JPH0963379A - Suspended insulator - Google Patents

Suspended insulator

Info

Publication number
JPH0963379A
JPH0963379A JP21742995A JP21742995A JPH0963379A JP H0963379 A JPH0963379 A JP H0963379A JP 21742995 A JP21742995 A JP 21742995A JP 21742995 A JP21742995 A JP 21742995A JP H0963379 A JPH0963379 A JP H0963379A
Authority
JP
Japan
Prior art keywords
sand
glaze
insulator
permittivity
dielectric constant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP21742995A
Other languages
Japanese (ja)
Inventor
Hiroshi Nozaki
宏 野崎
Yukihito Tone
如人 刀根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP21742995A priority Critical patent/JPH0963379A/en
Priority to CN95118203A priority patent/CN1084031C/en
Priority to CN 95223911 priority patent/CN2252389Y/en
Publication of JPH0963379A publication Critical patent/JPH0963379A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an improved suspended porcelain insulator which can exhibit excellent dielectric breakdown strength without depending on the realization of low impedance of a glaze. SOLUTION: A suspended porcelain insulator is provided with a porcelain- made insulator 1 where a glaze is applied to a basis material surface and ceramic quality sand 4 is adhered to an inner peripheral surface and an outer peripheral surface of a head part peripheral wall 2a and a cap metal fitting 5 and a pin metal fitting 6 joined to the insulator 1 by cement 7. The relationship of (ε2-ε1<=0) is satisfied between a dielectric constant ε1 of the sand 4 and a dielectric constant ε2 of the glaze, and an electric field relieving effect of a glaze layer is exhibited, and excellent dielectric breakdown strength is realized.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、頂壁および周壁を
有する中空円筒状の頭部を含み、素地表面に釉薬が施さ
れ、周壁の内周面および外周面にセラミック質のサンド
が接着された磁器製の絶縁体と、該絶縁体の頭部に対し
セメントにより接合されたキャップ金具およびピン金具
とを具える懸垂がいしに関し、特に、絶縁破壊強度を大
幅に向上し得るように改良された磁器がいしを提案する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention includes a hollow cylindrical head having a top wall and a peripheral wall, a surface of the base material is glazed, and a ceramic sand is adhered to the inner and outer peripheral surfaces of the peripheral wall. A suspension insulator comprising a porcelain insulator and a cap fitting and a pin fitting joined to the head of the insulator by cement, and particularly improved so that the dielectric breakdown strength can be greatly improved. A porcelain insulator is proposed.

【0002】本発明は、頂壁および周壁を有する中空円
筒状の頭部を含み、素地表面に釉薬が施され、周壁の内
周面および外周面にセラミック質のサンドが接着された
磁器製の絶縁体と、該絶縁体の頭部に対しセメントによ
り接合されたキャップ金具およびピン金具とを具える懸
垂がいしに関し、特に、絶縁破壊強度を大幅に向上し得
るように改良された磁器がいしを提案するものである。
[0002] The present invention comprises a hollow cylindrical head having a top wall and a peripheral wall, a surface of the base material is glazed, and a ceramic sand is adhered to the inner and outer peripheral surfaces of the peripheral wall. Regarding a suspension insulator including an insulator and a cap fitting and a pin fitting joined to the head of the insulator by cement, in particular, a porcelain insulator improved so as to significantly improve dielectric breakdown strength is proposed. To do.

【0003】[0003]

