JPH0965662A - Power module - Google Patents

Power module

Info

Publication number
JPH0965662A
JPH0965662A JP7218436A JP21843695A JPH0965662A JP H0965662 A JPH0965662 A JP H0965662A JP 7218436 A JP7218436 A JP 7218436A JP 21843695 A JP21843695 A JP 21843695A JP H0965662 A JPH0965662 A JP H0965662A
Authority
JP
Japan
Prior art keywords
power module
power
converter
semiconductor element
shunt resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7218436A
Other languages
Japanese (ja)
Inventor
Takashi Aihara
隆司 藍原
Yoshihiro Matsumoto
吉弘 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP7218436A priority Critical patent/JPH0965662A/en
Priority to DE19633542A priority patent/DE19633542A1/en
Priority to GB9617939A priority patent/GB2305028A/en
Publication of JPH0965662A publication Critical patent/JPH0965662A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • H01L25/072Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0248Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4911Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain
    • H01L2224/49111Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain the connectors connecting two common bonding areas, e.g. Litz or braid wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01015Phosphorus [P]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inverter Devices (AREA)
  • Measurement Of Current Or Voltage (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce the size and cost of a device using a power semiconductor element. SOLUTION: The cost of a power converter (device) is reduced by reducing the size of the converter as a whole by not providing current sensors for detecting the electric current flowing to a power semiconductor element on the outside of the converter as in the case of the conventional power converter using the power semiconductor element, but in power modules 1a, 1b, 1c (for three phases) as CTu, CTv, and CTw.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、直流電力と直流
または交流電力相互の変換が可能な電力変換器のパワー
モジュールの構成に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power module configuration of a power converter capable of converting DC power and DC or AC power.

【0002】[0002]

【従来の技術】図7はパワーモジュールの従来例を示す
構成図である。従来のパワーモジュールは図7(a),
(b)に示すように、冷却体11と、絶縁体12と、こ
の絶縁体12の上に形成された銅パターン13a〜13
dと、この銅パターン13a〜13dの上に実装される
パワートランジスタチップ14a,14bと、ダイオー
ドチップ15a,15bと、ケース18および端子台1
9b〜19dなどからなっている。端子台19b〜19
dは、銅パターン13a〜13dの斜線部のパッド
(P:正極,N:負極,OUT:出力と記入されている
部分)と接続されている。
2. Description of the Related Art FIG. 7 is a block diagram showing a conventional example of a power module. The conventional power module is shown in FIG.
As shown in (b), the cooling body 11, the insulator 12, and the copper patterns 13 a to 13 formed on the insulator 12.
d, power transistor chips 14a and 14b mounted on the copper patterns 13a to 13d, diode chips 15a and 15b, a case 18, and a terminal block 1
9b to 19d. Terminal blocks 19b-19
d is connected to the shaded pad (P: positive electrode, N: negative electrode, OUT: output) of the copper patterns 13a to 13d.

【0003】図8はインバータのような直流/交流変換
器の1例を示すもので、図7の如きパワーモジュール1
a〜1cと、電流センサ2a〜2cと、端子台3と、バ
ー配線4a〜4eと、冷却フィン5とから構成される。
このように、従来の変換器では交流側の出力電流を検出
するため、パワーモジュール1a〜1cの出力端子か
ら、一度バー配線4c〜4eを経由して電流センサ2a
〜2cを通過した後、再び端子台3へと接続されてい
る。
FIG. 8 shows an example of a DC / AC converter such as an inverter. The power module 1 shown in FIG.
a to 1c, current sensors 2a to 2c, terminal block 3, bar wirings 4a to 4e, and cooling fins 5.
As described above, in the conventional converter, since the output current on the AC side is detected, the current sensor 2a is once passed from the output terminals of the power modules 1a to 1c via the bar wirings 4c to 4e.
After passing through ~ 2c, it is connected to the terminal block 3 again.

【0004】図9はパワーモジュールおよび変換器の各
例を示す回路図である。すなわち、同図(a)のように
パワーモジュールをIGBT(絶縁ゲート型バイポーラ
トランジスタ)の如きパワートランジスタT1,T2と
ダイオードD1,D2との逆並列回路の2個組で構成
し、これを同図(b)のように3相構成(6個組)とし
てインバータのような変換器とした例を示している。
FIG. 9 is a circuit diagram showing each example of a power module and a converter. That is, as shown in FIG. 3A, the power module is configured by a pair of antiparallel circuits of power transistors T1 and T2 such as IGBTs (insulated gate bipolar transistors) and diodes D1 and D2. As shown in (b), an example of a converter such as an inverter is shown as a three-phase configuration (a set of six).

