JPH0964422A - N-type thermoelectric material and thermoelectric effect element using the same - Google Patents

N-type thermoelectric material and thermoelectric effect element using the same

Info

Publication number
JPH0964422A
JPH0964422A JP7220782A JP22078295A JPH0964422A JP H0964422 A JPH0964422 A JP H0964422A JP 7220782 A JP7220782 A JP 7220782A JP 22078295 A JP22078295 A JP 22078295A JP H0964422 A JPH0964422 A JP H0964422A
Authority
JP
Japan
Prior art keywords
thermoelectric material
type thermoelectric
effect element
solid solution
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7220782A
Other languages
Japanese (ja)
Inventor
Hisaaki Gyoten
久朗 行天
Akiko Miyake
章子 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP7220782A priority Critical patent/JPH0964422A/en
Publication of JPH0964422A publication Critical patent/JPH0964422A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an n-type thermoelectric material a having a high efficiency and small global environmental load by adding a platinum of the ratio of a specific range to compound of CoSb3 . SOLUTION: The n-type thermoelectric material is formed of solid solution represented by the composition formula of Co1-x Ptx Sb3 (0.005<=x<=0.10). The thermoelectric effect element has the structure that the n-type thermoelectric material made of solid solution represented by the composition formula of Co1-x Ptx Sb3 (0.005<=x<=0.10) and p-type thermoelectric material made of solid solution represented by Pb1-y Nay Te (0.01<=y<=0.10) are electrically connected directly to one another or via a conductor. Further, it has the structure that n-type thermoelectric material made of solid solution represented by the composition formula of Co1-x Ptx Sb3 (0.005<=x<=0.10) and p-type thermoelectric material made of PbTe compound added with 0.5 to 5mol% of Ag2 Te are electrically connected directly to one another or via a conductor.