【従来の技術】懸垂磁器がいしにおける絶縁体に対する
キャップ金具およびピン金具の接合強度を増大させるた
め、絶縁体頭部の内周面および外周面にセラミック質の
サンドを接着し、キャップ金具およびピン金具を絶縁体
に対しセメントにより接合してなる懸垂磁器がいしは、
従来より広く知られている。このような懸垂磁器がいし
において問題とされる急峻波全路貫通は、絶縁体頭部に
接着したサンド相互間の釉薬に生じる部分破損が誘因と
なって生じることが知られている。そして、磁器がいし
の急峻波強度や汚損油中破壊電圧を向上させる手段とし
て、絶縁体の素地表面に施される釉薬の低インピーダン
ス化が検討されている。釉薬の低インピーダンス化は、
磁器および釉薬からなる複合誘電体の絶縁破壊が表層よ
り生じる点に着目して釉薬の電圧分担を低減することを
意図するものである。
2. Description of the Related Art In order to increase the joint strength of a cap fitting and a pin fitting to an insulator in a suspended porcelain insulator, ceramic sand is adhered to the inner and outer peripheral surfaces of the insulator head to form a cap fitting and a pin fitting. A suspended porcelain insulator made by cementing the
It is widely known in the past. It is known that such a steep-wave all-penetration, which is a problem in suspended porcelain insulators, is caused by a partial breakage in the glaze between the sands adhered to the insulator head. As a means for improving the steep wave strength of a porcelain insulator and the breakdown voltage in dirty oil, lowering the impedance of the glaze applied to the surface of the base material of the insulator has been studied. The low impedance of glaze is
It is intended to reduce the voltage sharing of the glaze, paying attention to the point that the dielectric breakdown of the composite dielectric made of porcelain and glaze occurs from the surface layer.

【0004】ところで、セメントは導体であるためにキ
ャップ金具およびピン金具間の電極となるが、絶縁体頭
部の内周面および外周面にセラミック質のサンドを接着
する場合にはサンドが一般的には不定形であるため、電
極形状が大きく変化することとなる。そして、絶縁破壊
強度はこのような電極形状に支配されるため、釉薬の低
インピーダンス化を図ったとしても、釉薬層の電界緩和
効果が十分に発現されないこととなる。
By the way, since cement serves as an electrode between the cap fitting and the pin fitting because it is a conductor, when the ceramic sand is adhered to the inner and outer peripheral surfaces of the insulator head, the sand is generally used. However, since the shape of the electrode is indefinite, the shape of the electrode changes greatly. Since the dielectric breakdown strength is governed by such an electrode shape, the electric field relaxation effect of the glaze layer will not be sufficiently exhibited even if the impedance of the glaze is reduced.

【0005】 特公平6−53601号公報は、がいし
用サンドの製造方法として、サンド素地を土練機によっ
てヌードル状に押し出し成形し、乾燥後に粉砕し、整粒
機により整粒してヌードルの直径とほぼ同径で鋭角的な
エッジの少ない粒状体としたうえ焼成する方法を開示し
ている。このような方法により製造されたサンドを使用
し、かつ、釉薬のインピーダンスを低下させれば、雷イ
ンパルス等の急峻波の作用に際し、エッジに電界が集中
して貫通の起点となるのを緩和し、ひいては応力集中に
基づくがいしの引張強度低下を効果的に解消することが
できる。他方、釉薬の低インピーダンス化自体は、例え
ばチタン等の添加により達成可能である。したがって、
このような措置を併用すれば釉薬層の電界緩和効果を十
分に発現させることが可能であるが、懸垂がいしの引張
強度を高めるために磁器や釉薬材料に要求される熱膨
張、溶け流れ等の諸条件を同時に満足しつつ釉薬のイン
ピーダンスを低化することは一般に困難である。
Japanese Examined Patent Publication No. 6-53601 discloses a method for producing sand for insulators, in which a sand substrate is extruded into a noodle shape by a kneading machine, pulverized after drying, and then sized by a sizing machine to make a noodle diameter. Discloses a method of firing a granular material having substantially the same diameter as that of the present invention and having less sharp edges, and then firing. If the sand manufactured by such a method is used and the impedance of the glaze is lowered, the electric field is concentrated at the edge and acts as the starting point of penetration when the steep wave such as lightning impulse acts. As a result, it is possible to effectively eliminate the decrease in tensile strength of the insulator due to stress concentration. On the other hand, the low impedance of the glaze itself can be achieved by adding titanium or the like. Therefore,
If these measures are used together, the electric field relaxation effect of the glaze layer can be sufficiently expressed, but thermal expansion, melt flow, etc. required for porcelain and glaze materials in order to increase the tensile strength of the suspension insulator. It is generally difficult to lower the glaze impedance while simultaneously satisfying various conditions.