【0005】[0005]

【発明が解決しようとする課題】すなわち、従来の変換
器では、パワーモジュールの端子台から変換器の端子台
までの間が、電流センサを通過させるためにだけ設けら
れることになり、寸法が大きくなってコスト高になると
いう問題がある。したがって、この発明の課題は、装置
の小型化と低コスト化とを図ることにある。
That is, in the conventional converter, the space between the terminal block of the power module and the terminal block of the converter is provided only for passing the current sensor, and the size is large. There is a problem that the cost becomes high. Therefore, an object of the present invention is to reduce the size and cost of the device.

【0006】[0006]

【課題を解決するための手段】このような課題を解決す
るため、電流センサをパワーモジュールの中に入れて一
体化することにより、パワーモジールの出力端子を直流
と交流の相互変換が可能な変換器一般の出力端子として
そのまま使用できるようにし、バー配線を不要とする。
その結果、寸法を小さくでき低コスト化を図ることがで
きる。また、電流センサとしてはシャント抵抗を用い、
モジールの冷却体の上におくことで、特に電流センサの
小形化と低コスト化を図る。また、シャント抵抗をモジ
ールの冷却体の絶縁体の上に直接形成することで、より
小形化と低コスト化を図る。さらに、電流センサとして
はシャント抵抗を用いた場合は、シャント抵抗出力を絶
縁する絶縁アンプを内蔵することにより、ノイズの影響
を受け難くする。
In order to solve such a problem, a converter capable of mutually converting the output terminal of a power module into a direct current and an alternating current by inserting and integrating a current sensor in a power module. It can be used as it is as a general output terminal, eliminating the need for bar wiring.
As a result, the size can be reduced and the cost can be reduced. A shunt resistor is used as the current sensor,
By placing it on the cooling body of the module, the size and cost of the current sensor will be reduced. Further, by directly forming the shunt resistance on the insulator of the cooling body of the module, further miniaturization and cost reduction are achieved. Furthermore, when a shunt resistor is used as the current sensor, the influence of noise can be reduced by incorporating an isolation amplifier that insulates the shunt resistor output.

【0007】[0007]

【発明の実施の形態】図1はこの発明の第1の実施の形
態を示す構成図である。すなわち、この発明によるパワ
ーモジールは、電流検出器としての電流センサ16を端
子台19dの前段に挿入し、その電流検出信号を端子1
9a(CT)に出力するようにした点が特徴である。か
かるパワーモジールを用いた変換器の例を図2に示す
が、これは図8に示すものと比べれば明らかなように、
バー配線4c〜4eと端子台3を省略できることが分か
る。
1 is a block diagram showing a first embodiment of the present invention. That is, in the power module according to the present invention, the current sensor 16 as a current detector is inserted in the front stage of the terminal block 19d, and the current detection signal is output to the terminal 1.
The feature is that it is output to 9a (CT). An example of a converter using such a power module is shown in FIG. 2, which, as is clear from comparison with the one shown in FIG.
It can be seen that the bar wirings 4c to 4e and the terminal block 3 can be omitted.

【0008】図3はこの発明の第2の実施の形態を示す
構成図である。この例は、電流センサとしてシャント抵
抗16を用いた点が特徴である。このシャント抵抗16
は大電流が流れるときは発熱が問題となるが、これをパ
ワーモジールの冷却体11の上に搭載することにより、
放熱効率を飛躍的に向上させ、シャント抵抗を小型化す
るものである。
FIG. 3 is a block diagram showing a second embodiment of the present invention. This example is characterized in that a shunt resistor 16 is used as a current sensor. This shunt resistor 16
Generates a problem when a large current flows, but by mounting this on the cooling body 11 of the power module,
It dramatically improves heat dissipation efficiency and reduces shunt resistance.

【0009】図4はこの発明の第3の実施の形態を示す
構成図である。これは、図3に示すものに対し、さらに
アイソレーションアンプ17を付加して構成した点が特
徴である。すなわち、出力電流の検出は、通常は電位絶
縁して行なわれ、また、シャント抵抗の出力電圧は微小
であるのが普通である。このため、微小信号をパワーモ
ジール外に引き出して電位絶縁するようにすると、その
間で信号がノイズの影響を受け易くなってしまう。そこ
で、この例のようにアイソレーションアンプ17をパワ
ーモジールに内蔵させることで、微小信号の部分を最短
距離にすることができる。また、モジールから引き出さ
れたところでは、すでに電位絶縁されているため、信号
パターンの絶縁距離等を考慮する必要は無い。
FIG. 4 is a block diagram showing a third embodiment of the present invention. This is characterized in that an isolation amplifier 17 is further added to the configuration shown in FIG. That is, the output current is normally detected with potential insulation, and the output voltage of the shunt resistor is usually very small. For this reason, if a minute signal is drawn out of the power module for potential insulation, the signal is likely to be affected by noise during that time. Therefore, by incorporating the isolation amplifier 17 in the power module as in this example, the minute signal portion can be made the shortest distance. In addition, since the potential is already insulated at the location pulled out from the module, it is not necessary to consider the insulation distance of the signal pattern.