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、熱電効果を用いて
発電や冷却・加熱を行う熱電効果素子、およびそれに用
いる熱電材料に関するものである。 【0002】 【従来の技術】従来より、熱電材料に電流を通じた時の
吸熱・発熱作用であるペルチェ効果と、逆に熱電材料内
に温度差をつけたときの熱起電力の発生、すなわちゼー
ベック効果を利用して数多くの冷却装置や発電装置が考
案されている。ゼーベック効果とは、いわゆる熱起電力
の発生をさすもので、2種類の異なった金属の両端を互
いに接合させ、その両端部を異なった温度に保つとき起
電力が
発生する現象である。生じた熱起電力の値をV、2接合
部の間の温度差をTとすると、ゼーベック係数Sは下式
で表される。 S[V/K]=dV/dT このゼーベック係数は、温度1度当たりの熱起電力を示
すものである。 【0003】一方、ペルチェ効果は、ゼーベック効果と
は逆に、電流を通ずることによって2接合部にジュール
熱以外の熱の発生、吸熱が認められるものである。この
場合、単位時間内に発熱あるいは吸熱する熱量をQ、接
合部を通る電流をIとするとペルチェ係数Пは下式で表
される。 П[V]=Q/I=S・T 【0004】これらのいわゆる熱電効果の大きさは、材
料固有の物性値であるゼーベック係数S、導電率σおよ
び熱電導率λによって定まる。性能指数Z Z[Kー1]=S2・σ/λ は発電の場合(ゼーベック素子として用いた場合)には
熱入力に対する発電の割合、すなわち発電効率に対応し
、冷却の場合(ペルチェ素子として用いた場合)には電
気入力に対する吸熱量の割合と密接に関係している。す
なわち、熱電材料としては、導電率σが大きく、熱電導
率λの小さい材料が望まれる。なお、性能指数Zはp型
熱電材料の場合は正の値を示し、n型熱電材料の場合に
は負の値を示す。発電装置のゼーベック素子として利用
する場合には、高温側と低温側の温度差を大きく取った
方が有利であるので、性能指数Zに絶対温度T[K]を
乗じたZ・Tを熱電材料の性能を表す指標として用いる
場合が多い。 【0005】また、実際にゼーベック素子として用いる
場合には、高温側と低温側の温度差は放熱フィン等、冷
却手段により対応可能なため、性能指数Zから熱電導率
λを除いた値であるパワーファクターが一般に用いられ
ている。 パワーファクター=S 2・σ=Z・λ 【0006】図9にこれまでよく知られている熱電材料
のうちn型材料の性能指数を温度に対して表した。図中
、|Z|・Tが1.0と2.0の性能指数域を破線で表
しており、発電用としては右上に位置するほど優れた熱
電材料である。具体的には低温〜室温用としてはBi 2
Te3系材料がよく、中温用としてはPbTe系、高温
用としてはSiGe系が有望である。有効な熱電効果素
子とするためには、p型とn型の熱電材料を電気的に直
列に接合してやる必要がある。例えば中温用の熱電材料
として知られるFeSi2系材料では、Feの一部をM
nで置換したp型熱電材料と、同じくCoで置換したn
型熱電材料から構成され、n型熱電材料とp型熱電材料
とが直接、あるいは導電体を介して接合された構造を有
する。このような熱電効果素子を例えば化学プラントの
排熱パイプの周囲に配置することによって、ゼーベック
素子として排熱を電気として回収することができる。 【0007】 【発明が解決しようとする課題】しかしながら、このよ
うなゼーベック素子による排熱回収技術やペルチェ素子
による冷却技術は、素子の効率が低いため、特殊な用途
に限られている。そのため、広く普及するためにさらな
る効率化が望まれている。また、これらの熱電材料には
主としてTe、Se、Pb、Biなどの毒性の高い重金
属が用いられており、最近の地球環境保護に対する関心
の高まりを背景にして、少しでも環境負荷性の小さい材
料への転換が要望されている。 【0008】 【課題を解決するための手段】本発明のn型熱電材料
は、Co1-xPtxSb3(0.005≦x≦0.10)
の組成式で表される固溶体からなるものである。このよ
うに、CoSb3なる化合物に0.5〜10モル%の白
金を添加することによって、高効率で、かつ地球環境負
荷の小さいn型熱電材料を得るものである。本発明の熱
電効果素子は、Co1-xPtxSb3(0.005≦x≦
0.10)の組成式で表される固溶体からなるn型熱電
材料と、Pb1-yNayTe(0.01≦y≦0.10)
で表される固溶体からなるp型熱電材料とが直接もしく
は導電体を介して電気的に接合された構造を有するもの
である。さらに、Co1-xPtxSb3(0.005≦x
≦0.10)の組成式で表される固溶体からなるn型熱
電材料と、Ag2Teを0.5〜5モル%添加したPb
Te化合物からなるp型熱電材料とが直接もしくは導電
体を介して電気的に接合された構造を有するものであ
る。また、Co1-xPtxSb3(0.005≦x≦0.
10)の組成式で表される固溶体からなるn型熱電材料
と、Ag0.15Ge0.85Sb0.15Te1.15で示される化合
物からなるp型熱電材料とが直接もしくは導電体を介し
て電気的に接合された構造を有するものである。これら
により、室温領域から700℃までの高温において高効
率を有する熱電効果素子を得ることができる。 【0009】 【発明の実施の形態】 [実施例1]以下に、本発明のn型熱電材料について説
明する。n型の熱電材料としてCo1-xPtxSb3(x
=0.01、0.02、0.05、0.10)の合金を
以下の方法により作製した。まず、純度99.9%以上
のCo粉末(粒径1〜2μm)と純度99.9%以上の
Sb粉末(平均粒径100μm)、および純度99.9
%以上のPt粉末(平均粒径50μm)を所定量混合す
る。但し、Coに比べてSbは融点が低く蒸気圧も高い
ので、その後の融解・合金化する際に蒸気として散逸す
る。その散逸量は、合金化温度条件にもよるが本実施例
で行った1200℃での合金化ではSb全量の3%であ
ることがわかったので、上記混合物には、あらかじめ理
論値よりもSb粉末を3%過剰に加えたものを用いた。
上記の混合粉末を磁器製るつぼに入れて、環状炉中で1
00ml/分のArガス気流中、1200℃で3時間加
熱し融解させた後、800℃まで徐冷し、その温度で1
0時間熱処理した。この熱処理は、凝固直後のβ相のC
oSbとSbの混合物をCoSb3相にするための処理
である。 【0010】図1は、CoSb3のCoの2%をPtに
置換したもの(Co0.98Pt0.02Sb3)の粉末法によ
るX線回折パターンである。そのX線回折パターンから
立方晶の格子定数の変化を追跡したが、副相の生成も認
められず、ほとんどの部分がCoSb3相であり、Co
のPt置換による結晶構造の変化は確認できなかった。
図2は、本発明の熱電材料である、CoSb3のCoを
Ptに置換したものの結晶構造を表したものである。純
粋なCoSb3では黒丸の位置にCo原子が存在する。
Ptを添加した合金化により、任意の箇所のCo原子が
Pt原子に置換される。 【0011】得られたPt添加CoSb3を粒径10μ
m以下に粉砕し、これにバインダーとしてポリビニルブ
チラールを加えたものを1cm2あたり2000kgw
でプレス成形し、直径20mm、厚さ約2mmのドラム
状ペレットを得た。このペレットを再びAr中、750
℃で4時間処理し焼結させた。このペレットの充填率は
約75%であった。 【0012】このようにして得られたペレットの導電率
を直流4端子法で測定した。また、徐々に5℃以内の温
度差をペレット内部につけてその熱起電力の温度差に対
する傾きからゼーベック係数を求めた。熱電導率はレー
ザーフラッシュ法を用いて測定した。 【0013】図3は25℃(298K)におけるゼーベ
ック係数と導電率のPt置換量依存性を表したグラフで
ある。図中、従来のBi2Te3の特性値を白菱形で示
し、直線上の任意の点はパワーファクターの値がBi2
Te3と等しくなる点である。これによると、CoSb3
のCoのPt置換量が多くなると、ゼーベック係数は小
さくなるが、導電率は大きくなる傾向がある。CoのP
t置換量が2〜10%までは、パワーファクターはほぼ
一定値を示し、その値はBi2Te3と同レベルである。
CoのPt置換量が10%を越えると導電率が向上する
ものの、ゼーベック係数の低下が著しく、パワーファク
ターは低下する。X線解析や顕微鏡による微細組織構造
の観察によって、これらの組成ではPtの固溶限界を越
えており、未固溶のPtが析出していることがわかっ
た。また、CoのPt置換量が2%より少ないと導電率
の低下が大きくなり、パワーファクターも若干低下す
る。しかしながら、Pt置換量が0.5%まではパワー
ファクターの低下も30%までに留まっており、添加金
属としてのPtのコスト性を考慮した場合には有望であ
る。しかし、Pt置換量が0.5%より小さいと、焼成
ロットごとの熱電特性のバラツキが大きくなるため、工
業的価値は小さい。 【0014】CoSb3のCoの2%をPtに置換した
もの(Co0.98Pt0.02Sb3)と、比較例のBi2Te
3のゼーベック係数の温度特性を図4に示す。今回の実
験では室温から500℃(773K)までの温度域でゼ
ーベック係数を測定したが、Bi2Te3が、温度上昇と
ともに大きく悪化するのに対して、本実施例のCoSb
3のCoの2%をPtに置換したものはほぼ安定し、逆
に温度上昇とともに少しずつ大きくなる。 【0015】同様に、CoSb3のCoの2%をPtに
置換したものの導電率の温度特性を、比較例のBi2
3とともに図5に示す。Bi2Te3の導電率は、20
0℃(473K)を超えると急激に悪化する。これは、
昇華等による変質によるものと考えられる。それに対し
て、本実施例のPt置換CoSb3の導電率は、室温か
ら200℃(473K)程度まではBi2Te3と比べて
若干劣るものの、温度が上昇しても安定しており、さら
に高温になるとBi2Te3よりも良好な値を示す。 【0016】このように、Bi2Te3系が500Kを越
えるとその特性が急速に低下するのに対し、本実施例に
よるPt置換CoSb3は、300℃(573K)を越
えてもなお高いゼーベック係数や導電率を維持してい
る。 【0017】また、熱電導率は、CoSb3単体では〜
3.0W/m・Kであるのに対し、PtのCo置換によ
り低下し、CoをPtに10%置換した場合には熱電導
率が2.0W/m・K程度まで抑制できることがわかっ
た。焼結条件などが異なるのでこの結果をBi2Te3
の熱電導率(〜1.5W/m・K)と結び付けて直接比
較することはできないが、CoのPt置換により熱電導
率は低下し、熱電材料としての特性は向上することがわ
かる。 【0018】図2に示すように、CoSb3の単位胞は
8個のCoSb3単位から構成され、4個のSb原子か
らなる平面四角形がCoを格子点とする立方晶中に6個
配置された複雑な構造である。その結果、比較的大きい
ゼーベック係数を有するものである。また、導電帯を形
成するSb原子のいわゆるpバンドの有効質量は小さ
く、移動度が大きい。このような電子構造を有する化合
物のCoサイトに、Coに比べて電子が1個多いPtを
置換することにより、不純物準位が形成され、ドナーと
なるため、ゼーベック係数と導電率が大きいn型の熱電
材料になると考えられる。また、Coサイトに置換する
元素として重いPtを用いることによって、例えばNi
やPdを用いた場合よりも熱電導率をさらに抑制するこ
とが可能となり、結果として性能指数の高い高効率の熱
電材料を得ることができる。また、共有結合性が高いた
め、比較的高温まで安定で、Bi2Te3系に比べて高い
温度まで熱電材料として利用できるので、特にゼーベッ
ク効果を用いた発電に有利となる。 【0019】このような点から、本発明のCoSb3
CoサイトにPtを置換した材料はBi2Te3系に勝る
とも劣らない熱電材料といえる。また、CoやSbは含
むもののTeやSe等のカルコゲン元素やPbを含まな
いので環境負荷も小さい。 【0020】[実施例2]本発明の熱電効果素子の一実
施例を説明する。実施例1のn型熱電材料を用いて、小
型の熱電効果素子を作製した。有効な熱電効果素子を構
成するためには、本発明のn型熱電材料とともにp型熱
電材料が必要である。本実施例で作製した熱電効果素子
は以下の製法により作製される。まず、図6に示すよう
に、馬蹄状貫通孔を有する枠状金型1bの底部に金型1
cを配置し、この内側に実施例1のn型熱電材料粉末2
と各種のp型熱電材料粉末3を馬蹄状先端部で接合する
ようにそれぞれ充填し、その上に枠状金型1bの貫通孔
の内壁形状に対応する馬蹄状の金型1aを配置し、矢印
の方向に4000kgw/cm2の成形圧で冷間プレス
加工してペレットを得る。このペレットを焼成し、焼結
させることにより、図7に示すようにn型熱電材料2a
とp型熱電材料3aがp−n接合部4で接合され、一体
化される。n型熱電材料2aとp型熱電材料3aのそれ
ぞれに金属製ターミナル5を取り付けることにより、熱
電効果素子が得られる。n型熱電材料2aにCo0.975
Pt0.025Sb3を用い、以下に示す熱電効果素子を作製
した。 【0021】p型熱電材料3aとして(Bi0.25Sb
0.752(Te0.95Se0.053を用いると、高温端の温
度が200℃(473K)以下の時には良好な発電性能
が得られるが、300℃(573K)近傍になると急速
に発電出力が低下する。また、繰り返しもしくは連続試
験中にp型熱電材料3aにクラックが入り、出力できな
い現象が多発する。また、p型熱電材料3aとしてSi