【0006】[0006]

【発明が解決しようとする課題】したがって、本発明の
主たる課題は、釉薬の低インピーダンス化に依存するこ
となく優れた絶縁破壊強度を発現し得る、改良された懸
垂磁器がいしを提案することにある。
Therefore, a main object of the present invention is to propose an improved suspended porcelain insulator capable of exhibiting excellent dielectric breakdown strength without depending on the low impedance of the glaze. .

【0007】[0007]

【課題を解決するための手段】そして、この課題を解決
するために本発明は、頂壁および周壁を有する中空円筒
状の頭部を含み、素地表面に釉薬が施され、かつ、周壁
の内周面および外周面にセラミック質のサンドが接着さ
れた磁器製の絶縁体と、該絶縁体の頭部に対しセメント
により接合されたキャップ金具およびピン金具とを具え
る懸垂がいしにおいて、サンドの誘電率ε1 と釉薬の誘
電率ε2 との間でε2 −ε1 ≦0の関係を満足させるこ
とを特徴とするものである。
In order to solve this problem, the present invention includes a hollow cylindrical head having a top wall and a peripheral wall, the surface of which is glazed, and the inner surface of the peripheral wall. In a suspension insulator comprising a porcelain insulator having ceramic sand adhered to the peripheral surface and the outer peripheral surface, and a cap fitting and a pin fitting joined to the head of the insulator by cement, a sand insulator It is characterized by satisfying the relationship of ε2-ε1 ≤0 between the coefficient ε1 and the dielectric constant ε2 of the glaze.

【0008】本発明は、懸垂磁器がいしにおけるサンド
および釉薬の誘電率の組み合わせに初めて着目し、サン
ドの誘電率ε1 と釉薬の誘電率ε2 との間でε2−ε1
≦0の関係を満足させる場合には釉薬のインピーダンス
を特に低下させなくとも電極形状の影響が十分に緩和さ
れ、絶縁破壊強度の向上に大きく寄与するとの新規な知
見に基づいて完成されたものである。
For the first time, the present invention focuses on the combination of the permittivity of the sand and the glaze in the suspended porcelain insulator, and between the permittivity ε1 of the sand and the permittivity ε2 of the glaze, ε2-ε1.
It was completed based on the new finding that if the relationship of ≦ 0 is satisfied, the influence of the electrode shape is sufficiently mitigated without significantly lowering the glaze impedance, and it contributes greatly to the improvement of the dielectric breakdown strength. is there.

【0009】[0009]

【発明の実施の形態】以下、本発明を添付図面に示した
好適実施例に基づいて詳述する。図1に示す懸垂がいし
は磁器製の絶縁体1を具え、この絶縁体1の素地表面に
は既知の態様で釉薬が施されている。絶縁体1は、半径
方向外方に向けて延在するフランジ状の笠部2と、その
中央に配置されて上向きに突出する略円筒状の頭部3と
から構成されている。頭部3は、下端部において笠部2
に接続する略円筒状の周壁3aと、周壁3aの上端部に連
続する頂壁3bとを含んでいる。周壁3aの内周面およ
び外周面には、セラミック質のサンド4が接着されてい
る。さらに、頭部3に対しキャップ金具5が外周面側
で、またピン金具6が内周面側で、それぞれセメント7
により接合されている。なお、ピン金具6の上端面と頭
部3における頂壁3bの内面との間には、緩衝用のスペ
ーサ8が介挿されている。このような懸垂がいしの基本
的構成自体は、従来既知である。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described below in detail with reference to the preferred embodiments shown in the accompanying drawings. The suspension insulator shown in FIG. 1 comprises an insulator 1 made of porcelain, and the surface of the base body of this insulator 1 is coated with glaze in a known manner. The insulator 1 is composed of a flange-shaped cap portion 2 extending outward in the radial direction, and a substantially cylindrical head portion 3 arranged in the center of the cap portion 2 and protruding upward. The head 3 has a cap 2 at the lower end.
And a top wall 3b continuous with the upper end of the peripheral wall 3a. Ceramic sand 4 is adhered to the inner and outer peripheral surfaces of the peripheral wall 3a. Further, with respect to the head 3, the cap metal fitting 5 is on the outer peripheral surface side, and the pin metal fitting 6 is on the inner peripheral surface side.
Are joined by. A buffer spacer 8 is inserted between the upper end surface of the pin fitting 6 and the inner surface of the top wall 3b of the head 3. The basic construction itself of such a suspension insulator is known in the prior art.

