numerical examples. First, when the present apparatus is started, the heat source side expansion valve opening degree determiner 16 and the opening degree adjuster 29 respectively output U1d = 80% and U2d = 80%, so the initial opening degree of the heat source side expansion valve is Ud = 80% regardless of the compressor discharge superheat value. At this point, U1dz = 80% is stored in the third previous value storage unit 23 and Udd is stored in the fourth previous value storage unit 19.
z = 80% is stored.

【0051】次に、本装置起動後の第1回制御の内容に
ついて、3つの場合に分けて説明する。 (1)熱源側膨張弁開度決定器16は、開度30%分閉
めるように演算し、利用側膨張弁のいずれもが全開の状
態ではなく、圧縮機吐出過熱度SHdが11.5Kであ
った場合。
Next, the contents of the first control after the start of the apparatus will be described in three cases. (1) The heat source side expansion valve opening degree determiner 16 calculates so as to close the opening degree by 30%, and none of the use side expansion valves is in the fully opened state, and the compressor discharge superheat degree SHd is 11.5K. If there was.

【0052】熱源側膨張弁開度決定器16が決定する熱
源側膨張弁8の開度U1dは、 U1d=U1dz−30 =80−30 =50% となる。
The opening U1d of the heat-source-side expansion valve 8 determined by the heat-source-side expansion valve opening determiner 16 is U1d = U1dz-30 = 80-30 = 50%.

【0053】一方、開度調整器29が決定する熱源側膨
張弁8の開度U2dは、 U2d=Udz =80% である。また、数3、数4より、 φ1d=0.7、φ2d=0.3 となるので、最終的にファジイ演算器17により得られ
る熱源側膨張弁開度Udは、 Ud=φ1d×U1d+φ2d×U2d =0.7×50+80×0.3 =59 となる。 (2)熱源側膨張弁開度決定器16は、開度20%分閉
めるように演算し、利用側膨張弁のいずれもが全開の状
態ではなく、圧縮機吐出過熱度SHdが20degであ
った場合。
On the other hand, the opening U2d of the heat source side expansion valve 8 determined by the opening adjuster 29 is U2d = Udz = 80%. Further, from Equations 3 and 4, since φ1d = 0.7 and φ2d = 0.3, the heat source side expansion valve opening Ud finally obtained by the fuzzy calculator 17 is Ud = φ1d × U1d + φ2d × U2d = 0.7 × 50 + 80 × 0.3 = 59. (2) The heat source side expansion valve opening degree determiner 16 calculates so as to close the opening degree by 20%, and none of the use side expansion valves is in the fully opened state, and the compressor discharge superheat degree SHd is 20 deg. If.

【0054】熱源側膨張弁開度決定器16が決定する熱
源側膨張弁8の開度U1dは、 U1d=U1dz−20 =80−20 =60% となる。
The opening U1d of the heat-source-side expansion valve 8 determined by the heat-source-side expansion valve opening determiner 16 is U1d = U1dz-20 = 80-20 = 60%.

【0055】一方、開度調整器29が決定する熱源側膨
張弁8の開度U2dは、 U2d=Udz =80% である。また、数3、数4より、 φ1d=0.0、φ2d=1.0 となるので、最終的にファジイ演算器17により得られ
る熱源側膨張弁開度Udは、 Ud=φ1d×U1d+φ2d×U2d =0.0×60+80×1.0 =80 となり、初期開度が維持される。 (3)熱源側膨張弁開度決定器16は、開度20%分閉
めるように演算し、利用側膨張弁の少なくとも一つが全
開の状態であり、圧縮機吐出過熱度SHdが20Kであ
った場合。
On the other hand, the opening U2d of the heat source side expansion valve 8 determined by the opening adjuster 29 is U2d = Udz = 80%. Further, from Equations 3 and 4, since φ1d = 0.0 and φ2d = 1.0, the heat source side expansion valve opening Ud finally obtained by the fuzzy calculator 17 is Ud = φ1d × U1d + φ2d × U2d = 0.0 × 60 + 80 × 1.0 = 80, and the initial opening is maintained. (3) The heat source side expansion valve opening degree determiner 16 calculates so as to close the opening degree by 20%, at least one of the use side expansion valves is in a fully opened state, and the compressor discharge superheat degree SHd is 20K. If.