Geを用いると、SiGeの焼結温度がCoSb3系に
比べて高いせいか、SiGe焼結体自身の機械的強度や
馬蹄形のp−n接合部4での十分な接合強度が確保でき
ない。p型熱電材料3aにCoSb3を用いた場合に
は、n型熱電材料4aに用いたPt置換CoSb3に比
べて熱電特性、特にゼーベック係数が小さく(〜100
μV/K)、熱電効果素子としては十分な性能が得られ
ない。 【0022】p型熱電材料3aとしてPbTe系材料を
用いて検討を行った。p型熱電材料3aとして室温から
973K(700℃)まで高い性能を有するPbTe
に、Ag2Teを3モル%添加した熱電材料を用いた。
試薬として購入したPbTe(純度99.99%以上)
の化学量論比をX線マイクロ分析で精密測定し、1:1
組成比からずれているときは粉末状のPbもしくはTe
を添加して焼成反応させることにより、分析誤差の範囲
内で1:1組成比となるようにした。得られたPbTe
の粉末に所定量のAg2Te粉末を加えて混合・ペレッ
ト化した後、水素気流中800℃(1073K)で5時
間熱処理した。得られたペレットを再び粉砕し、平均粒
径10μm以下の粉末とした。さらにこの粉末とPt置
換CoSb3粉末をそれぞれ馬蹄状の金型1中に先端部
で互いに接するように充填し、4000kgw/cm2
の成形圧で冷間プレスして馬蹄状ペレットを得た。これ
を100ml/分の水素気流中650℃(923K)で
3時間熱処理した後、800℃(1073K)まで急昇
温させ、この温度で30分間熱処理した後、急冷した。
この800℃での熱処理時間が短いとp型のPbTeの
機械強度が小さく、しかもp−n接合部4の接合強度が
十分でなかった。逆にこの時間が長すぎると素子の能力
が低下することがわかったが、これはp−n接合部4で
のPbやSbなどの相互拡散によって熱電材料の特性そ
のものが低下するものと考えられる。 【0023】熱電効果素子の性能を評価するために、石
油燃焼器の排気管の外周をp−n接合部4が取り囲むよ
うに、10個の馬蹄状熱電効果素子が電気的に直列に接
続された装置を製作した。素子を電気的に接続するため
の金属製ターミナル5には放熱用のフィンを取り付け、
フィンより内側の排気管を取り囲む空間はアルミナウー
ル断熱材を充填し、素子内にできるだけ温度差がつくよ
うにした。また、送風ファンによってフィンからの放熱
を促進した。石油燃焼器の燃焼量と送風ファンを制御す
ることによって、p−n接合部4と金属製ターミナル5
との温度差を調整した。負荷電源を用いて温度差と電源
出力との関係を調べた。 【0024】p型材料にAg2Teを3モル%添加した
PbTeを用いた場合の評価結果を図8に示す。比較例
は、従来のp型およびn型材料の双方ともに従来のPb
Te系の材料を用いたものである。図8によると、実施
例の熱電効果素子は比較例の素子と比べて、出力電力が
約1.5倍にまで向上する。温度差800Kの時には、
約60Wの出力が得られた。また、Ag2Teを0.5
〜5.0モル%添加したPbTeをp型材料3aに用い
た場合には50W以上の高い出力を得ることができた。 【0025】PbTeのPbをNaに1〜10%置換し
たものをp型熱電材料3aに用いると50W以上の高い
出力が得られた。特にPbをNaに5%置換したときが
最も出力が高かった。また、Ag0.15Ge0.85Sb0.15
Te1.15をp型熱電材料として用いたところ68Wの非
常に出力を得ることができた。このように、本発明のn
型熱電材料を用いることにより、高性能のゼーベック素
子が得られる。 【0026】ここでは発電素子すなわちゼーベック素子
の実施例として馬蹄状の材料エレメントを用いた例を示
したが、放熱フィンなどの放熱機構の改善により、通常
の電子冷却用のペルチェ素子と同様な直方体状の材料エ
レメントを多数個直列に配した平面状モジュール構成と
することも可能である。 【0027】本発明の熱電効果素子の一実施例として、
ゼーベック素子について述べたが、これをペルチェ素子
に用いた場合にも、良好な性能が得られることは明らか
である。 【0028】 【発明の効果】本発明によると、地球環境負荷が小さ
く、高効率なn型熱電材料を得ることができる。また、
これを用いることにより、高効率の熱電効果素子を得る
ことができる。
Description: FIELD OF THE INVENTION The present invention uses the thermoelectric effect.
Thermoelectric effect element for power generation, cooling and heating, and for it
It relates to existing thermoelectric materials. [0002] Conventionally, when an electric current is passed through a thermoelectric material,
In contrast to the Peltier effect, which is an endothermic and exothermic action, inside the thermoelectric material
Generation of thermoelectromotive force when there is a temperature difference between
Considering many cooling devices and power generators using the Beck effect
Is being proposed. Seebeck effect is the so-called thermoelectromotive force
It is the occurrence of
To be joined to each other and kept at different temperatures at both ends.
Power is
This is a phenomenon that occurs. The value of the generated thermoelectromotive force is V, 2 junctions
If the temperature difference between the parts is T, the Seebeck coefficient S is
It is represented by. S [V / K] = dV / dT This Seebeck coefficient shows the thermoelectromotive force per 1 degree of temperature.
It is something. On the other hand, the Peltier effect is similar to the Seebeck effect.
On the contrary, by passing an electric current
Generation of heat other than heat and endotherm are recognized. this
If the amount of heat generated or absorbed in a unit time is Q,
Letting the current through the junction be I, the Peltier coefficient П is
To be done. П [V] = Q / I = S · T [0004] The magnitude of these so-called thermoelectric effects is
Seebeck coefficient S, electrical conductivity σ and
And the thermal conductivity λ. The figure of merit ZZ [K -1 ] = S 2 · σ / λ is calculated in the case of power generation (when used as a Seebeck element).
It corresponds to the ratio of power generation to heat input, that is, power generation efficiency.
For cooling (when used as a Peltier device),
It is closely related to the ratio of heat absorption to air input. You
That is, as a thermoelectric material, the conductivity σ is large and
A material having a small rate λ is desired. The figure of merit Z is p-type
In the case of thermoelectric material, it shows a positive value, and in the case of n-type thermoelectric material
Indicates a negative value. Used as Seebeck element of power generator
If you want to make a large temperature difference between the high temperature side and the low temperature side
Since it is more advantageous, the absolute temperature T [K] is set to the figure of merit Z.
Multiplied Z · T is used as an index showing the performance of thermoelectric materials
In many cases. Further, it is actually used as a Seebeck element.
In some cases, the temperature difference between the high temperature side and the low temperature side may be
Since it can be handled by other means, the thermal conductivity from the figure of merit Z
The power factor, which is the value excluding λ, is generally used.
ing. Power factor = S 2 · σ = Z · λ [0006] FIG. 9 shows a well-known thermoelectric material.
Among them, the figure of merit of the n-type material is expressed with respect to temperature. In the figure
, | Z | · T are 1.0 and 2.0, and the figure of merit is shown by the broken line.
The upper right corner for power generation, the better heat
It is an electronic material. Specifically, Bi 2 for low temperature to room temperature
Te 3 based material is preferable, and PbTe based material is promising for medium temperature use and SiGe based material is promising for high temperature use. In order to make an effective thermoelectric effect element, it is necessary to electrically bond p-type and n-type thermoelectric materials in series. For example, in a FeSi 2 -based material known as a thermoelectric material for medium temperature, part of Fe is M
A p-type thermoelectric material substituted with n, and an n also substituted with Co