【0010】図2に示すように、絶縁体1における頭部
周壁3aの内周面および外周面に接着するサンド4は、次
の方法により製造するのが好適である。すなわち、先ず
従来と同様にサンド素地を調合し、フィルタープレスに
より脱水して適度な水分を含有するケーキとする。この
ケーキを土練機に投入して混練し、孔径が1.8〜2.
0mm程度の多数の貫通孔を有する孔あき板から押し出
してヌードル状の成形体を得る。この成形体の直径は、
目的とするサンドの最大粒径と同じか、僅かに大きめと
しておく。次に、このヌードル状成形体を乾燥し、粗砕
機およびデシンター整粒機によって成形体の直径とほぼ
同径の粒状体に粉砕、整粒する。なお、デシンター整粒
機は、多数の透孔が設けられたドラムを回転させつつ粉
砕、整粒を行なう装置である。ドラムにおける透孔の孔
径は1.6〜1.8mm程度とし、また、ドラムの回転
数は通常の場合よりもはるかに低い200rpm程度と
するのが好適である。かくして得られた粒状体は、鋭角
的なエッジの少ない粒状体であり、上網が1.68m
m、下網が0.84〜1.0mmの整粒篩にかけて選別
した上、さや詰めして焼成する。その後に焼成品をほぐ
し篩にかけてほぐし、鋭角的なエッジの少ないがいし用
サンドとして仕上げるのである。がいし用サンドの上記
粉砕製法については、前述した特公平6−53601号
公報に詳述されているので、当該公報の記載も参照され
たい。
As shown in FIG. 2, the sand 4 adhered to the inner peripheral surface and the outer peripheral surface of the head peripheral wall 3a of the insulator 1 is preferably manufactured by the following method. That is, first, a sand substrate is prepared in the same manner as in the conventional case, and dehydrated by a filter press to obtain a cake containing an appropriate amount of water. This cake is put into a clay kneader and kneaded to have a pore size of 1.8 to 2.
A noodle-like molded body is obtained by extruding from a perforated plate having a large number of through holes of about 0 mm. The diameter of this molded body is
Set the same as the target maximum grain size or slightly larger. Next, this noodle-shaped molded product is dried, and is pulverized and sized by a coarse crusher and a de-sinter sizing machine into granules having substantially the same diameter as the diameter of the molded product. The de-sinter sizing machine is a device for crushing and sizing while rotating a drum provided with a large number of through holes. It is preferable that the diameter of the through holes in the drum is about 1.6 to 1.8 mm, and the rotation speed of the drum is about 200 rpm, which is much lower than in the usual case. The granules thus obtained are granules with few sharp edges, and the upper net has a size of 1.68 m.
m, the lower net is 0.84 to 1.0 mm, and the powder is screened through a sieving sieve, and then squeezed and baked. After that, the fired product is disentangled through a disintegrating sieve and finished as an insulator sand with few sharp edges. The above-mentioned crushing manufacturing method of insulator sand is described in detail in the above-mentioned Japanese Patent Publication No. 6-53601, so please also refer to the description in that publication.