【0056】熱源側膨張弁開度決定器16が決定する熱
源側膨張弁8の開度U1dは、 U1d=U1dz−20 =80−20 =60% となる。
The opening degree U1d of the heat source side expansion valve 8 determined by the heat source side expansion valve opening degree determiner 16 is U1d = U1dz-20 = 80-20 = 60%.

【0057】一方、開度調整器29が決定する熱源側膨
張弁8の開度U2dは、 U2d=Udz+1 =81% である。また、数3、数4より、 φ1d=0.0、φ2d=1.0 となるので、最終的にファジイ演算器17により得られ
る熱源側膨張弁開度Udは、 Ud=φ1d×U1d+φ2d×U2d =0.0×60+81×1.0 =81% となり、熱源側膨張弁は、初期開度から開度1%分開か
れ、開度81%となる。
On the other hand, the opening U2d of the heat source side expansion valve 8 determined by the opening adjuster 29 is U2d = Udz + 1 = 81%. Further, from Equations 3 and 4, since φ1d = 0.0 and φ2d = 1.0, the heat source side expansion valve opening Ud finally obtained by the fuzzy calculator 17 is Ud = φ1d × U1d + φ2d × U2d = 0.0 × 60 + 81 × 1.0 = 81%, and the heat source side expansion valve is opened by 1% from the initial opening to 81%.

【0058】したがって、圧縮機吐出過熱度が適正範囲
外(F2d以下またはF3d以上)にある場合のみ、熱源側
膨張弁開度決定器16が決定する開度を用いて熱源側膨
張弁の開閉制御がなされ、吐出過熱度が適正範囲内なら
熱源側膨張弁が過熱度制御による開閉動作をしないの
で、冷凍サイクルの安定化が図れる(例(2))。ま
た、圧縮機吐出過熱度が適正範囲内にある場合でも、利
用側膨張弁の少なくとも一つが全開状態の時には、熱源
側膨張弁が一定開度開かれるので、冷媒の循環量不足に
よる、暖房能力の低下を防止することができる(例
(3))。
Therefore, only when the compressor discharge superheat degree is outside the appropriate range (F2d or less or F3d or more), the opening / closing control of the heat source side expansion valve is performed using the opening degree determined by the heat source side expansion valve opening degree determiner 16. If the discharge superheat is within the proper range, the heat source side expansion valve does not open / close by superheat control, so that the refrigeration cycle can be stabilized (example (2)). Even when the compressor discharge superheat degree is within the proper range, the heat source side expansion valve is opened at a constant opening when at least one of the usage side expansion valves is in the fully open state, so that the heating capacity due to the insufficient circulation amount of the refrigerant is increased. Can be prevented (example (3)).

【0059】さらに、圧縮機吐出過熱度の検出によっ
て、熱源側膨張弁の開閉制御を行っているので、圧縮機
吸入口における冷媒がガス・液2相の状態になっている
場合でも、十分な熱源側膨張弁の開閉動作を行うことが
できる。なお、上記実施の形態では、開度調整器29に
おいて、利用側膨張弁の少なくとも一つの開度が全開の
場合に、一定開度として、1%加える構成としたが、全
開状態かどうかにかかわらず、全利用側膨張弁全体の開
度状態に応じた開度を加える構成としても良い。
Further, since the heat source side expansion valve is controlled to be opened / closed by detecting the compressor discharge superheat degree, even when the refrigerant at the compressor inlet is in a gas / liquid two-phase state, it is sufficient. The heat source side expansion valve can be opened and closed. In the above-described embodiment, in the opening adjuster 29, when at least one opening of the use side expansion valve is fully opened, 1% is added as a constant opening. Instead, the configuration may be such that the opening degree according to the opening degree state of the entire utilization side expansion valve is added.

【0060】また、利用側ユニットの台数を3台とした
が、これに限るものではなく、1または2台としても良
く、また、圧縮機と熱源側熱交換器の能力によっては、
それ以上の台数とすることができる。さらに、利用側熱
交換器出口過熱度および圧縮機吐出過熱度の各しきい値
や開度調整機で加える一定開度値などは、熱交換器、圧
縮機等の仕様により、適宜変更可能なことは言うまでも
ない。
Further, the number of the use side units is three, but the number is not limited to this, and may be one or two, and depending on the capacities of the compressor and the heat source side heat exchanger,
It can be more than that. Furthermore, the threshold values of the user side heat exchanger outlet superheat degree and the compressor discharge superheat degree, and the constant opening value added by the opening degree adjuster can be appropriately changed depending on the specifications of the heat exchanger, the compressor, etc. Needless to say.