It has a structure in which an n-type thermoelectric material and a p-type thermoelectric material are bonded to each other directly or via a conductor. By disposing such a thermoelectric effect element around the exhaust heat pipe of a chemical plant, for example, the exhaust heat can be recovered as electricity as a Seebeck element. However, the exhaust heat recovery technology using the Seebeck element and the cooling technology using the Peltier element are limited to special applications because the efficiency of the element is low. Therefore, further efficiency improvement is desired for widespread use. Further, these thermoelectric materials mainly use highly toxic heavy metals such as Te, Se, Pb and Bi, and in view of the recent growing interest in global environmental protection, materials with little environmental impact. It is requested to switch to. The n-type thermoelectric material of the present invention is Co 1-x Pt x Sb 3 (0.005 ≦ x ≦ 0.10)
It is composed of a solid solution represented by the following composition formula. In this way, by adding 0.5 to 10 mol% of platinum to the compound CoSb 3 , an n-type thermoelectric material with high efficiency and low environmental load is obtained. The thermoelectric effect element of the present invention comprises Co 1-x Pt x Sb 3 (0.005 ≦ x ≦
0.10), an n-type thermoelectric material comprising a solid solution represented by the composition formula, and Pb 1-y Na y Te (0.01 ≦ y ≦ 0.10)
The p-type thermoelectric material composed of a solid solution represented by the above has a structure in which it is electrically connected directly or through a conductor. Further, Co 1-x Pt x Sb 3 (0.005 ≦ x
≦ 0.10) n-type thermoelectric material composed of a solid solution represented by the composition formula, and Pb containing 0.5 to 5 mol% of Ag 2 Te.
It has a structure in which a p-type thermoelectric material made of a Te compound is electrically joined directly or through a conductor. Further, Co 1-x Pt x Sb 3 (0.005 ≦ x ≦ 0.
The n-type thermoelectric material composed of the solid solution represented by the composition formula of 10) and the p-type thermoelectric material composed of the compound represented by Ag 0.15 Ge 0.85 Sb 0.15 Te 1.15 are electrically bonded directly or via a conductor. It has a different structure. With these, it is possible to obtain a thermoelectric effect element having high efficiency in a high temperature range from room temperature to 700 ° C. BEST MODE FOR CARRYING OUT THE INVENTION [Example 1] The n-type thermoelectric material of the present invention will be described below. As an n-type thermoelectric material, Co 1-x Pt x Sb 3 (x
= 0.01, 0.02, 0.05, 0.10) was produced by the following method. First, a Co powder having a purity of 99.9% or more (particle size 1 to 2 μm), an Sb powder having a purity of 99.9% or more (average particle size 100 μm), and a purity of 99.9.
% Of Pt powder (average particle size 50 μm) is mixed in a predetermined amount. However, since Sb has a lower melting point and a higher vapor pressure than Co, it is dissipated as vapor during the subsequent melting and alloying. It was found that the amount of dissipation was 3% of the total amount of Sb in the alloying at 1200 ° C. performed in this example, although it depends on the alloying temperature condition. A powder added in 3% excess was used.
Put the above mixed powder in a porcelain crucible and
After heating and melting at 1200 ° C. for 3 hours in an Ar gas flow of 00 ml / min, the mixture was gradually cooled to 800 ° C.
Heat treatment was performed for 0 hours. This heat treatment is performed in the β phase C immediately after solidification.
This is a treatment for turning a mixture of oSb and Sb into a CoSb 3 phase. FIG. 1 is an X-ray diffraction pattern of a powder method of CoSb 3 in which 2% of Co is replaced by Pt (Co 0.98 Pt 0.02 Sb 3 ). The change in cubic lattice constant was traced from the X-ray diffraction pattern, but no formation of a subphase was observed, and most of it was a CoSb 3 phase.
No change in the crystal structure due to Pt substitution was confirmed.
FIG. 2 shows the crystal structure of the thermoelectric material of the present invention in which Co of CoSb 3 is replaced with Pt. In pure CoSb 3 , Co atoms exist at the positions of black circles.
By alloying with Pt added, Co atoms at arbitrary locations are replaced with Pt atoms. The obtained Pt-added CoSb 3 was added with a particle size of 10 μm.
2000 kgw per 1 cm 2 pulverized to m or less and polyvinyl butyral added as a binder
By press molding to obtain drum-shaped pellets having a diameter of 20 mm and a thickness of about 2 mm. This pellet is again in Ar for 750
It was treated at 4 ° C. for 4 hours and sintered. The filling rate of the pellets was about 75%. The conductivity of the pellets thus obtained was measured by the DC 4-terminal method. Further, a Seebeck coefficient was obtained from the slope of the thermoelectromotive force with respect to the temperature difference by gradually making a temperature difference within 5 ° C. inside the pellet. The thermal conductivity was measured using the laser flash method. FIG. 3 is a graph showing the Pb substitution amount dependency of Seebeck coefficient and conductivity at 25 ° C. (298K). In the figure, the characteristic values of the conventional Bi 2 Te 3 are shown by white diamonds, and the power factor value is Bi 2 at any point on the straight line.
It is the same as Te 3 . According to this, CoSb 3
When the Pt substitution amount of Co of is increased, the Seebeck coefficient is decreased, but the conductivity tends to be increased. P of Co
When the t substitution amount is 2 to 10%, the power factor shows a substantially constant value, which is the same level as Bi 2 Te 3 .