【0011】本発明においては、懸垂がいしにおけるサ
ンド4および釉薬の誘電率の組み合わせに初めて着目
し、サンドの誘電率ε1 と釉薬の誘電率ε2 とをε2 −
ε1 ≦0の関係が成立するように設定するものである。
図3は、図1の懸垂がいしにおける釉薬と、前記粉砕製
法により製造されたサンドの誘電率差ε2 −ε1 に対す
る懸垂がいしの急峻波破壊率を示すグラフである。この
グラフは、IEC規格No.305のU120BSに準
拠する懸垂がいしにおいて、サンドおよび釉薬の誘電率
差を変化させた試料1〜5を作成し、これらの試料につ
きIEC Technical Report 121
1に規定された試験回路を用いて電圧峻度4000KV
/μs、正波、負波各10回印加の条件下で急峻波破壊
試験を行って得られたものである。図3のグラフから明
らかなとおり、釉薬の誘電率ε2 がサンドの誘電率ε1
よりも高い場合には、急峻波破壊率は約60%以上とな
る。これに対して、釉薬の誘電率ε2 がサンドの誘電率
ε1 とほぼ等しい場合は急峻波破壊率が約15%前後、
サンドの誘電率ε1 が釉薬の誘電率ε2 よりも高い場合
には急峻波破壊率は約5%以下に低下する。この実験結
果から、釉薬とサンドの誘電率差をε2 −ε1 ≦0とす
ることが、懸垂がいしにおける急峻波破壊率の低下に有
効であることが明らかである。
In the present invention, attention is focused for the first time on the combination of the permittivity of the sand 4 and the glaze in the suspension insulator, and the permittivity ε1 of the sand and the permittivity ε2 of the glaze are equal to ε2-
It is set so that the relationship of ε1 ≤ 0 is established.
FIG. 3 is a graph showing the sharp wave breaking rate of the suspension insulator with respect to the dielectric constant difference .epsilon.2-.epsilon.1 of the glaze in the suspension insulator of FIG. 1 and the sand produced by the crushing manufacturing method. This graph is based on IEC standard No. 305 U120BS-compliant suspension insulators were used to prepare Samples 1 to 5 with different dielectric constants of sand and glaze, and IEC Technical Report 121 for these samples.
Voltage steepness of 4000 KV using the test circuit specified in 1.
/ Μs, positive wave, negative wave 10 times each, the steep wave breakdown test was performed. As is clear from the graph in Fig. 3, the permittivity ε2 of the glaze is that of the sand ε1.
If it is higher than the above, the steep wave breakdown rate is about 60% or more. On the other hand, when the permittivity ε2 of the glaze is almost equal to the permittivity ε1 of the sand, the steep wave breakdown rate is about 15%,
When the permittivity ε1 of the sand is higher than the permittivity ε2 of the glaze, the steep wave breakdown rate decreases to about 5% or less. From this experimental result, it is clear that setting the dielectric constant difference between the glaze and the sand to be ε 2 −ε 1 ≦ 0 is effective in reducing the steep wave breakdown rate in the suspension insulator.

【0012】ちなみに、図3のグラフにおいて各プロッ
トに隣接する括弧内の数字は、電圧峻度2500Kv/
μsの条件下での各試料1〜5の急峻波破壊率を表した
ものであり、この実験結果からも釉薬とサンドの誘電率
差をε2 −ε1 ≦0とすることの有効性が明らかであ
る。
Incidentally, in the graph of FIG. 3, the numbers in parentheses adjacent to each plot indicate the voltage steepness of 2500 Kv /
It shows the steep wave destruction rate of each sample 1 to 5 under the condition of μs. From this experimental result, it is clear that the difference in permittivity between glaze and sand is ε 2 −ε 1 ≦ 0. is there.