【0061】そして、使用する冷媒は、単一組成体、共
沸混合体、非共沸混合体のいずれの種類のものであって
もかまわない。
The refrigerant used may be any one of a single composition, an azeotropic mixture and a non-azeotropic mixture.

【0062】[0062]

【発明の効果】以上、請求項1記載の発明に係る空気調
和装置によれば、第2開度決定手段は、利用側熱交換器
出口過熱度が目標過熱度に等しくなるように利用側膨張
弁の開度変化量を算出し、算出値に前回制御時に自己の
決定した開度値を加えて次回制御時の利用側膨張弁の開
度値を決定するので、利用側熱交換器出口過熱度が目標
過熱度と等しくない時には、第2開度決定手段が決定す
る開度値は、実際に目標とする開度値より前記開度変化
量分大きな(または小さな)値となる。すなわち、利用
側膨張弁の開度制御に第2開度決定手段が決定する開度
値が用いられる場合には、第2開度決定手段の開度値に
よる制御性が高くなり、特に利用側熱交換器出口過熱度
が、第1のしきい値と第3のしきい値の間もしくは第4
のしきい値と第2のしきい値の間にある時には、第2開
度決定手段が目的とする過熱度制御を速やかに終えて、
利用側熱交換器出口過熱度を第3のしきい値と第4のし
きい値の間にいれることが出来、第1開度決定手段が目
的とする空調空間温度制御に移行することができる。し
たがって、装置起動時や目標温度の設定を変更した時な
どは、空調空間の温度を目標温度に速やかに到達させる
ことが出来、その後は、目標温度を効果的に維持できる
ので、快適な空調空間を実現することが可能となる。
As described above, according to the air conditioner of the present invention, the second opening degree determining means expands the use side expansion so that the use side heat exchanger outlet superheat degree becomes equal to the target superheat degree. The valve opening change amount is calculated, and the valve opening value of the user side expansion valve for the next control is determined by adding the valve opening value that was self-determined during the previous control to the calculated value. When the degree of opening is not equal to the target degree of superheat, the opening degree value determined by the second opening degree determining means becomes a value larger (or smaller) by the opening degree change amount than the actual target opening degree value. That is, when the opening degree value determined by the second opening degree determining means is used for controlling the opening degree of the use-side expansion valve, the controllability by the opening degree value of the second opening degree determining means becomes high. The heat exchanger outlet superheat degree is between the first threshold value and the third threshold value or the fourth threshold value.
When it is between the threshold value of and the second threshold value, the second degree of opening determining means quickly ends the target superheat control,
The use-side heat exchanger outlet superheat degree can be set between the third threshold value and the fourth threshold value, and the first air-conditioning space temperature control can be performed by the first opening degree determining means. . Therefore, the temperature of the air-conditioned space can quickly reach the target temperature when the device is started or when the target temperature setting is changed, and after that, the target temperature can be effectively maintained, so that the comfortable air-conditioned space can be maintained. Can be realized.

【0063】また、請求項2記載の発明に係る空気調和
装置によれば、冷媒の利用側熱交換器出口過熱度が適正
範囲にある状態が一定時間以上継続、即ち、第1開度決
定手段が決定した開度値により利用側膨張弁の開度制御
が行われる状態が一定時間以上継続した後、利用側熱交
換器出口過熱度が適正範囲外となり第2開度決定手段に
よる制御が再開されると、再開後の1回目の制御時に
は、第2開度決定手段は、利用側熱交換器出口過熱度が
目標過熱度に等しくなるように利用側膨張弁の開度変化
量を算出し、算出値に前回制御時に第1開度決定手段の
決定した利用側膨張弁の開度値を加えて利用側膨張弁の
開度値を決定する。したがって、利用側熱交換器出口過
熱度が一定時間適正範囲にある間に、前記適正範囲に入
る前に自己が決定した利用側膨張弁の開度値と実際の利
用側膨張弁の開度値が大きくかけはなれたり、大小関係
が逆転してしまっていたとしても、第2開度決定手段
は、制御再開後の1回目の制御時には、第1開度決定手
段の決定した利用側膨張弁の開度値(実際の利用側膨張
弁の開度値)を用いて、利用側膨張弁の開度値を決定す
るので、利用側過熱度制御をスムーズに再開させること
ができる。
According to the air conditioner of the second aspect of the present invention, the state in which the refrigerant use side heat exchanger outlet superheat degree is within the appropriate range continues for a certain period of time, that is, the first opening degree determining means. After the state in which the opening control of the usage-side expansion valve is performed by the opening value determined by is continued for a certain period of time or more, the usage-side heat exchanger outlet superheat degree is out of the appropriate range, and the control by the second opening determination means is restarted. Then, during the first control after the restart, the second opening degree determining means calculates the opening degree change amount of the usage-side expansion valve so that the usage-side heat exchanger outlet superheat degree becomes equal to the target superheat degree. Then, the opening value of the usage-side expansion valve is determined by adding the opening value of the usage-side expansion valve determined by the first opening determination means during the previous control to the calculated value. Therefore, while the usage-side heat exchanger outlet superheat degree is within the appropriate range for a certain period of time, the opening value of the usage-side expansion valve and the actual opening value of the usage-side expansion valve determined by itself before entering the appropriate range. Is greatly disregarded, or even if the magnitude relationship is reversed, the second opening degree determining means determines the use-side expansion valve determined by the first opening degree determining means during the first control after the control is restarted. Since the opening degree value of the utilization side expansion valve is determined using the opening degree value (actual opening degree value of the utilization side expansion valve), the utilization side superheat degree control can be restarted smoothly.