When the Pt substitution amount of Co exceeds 10%, the conductivity is improved, but the Seebeck coefficient is remarkably lowered and the power factor is lowered. From the X-ray analysis and the observation of the microstructure by a microscope, it was found that the Pt solid solution limit was exceeded and undissolved Pt was precipitated in these compositions. Further, when the Pt substitution amount of Co is less than 2%, the conductivity is greatly decreased, and the power factor is slightly decreased. However, when the Pt substitution amount is up to 0.5%, the decrease in the power factor is only up to 30%, which is promising when considering the cost performance of Pt as an additive metal. However, if the Pt substitution amount is less than 0.5%, the variation in thermoelectric properties between firing lots becomes large, so that the industrial value is small. CoSb 3 in which 2% of Co is replaced by Pt (Co 0.98 Pt 0.02 Sb 3 ), and Bi 2 Te of the comparative example.
Fig. 4 shows the temperature characteristics of the Seebeck coefficient of 3 . In this experiment, the Seebeck coefficient was measured in the temperature range from room temperature to 500 ° C. (773 K), but Bi 2 Te 3 significantly deteriorates as the temperature rises, whereas CoSb of the present example.
The one in which 2% of Co in 3 is replaced by Pt is almost stable, and conversely increases little by little as the temperature rises. Similarly, the temperature characteristic of conductivity of CoSb 3 in which 2% of Co is replaced by Pt is Bi 2 T of Comparative Example.
It is shown in FIG. 5 together with e 3 . The conductivity of Bi 2 Te 3 is 20
When the temperature exceeds 0 ° C (473K), it deteriorates sharply. this is,
It is considered to be due to alteration due to sublimation. On the other hand, the electrical conductivity of Pt-substituted CoSb 3 of this example is slightly inferior to that of Bi 2 Te 3 from room temperature to about 200 ° C. (473K), but is stable even when the temperature rises. It shows a better value than Bi 2 Te 3 at high temperatures. As described above, the characteristics of the Bi 2 Te 3 system are rapidly deteriorated when the temperature exceeds 500 K, whereas the Pt-substituted CoSb 3 according to the present embodiment has a high Seebeck even when the temperature exceeds 300 ° C. (573 K). The coefficient and conductivity are maintained. The thermal conductivity of CoSb 3 alone is
It was found to be 3.0 W / m · K, but decreased by Pt substitution with Co, and when Co was replaced with Pt by 10%, the thermal conductivity could be suppressed to about 2.0 W / m · K. . Since the sintering conditions are different, this result cannot be directly compared with the thermal conductivity of Bi 2 Te 3 system (up to 1.5 W / m · K), but the Pt substitution of Co reduces the thermal conductivity. However, it can be seen that the characteristics as a thermoelectric material are improved. As shown in FIG. 2, the unit cell of CoSb 3 is composed of eight CoSb 3 units, flat rectangle of four Sb atoms are arranged six cubic Akirachu to grid points a Co It has a complicated structure. As a result, it has a relatively large Seebeck coefficient. Further, the so-called p band of Sb atoms forming the conduction band has a small effective mass and a large mobility. By substituting Pt, which has one more electron than Co, for the Co site of the compound having such an electronic structure, an impurity level is formed and serves as a donor, so that the n-type has a large Seebeck coefficient and conductivity. It is considered to be a thermoelectric material. Further, by using heavy Pt as an element substituting the Co site, for example, Ni
It is possible to further suppress the thermal conductivity as compared with the case of using Pd or Pd, and as a result, a highly efficient thermoelectric material having a high figure of merit can be obtained. Further, since it has a high covalent bond, it is stable up to a relatively high temperature and can be used as a thermoelectric material up to a higher temperature than the Bi 2 Te 3 system, which is particularly advantageous for power generation using the Seebeck effect. From such a point, it can be said that the material of the present invention in which Co site of CoSb 3 is substituted with Pt is a thermoelectric material which is as good as the Bi 2 Te 3 system. Further, since it contains Co and Sb but does not contain Pb or a chalcogen element such as Te or Se, the environmental load is small. [Embodiment 2] An embodiment of the thermoelectric effect element of the present invention will be described. A small thermoelectric effect element was produced using the n-type thermoelectric material of Example 1. In order to form an effective thermoelectric effect element, the p-type thermoelectric material is necessary together with the n-type thermoelectric material of the present invention. The thermoelectric effect element manufactured in this example is manufactured by the following manufacturing method. First, as shown in FIG. 6, the mold 1 is attached to the bottom of a frame-shaped mold 1b having a horseshoe-shaped through hole.
c is arranged, and the n-type thermoelectric material powder 2 of Example 1 is placed inside this.
And various p-type thermoelectric material powders 3 are respectively filled so as to be joined at a horseshoe-shaped tip portion, and a horseshoe-shaped mold 1a corresponding to the inner wall shape of the through hole of the frame-shaped mold 1b is arranged thereon. Pellets are obtained by cold pressing at a molding pressure of 4000 kgw / cm 2 in the direction of the arrow. By firing and sintering the pellets, as shown in FIG. 7, the n-type thermoelectric material 2a is formed.
And the p-type thermoelectric material 3a are joined and integrated at the pn junction 4. A thermoelectric effect element can be obtained by attaching the metal terminals 5 to each of the n-type thermoelectric material 2a and the p-type thermoelectric material 3a. Co 0.975 for n-type thermoelectric material 2a
The thermoelectric effect element shown below was produced using Pt 0.025 Sb 3 . As the p-type thermoelectric material 3a (Bi 0.25 Sb