【0010】図5にシャント抵抗の具体例を示す。16
1は銅ベース、162は絶縁体、163は電極、164
はシャント抵抗をそれぞれ示している。ここでは、シャ
ント抵抗164の放熱を良くするために、絶縁体162
を間にはさんで銅ベース161に載せるようにしてい
る。また、モジールへの実装時には、この銅ベース16
1がモジールの銅パターン13c,13dへ半田付けさ
れる。このように構成する理由は、シャント抵抗が薄膜
となるため、銅ベースの上に絶縁して形成する必要があ
ることによる。
FIG. 5 shows a specific example of the shunt resistor. 16
1 is a copper base, 162 is an insulator, 163 is an electrode, 164
Indicates the shunt resistance, respectively. Here, in order to improve the heat dissipation of the shunt resistor 164.
It is designed to be placed on the copper base 161 with a space between them. Also, when mounting on a module, this copper base 16
1 is soldered to the copper patterns 13c and 13d of the module. The reason for such a configuration is that the shunt resistance is a thin film, and therefore it must be formed on the copper base in an insulating manner.

【0011】しかし、モジールに実装した状態で見る
と、2つの絶縁体は明らかに重複している。そこで、図
6のように、シャント抵抗164をモジールの絶縁体1
2の上に直接形成するようにする。こうすれば、機械的
強度不足を補いつつ、図5のような銅ベース161およ
び絶縁体162を不要とすることができる。その結果、
コストダウンだけでなく、冷却体11までの熱抵抗が下
がるため、より一層の小形化が可能となる。
However, when viewed in a state where it is mounted on a module, the two insulators obviously overlap. Therefore, as shown in FIG. 6, the shunt resistor 164 is connected to the insulator 1 of the module.
Directly formed on top of 2. This makes it possible to eliminate the need for the copper base 161 and the insulator 162 as shown in FIG. 5 while compensating for the insufficient mechanical strength. as a result,
Not only the cost is reduced, but also the thermal resistance up to the cooling body 11 is reduced, so that further downsizing is possible.

【0012】以上では、主として2個組パワーモジール
について説明したが、この発明は6個組パワーモジール
(図2または図8に示すようなパワーモジール1a,1
b,1cを組にしたもの)についても、同様にして適用
することができる。また、パワートランジスタの代わり
に、MOSFETなどの電力用半導体素子を用いること
ができるのは言う迄もない。さらに、変換器はPWMコ
ンバータを含む順変換器でも、インバータのような逆変
換器でも良いのも勿論である。
Although the two-piece power module has been mainly described above, the present invention has a six-piece power module (the power modules 1a, 1 shown in FIG. 2 or FIG. 8).
The same applies to a combination of b and 1c). Needless to say, a power semiconductor element such as MOSFET can be used instead of the power transistor. Further, it goes without saying that the converter may be a forward converter including a PWM converter or an inverse converter such as an inverter.

【0013】[0013]

【発明の効果】この発明によれば、電流センサをパワー
モジュール内に内蔵させるようにしているため、モジュ
ールの出力端子を直接変換器出力端子として使用できる
ので、変換器の構成が簡単となりコストダウンができ、
小形にできる。また、電流センサとしてシャント抵抗を
使用し、モジュール上に実装して冷却することで、シャ
ント抵抗の特に小形化が可能となり、さらにアイソレー
ションアンプを内蔵させることで、ノイズの影響を受け
難くすることができる。加えて、シャント抵抗をモジュ
ールの絶縁体の上に直接形成することで、より低コスト
となり、しかも低熱抵抗とすることができるため、一層
の小型化が可能となる。
According to the present invention, since the current sensor is built in the power module, the output terminal of the module can be directly used as the converter output terminal, so that the structure of the converter is simplified and the cost is reduced. Can
Can be made small. In addition, by using a shunt resistor as the current sensor and mounting it on the module to cool it, the shunt resistor can be made particularly small, and by incorporating an isolation amplifier, it is less susceptible to noise. You can In addition, by directly forming the shunt resistor on the insulator of the module, the cost can be further reduced and the thermal resistance can be reduced, so that the size can be further reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明による第1の実施の形態を示す構成図
である。
FIG. 1 is a configuration diagram showing a first embodiment according to the present invention.