【0064】また、請求項3記載の発明に係る空気調和
装置によれば、圧縮機吐出過熱度を検出し、熱源側膨張
弁開度決定手段は、検出過熱度が目標過熱度に等しくな
るように熱源側膨張弁の開度値を決定するので、圧縮機
吸入過熱度がゼロの状態であっても、そのときの乾き度
に応じた制御動作を行うことができ、また、検出過熱度
が第3のしきい値より大きく第4のしきい値より小さい
場合は、熱源側膨張弁の開度値の維持制御をおこない、
検出過熱度が第1のしきい値と第3のしきい値の間もし
くは第4のしきい値と第2のしきい値の間である場合に
は、現在の開度値と前記熱源側膨張弁開度決定手段が決
定した開度値とから、過熱度を変数とするメンバ−シッ
プ関数によりもとめられた開度値により熱源側膨張弁の
開度制御するので、熱源側膨張弁の開閉動作が必要以上
頻繁にまたは急激に行われることがなく、よって、安定
した冷凍サイクルが得られる。
According to the air conditioner of the third aspect of the present invention, the compressor discharge superheat degree is detected, and the heat source side expansion valve opening degree determining means makes the detected superheat degree equal to the target superheat degree. Since the opening value of the heat source side expansion valve is determined, the control operation according to the dryness at that time can be performed even when the compressor suction superheat degree is zero, and the detected superheat degree is When it is larger than the third threshold value and smaller than the fourth threshold value, the opening degree value of the heat source side expansion valve is maintained and controlled,
When the detected degree of superheat is between the first threshold value and the third threshold value or between the fourth threshold value and the second threshold value, the current opening value and the heat source side The opening degree of the heat source side expansion valve is controlled by the opening degree value determined by the expansion valve opening degree determining means by the opening degree value obtained by the membership function having the degree of superheat as a variable. The operation is not performed more frequently or suddenly than necessary, and thus a stable refrigeration cycle is obtained.

【0065】また、請求項4記載の発明に係る空気調和
装置によれば、圧縮機吐出過熱度が第1のしきい値と第
2のしきい値の間にある場合には、熱源側膨張弁の開度
制御に、開度調節手段によって決定された、利用側膨張
弁の開度状態に応じた開度値が用いられるので、利用側
ユニットへの冷媒の供給不足を効果的に防止することが
でき、暖房能力の低下を効果的に防止できる結果、快適
な空調空間を実現することが可能となる。
According to the air conditioner of the fourth aspect of the present invention, when the compressor discharge superheat degree is between the first threshold value and the second threshold value, the heat source side expansion is performed. For controlling the opening of the valve, the opening value determined by the opening adjusting means according to the opening state of the use-side expansion valve is used, so that the supply shortage of the refrigerant to the use-side unit is effectively prevented. As a result, a decrease in heating capacity can be effectively prevented, and as a result, a comfortable air-conditioned space can be realized.