When 0.75 ) 2 (Te 0.95 Se 0.05 ) 3 is used, good power generation performance is obtained when the temperature at the high temperature end is 200 ° C (473K) or lower, but the power generation output drops rapidly near 300 ° C (573K). To do. In addition, during repeated or continuous tests, cracks often occur in the p-type thermoelectric material 3a, and a phenomenon in which output cannot be performed frequently occurs. Further, Si is used as the p-type thermoelectric material 3a.
When Ge is used, the mechanical strength of the SiGe sintered body itself and the sufficient bonding strength at the horseshoe-shaped pn junction 4 cannot be secured because the sintering temperature of SiGe is higher than that of the CoSb 3 system. When CoSb 3 is used for the p-type thermoelectric material 3a, the thermoelectric characteristics, particularly the Seebeck coefficient, are smaller (up to 100) than the Pt-substituted CoSb 3 used for the n-type thermoelectric material 4a.
μV / K), sufficient performance cannot be obtained as a thermoelectric effect element. A study was conducted using a PbTe-based material as the p-type thermoelectric material 3a. PbTe having high performance as a p-type thermoelectric material 3a from room temperature to 973K (700 ° C)
A thermoelectric material containing Ag 2 Te in an amount of 3 mol% was used.
PbTe purchased as a reagent (purity 99.99% or higher)
Precisely measure the stoichiometric ratio of X-ray microanalysis by 1: 1
If the composition ratio deviates, powdered Pb or Te
Was added and the firing reaction was carried out so that the composition ratio became 1: 1 within the range of analytical error. The obtained PbTe
After a predetermined amount of Ag 2 Te powder was added to the powder of 1. and mixed and pelletized, it was heat-treated in a hydrogen stream at 800 ° C. (1073 K) for 5 hours. The obtained pellets were pulverized again to obtain a powder having an average particle size of 10 μm or less. Further, this powder and Pt-substituted CoSb 3 powder were filled in a horseshoe-shaped mold 1 so that their tips contact each other, and 4000 kgw / cm 2
Cold pressing was carried out at a molding pressure of (1) to obtain horseshoe-shaped pellets. This was heat-treated at 650 ° C. (923 K) for 3 hours in a hydrogen flow of 100 ml / min, then rapidly heated to 800 ° C. (1073 K), heat-treated at this temperature for 30 minutes, and then rapidly cooled.
When the heat treatment time at 800 ° C. was short, the mechanical strength of p-type PbTe was low, and the bonding strength of the pn junction 4 was insufficient. On the contrary, it has been found that if this time is too long, the performance of the device deteriorates, but it is considered that the characteristic itself of the thermoelectric material deteriorates due to the mutual diffusion of Pb and Sb in the pn junction 4. . In order to evaluate the performance of the thermoelectric effect element, ten horseshoe-shaped thermoelectric effect elements are electrically connected in series so that the outer periphery of the exhaust pipe of the oil combustor is surrounded by the pn junction 4. I made a device. A fin for heat dissipation is attached to the metal terminal 5 for electrically connecting the elements,
The space surrounding the exhaust pipe inside the fin was filled with alumina wool heat insulating material so that the temperature difference in the element was as large as possible. In addition, the fan helps to dissipate heat from the fins. The pn junction 4 and the metal terminal 5 are controlled by controlling the combustion amount of the oil combustor and the blower fan.
The temperature difference between and was adjusted. The relationship between temperature difference and power supply output was investigated using a load power supply. FIG. 8 shows the evaluation results when PbTe containing 3 mol% of Ag 2 Te added to the p-type material was used. In the comparative example, both conventional p-type and n-type materials are made of conventional Pb.
A Te-based material is used. According to FIG. 8, the output power of the thermoelectric effect element of the example is improved by about 1.5 times as compared with the element of the comparative example. When the temperature difference is 800K,
An output of about 60 W was obtained. Also, Ag 2 Te is 0.5
When PbTe added by up to 5.0 mol% was used for the p-type material 3a, a high output of 50 W or more could be obtained. A high output of 50 W or more was obtained by using PbTe in which Pb was replaced with Na by 1 to 10% for the p-type thermoelectric material 3a. In particular, the output was highest when Pb was replaced with Na by 5%. Also, Ag 0.15 Ge 0.85 Sb 0.15
When Te 1.15 was used as the p-type thermoelectric material, a very high output of 68 W could be obtained. Thus, the n of the present invention
A high-performance Seebeck element can be obtained by using the type thermoelectric material. Although a horseshoe-shaped material element is used as an example of the power generation element, that is, the Seebeck element, a rectangular parallelepiped similar to a normal Peltier element for electronic cooling is provided by improving the heat radiation mechanism such as the heat radiation fins. It is also possible to form a planar module configuration in which a large number of material elements having a rectangular shape are arranged in series. As one embodiment of the thermoelectric effect element of the present invention,
Although the Seebeck element has been described, it is clear that good performance can be obtained even when the Seebeck element is used for the Peltier element. According to the present invention, it is possible to obtain a highly efficient n-type thermoelectric material having a low global environmental load. Also,
By using this, a highly efficient thermoelectric effect element can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例のn型熱電材料であるCo
0.98Pt0.02Sb3の粉末X線回折パターンである。
FIG. 1 is an n-type thermoelectric material Co of one embodiment of the present invention.
It is a powder X-ray diffraction pattern of 0.98 Pt 0.02 Sb 3 .