【図2】図1のモジュールを使用した変換器の例を示す
構成図である。
FIG. 2 is a configuration diagram showing an example of a converter using the module of FIG.

【図3】この発明による第2の実施の形態を示す構成図
である。
FIG. 3 is a configuration diagram showing a second embodiment according to the present invention.

【図4】この発明による第3の実施の形態を示す構成図
である。
FIG. 4 is a configuration diagram showing a third embodiment according to the present invention.

【図5】図3のシャント抵抗の具体例を示す構成図であ
る。
5 is a configuration diagram showing a specific example of the shunt resistor of FIG.

【図6】図5の変形例を示す構成図である。FIG. 6 is a configuration diagram showing a modification of FIG. 5;

【図7】パワーモジュールの従来例を示す構成図であ
る。
FIG. 7 is a configuration diagram showing a conventional example of a power module.

【図8】図7のモジュールを使用した変換器の例を示す
構成図である。
8 is a configuration diagram showing an example of a converter using the module of FIG.

【図9】パワーモジュールおよび変換器の各例を示す回
路図である。
FIG. 9 is a circuit diagram showing each example of a power module and a converter.

【符号の説明】[Explanation of symbols]

1a〜1c…パワーモジュール、2a〜2c…電流セン
サ(電流検出器)、3,19…端子台、4a〜4c…バ
ー配線、5…冷却フィン、11…冷却体、12,162
…絶縁体、13a〜13d…銅パターン、14a,14
b…パワートランジスタチップ、15a,15b…ダイ
オードチップ、16…電流センサ、17…アイソレーシ
ョンアンプ、18…ケース、161…銅ベース、163
…電極、164…シャント抵抗。
1a to 1c ... Power module, 2a to 2c ... Current sensor (current detector), 3, 19 ... Terminal block, 4a-4c ... Bar wiring, 5 ... Cooling fin, 11 ... Cooling body, 12, 162
... Insulator, 13a to 13d ... Copper pattern, 14a, 14
b ... Power transistor chip, 15a, 15b ... Diode chip, 16 ... Current sensor, 17 ... Isolation amplifier, 18 ... Case, 161, ... Copper base, 163
... electrodes, 164 ... shunt resistance.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 電力用半導体素子と、この電力用半導体
素子を流れる電流を検出する電流センサと、電力用半導
体素子を用いた装置の出力端子としての端子台とを一体
型にしたことを特徴とするパワーモジュール。
1. A power semiconductor element, a current sensor for detecting a current flowing through the power semiconductor element, and a terminal block as an output terminal of an apparatus using the power semiconductor element are integrated. And power module.
【請求項2】 電力用半導体素子と、この電力用半導体
素子を流れる電流を検出する電流センサと、電力用半導
体素子を用いた装置の出力端子としての端子台とを一体
型にし、直流電源と可変電圧・可変周波数の交流とを相
互に変換する変換器の構成要素として用いることを特徴
とするパワーモジュール。
2. A power semiconductor element, a current sensor for detecting a current flowing through the power semiconductor element, and a terminal block as an output terminal of an apparatus using the power semiconductor element are integrated into a direct current power source. A power module characterized by being used as a constituent element of a converter for mutually converting variable voltage and variable frequency alternating current.
【請求項3】 前記電流センサとしてシャント抵抗を用
い、このシャント抵抗を冷却体の上に配置することを特
徴とする請求項1または2のいずれかに記載のパワーモ
ジュール。
3. The power module according to claim 1, wherein a shunt resistor is used as the current sensor, and the shunt resistor is arranged on the cooling body.
【請求項4】 前記シャント抵抗の出力電圧を絶縁する
絶縁アンプを内蔵することを特徴とする請求項3に記載
のパワーモジュール。
4. The power module according to claim 3, further comprising an isolation amplifier for insulating the output voltage of the shunt resistor.
【請求項5】 前記シャント抵抗をパワーモジュールの
冷却体の絶縁体の上に直接形成することを特徴とする請
求項3に記載のパワーモジュール。
5. The power module according to claim 3, wherein the shunt resistor is directly formed on the insulator of the cooling body of the power module.
JP7218436A 1995-08-28 1995-08-28 Power module Pending JPH0965662A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP7218436A JPH0965662A (en) 1995-08-28 1995-08-28 Power module
DE19633542A DE19633542A1 (en) 1995-08-28 1996-08-20 Power module
GB9617939A GB2305028A (en) 1995-08-28 1996-08-28 Power module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7218436A JPH0965662A (en) 1995-08-28 1995-08-28 Power module