【0066】また、請求項5記載の発明に係る空気調和
装置によれば、圧縮機吐出過熱度が第1のしきい値と第
2のしきい値の間にあり、利用側膨張弁の少なくとも一
つの開度が全開の場合に、熱源側膨張弁の開度制御に、
現在の開度に一定の開度を加えることにより決定された
開度値が用いられるので、請求項4記載の空気調和装置
の効果と同じものが得られる。
According to the fifth aspect of the present invention, the compressor discharge superheat degree is between the first threshold value and the second threshold value, and at least the use-side expansion valve is When one opening is fully open, to control the opening of the heat source side expansion valve,
Since the opening value determined by adding a certain opening to the current opening is used, the same effect as the air conditioner according to the fourth aspect can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施の形態に係る空気調和装置の概
略構成図である。
FIG. 1 is a schematic configuration diagram of an air conditioner according to an embodiment of the present invention.

【図2】同実施の形態における、冷房運転時の利用側膨
張弁開閉制御系を示すブロック図である。
FIG. 2 is a block diagram showing a use-side expansion valve opening / closing control system during a cooling operation in the same embodiment.

【図3】同実施の形態における、冷房運転時の制御に用
いるメンバ−シップ関数の特性図である。
FIG. 3 is a characteristic diagram of a membership function used for control during a cooling operation in the embodiment.

【図4】同実施の形態における、暖房運転時の熱源側膨
張弁開閉制御系を示すブロック図である。
FIG. 4 is a block diagram showing a heat source side expansion valve opening / closing control system during heating operation in the same embodiment.

【図5】同実施の形態における、暖房運転時の制御に用
いるメンバ−シップ関数の特性図である。
FIG. 5 is a characteristic diagram of a membership function used for control during heating operation in the same embodiment.

【図6】従来技術における制御に用いるメンバ−シップ
関数の特性図である。
FIG. 6 is a characteristic diagram of a membership function used for control in the related art.

【符号の説明】[Explanation of symbols]

10a〜10c 空調空間温度センサ− 15a〜15c 空調温度設定器 20a〜20c 利用側熱交換器出口過熱度検出器 21a〜21c 利用側過熱度目標設定器 27 吐出過熱度検出器 28 吐出過熱度目標設定器 30a〜30c 冷房運転時利用側膨張弁開度制御装置 31a 記憶内容変更器 40a〜40c 暖房運転時利用側膨張弁開度制御装置 50 熱源側膨張弁開度制御装置 10a-10c Air-conditioning space temperature sensor-15a-15c Air-conditioning temperature setting device 20a-20c Use side heat exchanger outlet superheat degree detector 21a-21c Use side superheat degree target setting device 27 Discharge superheat degree detector 28 Discharge superheat degree target setting Units 30a to 30c Cooling operation side expansion valve opening control device 31a Memory content changer 40a to 40c Heating side use expansion valve opening control device 50 Heat source side expansion valve opening control device