【図2】同結晶構造を表したモデル図である。FIG. 2 is a model diagram showing the same crystal structure.

【図3】室温25℃(298K)における、Co1ーx
xSb3のPt添加量に対するゼーベック係数および導
電率を示す特性図である。
FIG. 3: Co 1−x P at room temperature 25 ° C. (298K)
It is a characteristic diagram showing the Seebeck coefficient and electrical conductivity with respect to Pt amount of t x Sb 3.

【図4】本発明の一実施例のn型熱電材料であるCo
0.98Pt0.02Sb3の温度に対するゼーベック係数を示
した特性図である。
FIG. 4 is an n-type thermoelectric material Co of one embodiment of the present invention.
It is a characteristic view showing the Seebeck coefficient with respect to the temperature of 0.98 Pt 0.02 Sb 3 .

【図5】同温度に対する導電率を示した特性図である。FIG. 5 is a characteristic diagram showing electric conductivity with respect to the same temperature.

【図6】本発明の実施例の熱電効果素子の製造に用いた
金型の斜視図である。
FIG. 6 is a perspective view of a mold used for manufacturing a thermoelectric effect element according to an example of the present invention.

【図7】同熱電効果素子の斜視図である。FIG. 7 is a perspective view of the same thermoelectric effect element.

【図8】本発明の一実施例の熱電効果素子の温度差に対
する出力電力を示す特性図である。
FIG. 8 is a characteristic diagram showing the output power with respect to the temperature difference of the thermoelectric effect element of one example of the present invention.

【図9】従来のn型熱電材料の温度に対する性能指数を
示した特性図である。
FIG. 9 is a characteristic diagram showing a performance index with respect to temperature of a conventional n-type thermoelectric material.

【符号の説明】[Explanation of symbols]

1 金型 1a 馬蹄状金型 1b 枠状金型 1c 底部金型 2 n型熱電材料粉末 2a n型熱電材料 3 p型熱電材料粉末 3a p型熱電材料 4 p−n接合部 5 金属製ターミナル 1 mold 1a horseshoe-shaped mold 1b frame-shaped mold 1c bottom mold 2 n-type thermoelectric material powder 2a n-type thermoelectric material 3 p-type thermoelectric material powder 3a p-type thermoelectric material 4 pn junction 5 metal terminal