Publications (1)

Publication Number Publication Date
JPH0965662A true JPH0965662A (en) 1997-03-07

Family

ID=16719890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7218436A Pending JPH0965662A (en) 1995-08-28 1995-08-28 Power module

Country Status (3)

Country Link
JP (1) JPH0965662A (en)
DE (1) DE19633542A1 (en)
GB (1) GB2305028A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003070230A (en) * 2001-08-22 2003-03-07 Hitachi Ltd Power converter with shunt resistor
WO2003032478A1 (en) * 2001-09-25 2003-04-17 Daikin Industries, Ltd. Phase current detector
JP2003218318A (en) * 2002-01-21 2003-07-31 Mitsubishi Electric Corp Semiconductor power module, insulating substrate used for the same and method of manufacturing the same
JP2004201462A (en) * 2002-12-20 2004-07-15 Toyota Motor Corp Inverter arrangement and the same integrated with motor using it
CN107580726A (en) * 2015-05-06 2018-01-12 西门子公司 The manufacture method of power model and power model

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018109803A1 (en) 2018-04-24 2019-10-24 Schaeffler Technologies AG & Co. KG Power electronics unit with integrated current sensor for forming a module; as well as powertrain

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3710193A (en) * 1971-03-04 1973-01-09 Lambda Electronics Corp Hybrid regulated power supply having individual heat sinks for heat generative and heat sensitive components
US4007401A (en) * 1974-09-09 1977-02-08 Westinghouse Electric Corporation Current sensitive circuit protection system
DE2724176B2 (en) * 1977-05-27 1979-06-13 Siemens Ag, 1000 Berlin Und 8000 Muenchen DC power system
US4965710A (en) * 1989-11-16 1990-10-23 International Rectifier Corporation Insulated gate bipolar transistor power module
JPH0834709B2 (en) * 1990-01-31 1996-03-29 株式会社日立製作所 Semiconductor integrated circuit and electric motor control device using the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003070230A (en) * 2001-08-22 2003-03-07 Hitachi Ltd Power converter with shunt resistor
WO2003032478A1 (en) * 2001-09-25 2003-04-17 Daikin Industries, Ltd. Phase current detector
US7084601B2 (en) 2001-09-25 2006-08-01 Daikin Industries, Ltd. Phase current detector
JP2003218318A (en) * 2002-01-21 2003-07-31 Mitsubishi Electric Corp Semiconductor power module, insulating substrate used for the same and method of manufacturing the same
JP2004201462A (en) * 2002-12-20 2004-07-15 Toyota Motor Corp Inverter arrangement and the same integrated with motor using it
CN107580726A (en) * 2015-05-06 2018-01-12 西门子公司 The manufacture method of power model and power model

Also Published As

Publication number Publication date
GB9617939D0 (en) 1996-10-09
GB2305028A (en) 1997-03-26
DE19633542A1 (en) 1997-03-06

Similar Documents

Publication Publication Date Title
EP1160866B1 (en) Semiconductor device with power wiring structure
US9116532B2 (en) Power semiconductor device module
US8423317B2 (en) Temperature detection method of semiconductor device and power conversion apparatus
EP2015361B1 (en) Semi conductor device
JPH10178151A (en) Power module for controlling electric motor
JPH0390872A (en) Semiconductor device
JP4342232B2 (en) Semiconductor power module and main circuit current measuring system for measuring main circuit current value of the module
US10886202B2 (en) Semiconductor device
JP2006197735A (en) Inverter
JP3941266B2 (en) Semiconductor power module
JP2002083927A (en) Semiconductor device
JP2006140217A (en) Semiconductor module
JPH11127583A (en) Three-phase inverter circuit module
JPH0965662A (en) Power module
US5617293A (en) Bridge module
JP3896940B2 (en) Semiconductor device
JPH0719166Y2 (en) Element mounting structure for power converter
JP2005252090A (en) Method for detecting temperature of semiconductor element and semiconductor power converter
JP4246040B2 (en) Semiconductor device package
JP2006041407A (en) Temperature sensing method of semiconductor apparatus and power converter
JP4697025B2 (en) Power semiconductor module
JP3308713B2 (en) Electronics
JP2002171768A (en) Power converter
US10804189B2 (en) Power device package structure
JP2021090328A (en) Inverter controller