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高谷 隆幸 大阪府東大阪市高井田本通4丁目2番5号 松下冷機株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takayuki Takatani 4-2-5 Takaidahondori, Higashiosaka, Osaka Prefecture Matsushita Refrigerating Machinery Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機、熱源側熱交換器を有する熱源ユ
ニットと、 利用側膨張弁、利用側熱交換器を有する一つまたは複数
の利用側ユニットと、 前記両ユニットを接続するガス側配管、液側配管とから
なり、 前記圧縮機で圧縮された冷媒が、前記熱源側熱交換器で
外気と熱交換した後、前記液側配管および前記利用側膨
張弁を介して前記利用側熱交換器に流入し、前記利用側
熱交換器で当該利用側ユニットが設置されている空調空
間の空気と熱交換した後、前記ガス側配管を介して前記
圧縮機に還流するように冷媒回路を構成してなる空気調
和装置において、 前記空調空間の温度を検出する空調空間温度検出手段
と、 前記空調空間の目標温度を設定する目標温度設定手段
と、 冷媒の前記利用側熱交換器の出口における過熱度を検出
する利用側熱交換器出口過熱度検出手段と、 冷媒の前記利用側熱交換器の出口における目標過熱度を
設定する目標過熱度設定手段と、 前記空調空間温度検出手段が検出する空調空間温度が前
記目標温度設定手段で設定されている温度に等しくなる
ように前記利用側膨張弁の開度値を決定する第1開度決
定手段と、 前記利用側熱交換器出口過熱度検出手段が検出する過熱
度が前記目標過熱度設定手段で設定されている目標過熱
度に等しくなるように前記利用側膨張弁の開度変化量を
算出し、算出値に前回制御時に自己の決定した前記利用
側膨張弁の開度値を加えることにより、次回制御時の前
記利用側膨張弁の開度値を決定する第2開度決定手段
と、 前記利用側熱交換器出口過熱度検出手段が検出する過熱
度が第1のしきい値より小さい場合、及び、第2のしき
い値より大きい場合には、前記第2開度決定手段により
決定された開度値を用いて前記利用側膨張弁の開度を制
御し、前記利用側熱交換器出口過熱度検出手段が検出す
る過熱度が第1のしきい値と第2のしきい値の間の第3
のしきい値より大きく、第3のしきい値と第2のしきい
値の間の第4のしきい値より小さい場合には、前記第1
開度決定手段により決定された開度値を用いて前記利用
側膨張弁の開度を制御し、前記利用側熱交換器出口過熱
度検出手段が検出する過熱度が第1のしきい値と第3の
しきい値の間、及び、第4のしきい値と第2のしきい値
の間である場合には、前記第1、2開度決定手段が決定
した両開度値から、過熱度を変数とするメンバ−シップ
関数により求められた開度値を用いて前記利用側膨張弁
の開度を制御する制御手段と、 を有することを特徴とする空気調和装置。
1. A heat source unit having a compressor and a heat source side heat exchanger, one or a plurality of use side units having a use side expansion valve and a use side heat exchanger, and a gas side pipe connecting the both units. , A liquid side pipe, the refrigerant compressed by the compressor, after heat exchange with the outside air in the heat source side heat exchanger, the use side heat exchange through the liquid side pipe and the use side expansion valve A refrigerant circuit is configured to flow into the compressor and exchange heat with the air in the air-conditioned space in which the usage-side unit is installed in the usage-side heat exchanger, and then return to the compressor through the gas-side pipe. In the air conditioner configured as described above, an air-conditioned space temperature detecting means for detecting a temperature of the air-conditioned space, a target temperature setting means for setting a target temperature of the air-conditioned space, and a refrigerant overheat at an outlet of the use side heat exchanger. Use to detect degree Side heat exchanger outlet superheat degree detecting means, target superheat degree setting means for setting a target superheat degree at the outlet of the utilization side heat exchanger of refrigerant, and the air conditioning space temperature detected by the air conditioning space temperature detecting means is the target. First opening degree determining means for determining an opening degree value of the utilization side expansion valve so as to be equal to the temperature set by the temperature setting means, and a superheat degree detected by the utilization side heat exchanger outlet superheat degree detecting means Is calculated the opening change amount of the use side expansion valve so as to be equal to the target superheat degree set by the target superheat degree setting means, the calculated value of the use side expansion valve self-determined during the previous control The second opening degree determining means for determining the opening degree value of the utilization side expansion valve at the time of the next control by adding the opening degree value, and the superheat degree detected by the utilization side heat exchanger outlet superheat degree detecting means are Less than the threshold of 1, and When it is larger than the second threshold value, the opening degree of the utilization side expansion valve is controlled using the opening degree value determined by the second opening degree determining means, and the utilization side heat exchanger outlet superheat degree The degree of superheat detected by the detection means is a third value between the first threshold value and the second threshold value.
Is greater than the threshold value and is less than the fourth threshold value between the third threshold value and the second threshold value,
The opening degree of the utilization side expansion valve is controlled using the opening degree value determined by the opening degree determining means, and the superheat degree detected by the utilization side heat exchanger outlet superheat degree detecting means is the first threshold value. Between the third threshold value and between the fourth threshold value and the second threshold value, based on both opening values determined by the first and second opening determining means, An air conditioner comprising: a control unit that controls the opening degree of the use-side expansion valve using an opening degree value obtained by a membership function having a degree of superheat as a variable.
【請求項2】 前記第2開度決定手段は、さらに、 前記利用側熱交換器出口過熱度検出手段が検出する過熱
度が、第3のしきい値より大きく第4のしきい値より小
さい適正範囲にある状態が一定時間以上継続して前記適
正範囲外となった後の1回目の制御時には、自己の決定
した利用側膨張弁の開度値に代えて前回制御時に第1開
度決定手段の決定した利用側膨張弁の開度値を用いて、
次回制御時の利用側膨張弁の開度値を決定する開度決定
部を有することを特徴とする請求項1記載の空気調和装
置。
2. The second opening degree determining means further has a superheat degree detected by the utilization side heat exchanger outlet superheat degree detecting means which is larger than a third threshold value and smaller than a fourth threshold value. During the first control after the state of being in the proper range has been out of the proper range for a certain period of time or longer, the first opening degree is determined in the previous control in place of the self-determined opening degree value of the use-side expansion valve. Using the opening value of the use-side expansion valve determined by the means,