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 Co1-xPtxSb3(0.005≦x≦
0.10)の組成式で表される固溶体からなるn型熱電
材料。
1. Co 1-x Pt x Sb 3 (0.005 ≦ x ≦
0.10) An n-type thermoelectric material comprising a solid solution represented by the composition formula.
【請求項2】 Co1-xPtxSb3(0.005≦x≦
0.10)の組成式で表される固溶体からなるn型熱電
材料と、Pb1-yNayTe(0.01≦y≦0.10)
で表される固溶体からなるp型熱電材料とが直接もしく
は導電体を介して電気的に接合された構造を有する熱電
効果素子。
2. Co 1-x Pt x Sb 3 (0.005 ≦ x ≦
0.10), an n-type thermoelectric material comprising a solid solution represented by the composition formula, and Pb 1-y Na y Te (0.01 ≦ y ≦ 0.10)
A thermoelectric effect element having a structure in which a p-type thermoelectric material made of a solid solution represented by is electrically connected directly or through a conductor.
【請求項3】 Co1-xPtxSb3(0.005≦x≦
0.10)の組成式で表される固溶体からなるn型熱電
材料と、Ag2Teを0.5〜5モル%添加したPbT
e化合物からなるp型熱電材料とが直接もしくは導電体
を介して電気的に接合された構造を有する熱電効果素
子。
3. Co 1-x Pt x Sb 3 (0.005 ≦ x ≦
0.10) n-type thermoelectric material consisting of a solid solution represented by the composition formula, and PbT containing 0.5 to 5 mol% of Ag 2 Te.
A thermoelectric effect element having a structure in which a p-type thermoelectric material composed of an e compound is electrically bonded directly or via a conductor.
【請求項4】 Co1-xPtxSb3(0.005≦x≦
0.10)の組成式で表される固溶体からなるn型熱電
材料と、Ag0.15Ge0.85Sb0.15Te
1.15で示される化合物からなるp型熱電材料とが直接も
しくは導電体を介して電気的に接合された構造を有する
熱電効果素子。
4. Co 1-x Pt x Sb 3 (0.005 ≦ x ≦
0.10) n-type thermoelectric material consisting of a solid solution represented by the composition formula, Ag 0.15 Ge 0.85 Sb 0.15 Te
Directly with the p-type thermoelectric material consisting of the compound shown in 1.15
Or, it has a structure that is electrically connected via a conductor.
Thermoelectric effect element.
JP7220782A 1995-08-29 1995-08-29 N-type thermoelectric material and thermoelectric effect element using the same Pending JPH0964422A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7220782A JPH0964422A (en) 1995-08-29 1995-08-29 N-type thermoelectric material and thermoelectric effect element using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7220782A JPH0964422A (en) 1995-08-29 1995-08-29 N-type thermoelectric material and thermoelectric effect element using the same

Publications (1)

Publication Number Publication Date
JPH0964422A true JPH0964422A (en) 1997-03-07

Family

ID=16756493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7220782A Pending JPH0964422A (en) 1995-08-29 1995-08-29 N-type thermoelectric material and thermoelectric effect element using the same

Country Status (1)

Country Link
JP (1) JPH0964422A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0874406A2 (en) * 1997-04-23 1998-10-28 Matsushita Electric Industrial Co., Ltd. A co-sb based thermoelectric material and a method of producing the same
EP0948061A2 (en) * 1998-03-16 1999-10-06 Ngk Insulators, Ltd. P-type thermoelectric converting substance and method of manufacturing the same
US6207886B1 (en) 1998-06-30 2001-03-27 Matsushita Electric Industrial Co., Ltd. Skutterudite thermoelectric material thermoelectric couple and method of producing the same
WO2012058340A2 (en) * 2010-10-26 2012-05-03 California Institute Of Technology HEAVILY DOPED PbSe WITH HIGH THERMOELECTRIC PERFORMANCE
JP2018157002A (en) * 2017-03-16 2018-10-04 古河機械金属株式会社 Thermoelectric conversion material

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0874406A2 (en) * 1997-04-23 1998-10-28 Matsushita Electric Industrial Co., Ltd. A co-sb based thermoelectric material and a method of producing the same
EP0874406A3 (en) * 1997-04-23 2000-12-13 Matsushita Electric Industrial Co., Ltd. A co-sb based thermoelectric material and a method of producing the same
EP0948061A2 (en) * 1998-03-16 1999-10-06 Ngk Insulators, Ltd. P-type thermoelectric converting substance and method of manufacturing the same
EP0948061A3 (en) * 1998-03-16 1999-12-29 Ngk Insulators, Ltd. P-type thermoelectric converting substance and method of manufacturing the same
US6207886B1 (en) 1998-06-30 2001-03-27 Matsushita Electric Industrial Co., Ltd. Skutterudite thermoelectric material thermoelectric couple and method of producing the same
WO2012058340A2 (en) * 2010-10-26 2012-05-03 California Institute Of Technology HEAVILY DOPED PbSe WITH HIGH THERMOELECTRIC PERFORMANCE
WO2012058340A3 (en) * 2010-10-26 2012-07-12 California Institute Of Technology HEAVILY DOPED PbSe WITH HIGH THERMOELECTRIC PERFORMANCE
JP2018157002A (en) * 2017-03-16 2018-10-04 古河機械金属株式会社 Thermoelectric conversion material

Similar Documents

Publication Publication Date Title
JP3845803B2 (en) High performance thermoelectric materials and methods for their preparation
US6942728B2 (en) High performance p-type thermoelectric materials and methods of preparation
JP5636419B2 (en) Self-organized thermoelectric material
US6660926B2 (en) Thermoelectric devices based on materials with filled skutterudite structures
CN100452466C (en) Silver-containing p-type semiconductor
JP2008512001A (en) P-type semiconductor containing silver
US3127287A (en) Thermoelectricity
KR20110052225A (en) Nanocomposite thermoelectric material, and thermoelectric device and thermoelectric module comprising same
KR20060125789A (en) A method of preparation for the high performance thermoelectric material indium-cobalt-antimony
JP2018516457A (en) Thermoelectric material, thermoelectric element and thermoelectric module including the same
JP3245793B2 (en) Manufacturing method of thermoelectric conversion element
JP3727945B2 (en) Thermoelectric conversion material and production method thereof
JP2013157362A (en) Thermoelectric semiconductor
JP2004119647A (en) Thermoelectric conversion material and thermoelectric conversion element using it
JPH0964422A (en) N-type thermoelectric material and thermoelectric effect element using the same
JP6279639B2 (en) Thermoelectric conversion material and method for producing the same
JP2007013000A (en) Thermoelectric conversion material
TWI417248B (en) Thermoelectric material, method for fabricating the same, and thermoelectric module employing the same
JP3476343B2 (en) Thermoelectric conversion material
JP2004288841A (en) Oxychalcogenide and thermoelectric material
JP2510158B2 (en) Thermoelectric element and manufacturing method thereof
US3127286A (en) Figure
US3054842A (en) Thermoelectric composition
USRE26886E (en) Io chromium-weight percent
JP4208983B2 (en) Manufacturing method of semiconductor thermoelectric material