The air conditioner according to claim 1, further comprising an opening degree determining unit that determines an opening degree value of the use-side expansion valve at the time of next control.
【請求項3】 圧縮機、熱源側熱交換器、熱源側膨張弁
を有する熱源ユニットと、 利用側膨張弁、利用側熱交換器を有する一つまたは複数
の利用側ユニットと、 前記両ユニットを接続するガス側配管、液側配管とから
なり、 前記圧縮機で圧縮された冷媒が、前記ガス側配管を介し
て、前記利用側ユニットに送出され、送出された冷媒
は、前記利用側熱交換器で当該利用側ユニットが配置さ
れている空調空間の空気と熱交換した後、前記利用側膨
張弁、前記液側配管、前記熱源側膨張弁を介して前記利
用側熱交換器に流入し、前記利用側熱交換器で外気と熱
交換した後、前記圧縮機に還流するよう冷媒回路を構成
してなる空気調和装置において、 冷媒の前記圧縮機吐出過熱度を検出する圧縮機吐出過熱
度検出手段と、 冷媒の前記圧縮機の吐出口における目標過熱度を設定す
る目標過熱度設定手段と、 前記圧縮機吐出過熱度検出手段が検出する過熱度が前記
目標過熱度設定手段で設定されている過熱度に等しくな
るように前記熱源側膨張弁の開度値を決定する熱源側膨
張弁開度決定手段と、 前記圧縮機吐出過熱度検出手段が検出する過熱度が第1
のしきい値より小さい場合、及び、第2のしきい値より
大きい場合には、前記熱源側膨張弁開度決定手段により
決定された開度値を用いて前記熱源側膨張弁の開度を制
御し、前記圧縮機吐出過熱度検出手段が検出する過熱度
が第1のしきい値と第2のしきい値の間の第3のしきい
値より大きく、第3のしきい値と第2のしきい値の間の
第4のしきい値より小さい場合には、現在の開度値を維
持するように前記熱源側膨張弁の開度を制御し、前記圧
縮機吐出過熱度検出手段が検出する過熱度が第1のしき
い値と第3のしきい値の間、及び、第4のしきい値と第
2のしきい値の間である場合には、現在の開度値と前記
熱源側膨張弁開度決定手段が決定した開度値とから、過
熱度を変数とするメンバ−シップ関数により求められた
開度値を用いて前記熱源側膨張弁の開度を制御する制御
手段と、 を有することを特徴とする空気調和装置。
3. A heat source unit having a compressor, a heat source side heat exchanger, and a heat source side expansion valve; one or a plurality of use side units having a use side expansion valve and a use side heat exchanger; A gas side pipe and a liquid side pipe to be connected, the refrigerant compressed by the compressor is delivered to the utilization side unit via the gas side pipe, and the delivered refrigerant is the utilization side heat exchange. After heat exchange with the air in the air-conditioned space in which the utilization side unit is arranged in the container, flow into the utilization side heat exchanger via the utilization side expansion valve, the liquid side pipe, the heat source side expansion valve, An air conditioner having a refrigerant circuit configured to recirculate to the compressor after heat exchange with the outside air in the utilization side heat exchanger, compressor discharge superheat detection for detecting the compressor discharge superheat of refrigerant. Means and discharge of said compressor of refrigerant Target superheat degree setting means for setting a target superheat degree in, and the heat source side expansion so that the superheat degree detected by the compressor discharge superheat degree detecting means becomes equal to the superheat degree set by the target superheat degree setting means. The heat source side expansion valve opening degree determining means for determining the valve opening value and the superheat degree detected by the compressor discharge superheat degree detecting means are the first.
When it is smaller than the threshold value of, and when it is larger than the second threshold value, the opening degree of the heat source side expansion valve is set using the opening degree value determined by the heat source side expansion valve opening degree determining means. The superheat degree controlled by the compressor discharge superheat degree detecting means is larger than a third threshold value between the first threshold value and the second threshold value, When it is smaller than the fourth threshold value between the two threshold values, the opening degree of the heat source side expansion valve is controlled so as to maintain the present opening degree value, and the compressor discharge superheat degree detecting means. If the degree of superheat detected by is between the first threshold value and the third threshold value and between the fourth threshold value and the second threshold value, the current opening value And the opening value determined by the heat source side expansion valve opening determining means using the opening value obtained by the membership function with the degree of superheat as a variable. An air conditioning apparatus characterized in that it has a control means for controlling the opening of the heat source side expansion valve, the.
【請求項4】 前記利用側膨張弁の開度状態を検出し、
前記開度状態に応じて前記熱源側膨張弁の開度値を決定
する開度調節手段を備え、 前記制御手段において、現在の開度値に代えて前記開度
調節手段が決定する開度値を用いることを特徴とする請
求項3記載の空気調和装置。
4. An opening state of the use-side expansion valve is detected,
An opening degree adjusting means for determining an opening degree value of the heat source side expansion valve according to the opening degree state is provided, and in the control means, an opening degree value determined by the opening degree adjusting means instead of the current opening degree value. The air conditioner according to claim 3, wherein the air conditioner is used.
【請求項5】 前記開度調節手段は、前記利用側膨張弁
の少なくとも一つの開度が全開の場合に、現在の前記熱
源側膨張弁の開度に一定の開度を加えることにより前記
熱源側膨張弁の開度値を決定することを特徴とする請求
項4記載の空気調和装置。
5. The heat source by adjusting the opening degree by adding a constant opening degree to the current opening degree of the heat source side expansion valve when at least one opening degree of the utilization side expansion valve is fully opened. The air conditioner according to claim 4, wherein the opening value of the side expansion valve is determined.
JP15414496A 1995-06-20 1996-06-14 Air conditioner Pending JPH0968359A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15414496A JPH0968359A (en) 1995-06-20 1996-06-14 Air conditioner

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7-153568 1995-06-20
JP15356895 1995-06-20
JP15414496A JPH0968359A (en) 1995-06-20 1996-06-14 Air conditioner

Publications (1)

Publication Number Publication Date
JPH0968359A true JPH0968359A (en) 1997-03-11

Family

ID=26482151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15414496A Pending JPH0968359A (en) 1995-06-20 1996-06-14 Air conditioner

Country Status (1)

Country Link
JP (1) JPH0968359A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009008305A (en) * 2007-06-27 2009-01-15 Fuji Koki Corp Valve control method and valve control device
WO2021215072A1 (en) * 2020-04-20 2021-10-28 株式会社デンソー Refrigeration cycle device
WO2023209969A1 (en) * 2022-04-28 2023-11-02 三菱電機株式会社 Air conditioning device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009008305A (en) * 2007-06-27 2009-01-15 Fuji Koki Corp Valve control method and valve control device
WO2021215072A1 (en) * 2020-04-20 2021-10-28 株式会社デンソー Refrigeration cycle device
JP2021173425A (en) * 2020-04-20 2021-11-01 株式会社デンソー Refrigeration cycle device
WO2023209969A1 (en) * 2022-04-28 2023-11-02 三菱電機株式会社 Air conditioning device

Similar Documents

Publication Publication Date Title
KR101462745B1 (en) Control device for an air-conditioning device and air-conditioning device provided therewith
JP4134069B2 (en) Multi air conditioner system and valve opening control method of multi air conditioner system
US6655161B1 (en) Air conditioner and control method thereof
JP2008089292A (en) Air conditioner
KR20030097179A (en) Heat-Pump Air Conditioner's Operating Method
JP3221232B2 (en) Heat pump refrigeration system
JP6703468B2 (en) Air conditioner with hot water supply function
JPH08254376A (en) Air conditioner
JP2989491B2 (en) Air conditioner
JPH0968359A (en) Air conditioner
JP6679461B2 (en) Heat pump water heater with heating function
JP5634248B2 (en) Air conditioner
EP1730455A2 (en) Non-linear control algorithm in vapor compression systems
JP3729552B2 (en) Air conditioner
JP2006317050A (en) Control device for cooling and heating concurrent operation type air conditioner
JPH1114125A (en) Multichamber type air conditioner
JPH09210491A (en) Multi-chamber type air conditioner
JP7055239B2 (en) Air conditioner
JPH03217746A (en) Multiroom type air-conditioner
JP7397286B2 (en) Refrigeration cycle equipment
WO2024111432A1 (en) Air conditioner
WO2023013616A1 (en) Refrigeration cycle device
WO2022244806A1 (en) Refrigeration cycle device and refrigerant leakage determination system
JPH0833249B2 (en) Heat pump controller
JP7201496B2 (en) air conditioning system