【0013】次に、発明者らは、懸垂がいしの絶縁破壊
に対する釉薬とサンドの誘電率差の影響を確認するた
め、図4に示す電界計算モデル(寸法単位:mm)に基づ
き、釉薬およびサンドの誘電率差ε2 −ε1 を変化させ
て最大電場と電界の大きさを解析した。その解析結果
は、次の表1と、図5〜図7に示すとおりである。
Next, in order to confirm the influence of the difference in dielectric constant between the glaze and the sand on the dielectric breakdown of the suspension insulator, the inventors of the present invention used the glaze and the sand based on the electric field calculation model (dimension unit: mm) shown in FIG. The maximum electric field and electric field magnitude were analyzed by changing the dielectric constant difference ε2-ε1 of. The analysis results are as shown in Table 1 below and FIGS.

【0014】[0014]

【表1】 [Table 1]

【0015】図5〜図7から明らかなとおり、いずれの
モデルにおいても最大電界はサンド間の釉薬部分に生じ
ており、各種の絶縁破壊実験結果とよく一致している。
さらに、表1に示すように、サンド間の釉薬部分におけ
る最大電位傾度は、釉薬およびサンドの誘電率差ε2 −
ε1 が正であるモデル1において比較的高く、当該誘電
率差ε2 −ε1 が負であるモデル2およびモデル3にお
いては低減されている。すなわち、釉薬およびサンドの
誘電率差をε2 −ε1 ≦0とする場合には、サンド間の
釉薬部分における釉薬の電圧分担が効果的に低減される
ことが明らかである。
As is clear from FIGS. 5 to 7, the maximum electric field is generated in the glaze portion between the sands in all the models, which is in good agreement with the results of various dielectric breakdown experiments.
Furthermore, as shown in Table 1, the maximum potential gradient in the glaze portion between the sands is the dielectric constant difference ε 2 − of the glaze and the sand.
It is relatively high in the model 1 in which ε1 is positive, and is reduced in the model 2 and the model 3 in which the dielectric constant difference ε2-ε1 is negative. That is, it is clear that when the difference in dielectric constant between the glaze and the sand is ε 2 −ε 1 ≦ 0, the voltage sharing of the glaze in the glaze portion between the sands is effectively reduced.

【0016】なお、一般的に誘電率はサンド中の結晶お
よびガラス成分の誘電率の和であるため、サンド中の結
晶の誘電率が特に重要である。誘電率は、例えば、アル
ミナ(コランダム)結晶で約10、石英結晶では約5〜7
であり、これに対してガラスでは約5〜7であるため、
サンド中にアルミナ(コランダム)結晶を多く含有させ
ることが誘電率を高める手段として有効である。その反
面、強度面で考えた場合には、サンド中にアルミナ(コ
ランダム)結晶を多く含有させると熱膨張率が高くなっ
て不利であるため、アルミナ(コランダム)結晶の含有
率は自づから制約されるものである。以上を勘案して、
本発明において使用するサンドの組成は、例えば、Al2O
3 が20〜70wt%、SiO2が40〜70wt%、KNaOが2
〜6wt%の範囲であり、望ましくはAl2O3 が40〜60
wt%、SiO2が40〜60wt%の範囲である。
Since the dielectric constant is generally the sum of the dielectric constants of the crystal in the sand and the glass component, the dielectric constant of the crystal in the sand is particularly important. The dielectric constant is, for example, about 10 for alumina (corundum) crystals and about 5 to 7 for quartz crystals.
On the other hand, since it is about 5 to 7 for glass,
Inclusion of a large amount of alumina (corundum) crystals in the sand is effective as a means for increasing the dielectric constant. On the other hand, considering strength, it is disadvantageous if the sand contains a large amount of alumina (corundum) crystals, which is disadvantageous. Therefore, the content of alumina (corundum) crystals is limited by itself. It is what is done. Considering the above,
The composition of the sand used in the present invention is, for example, Al2O.
3 is 20-70wt%, SiO2 is 40-70wt%, KNaO is 2
˜6 wt%, preferably Al 2 O 3 40-60
wt% and SiO2 are in the range of 40 to 60 wt%.

【0017】さらに、釉薬およびサンドの熱膨張率差
と、懸垂がいしの引張強度との関連について検討する
と、図8から明らかなとおり、熱膨張率差が−0.11
を下回る場合には引張強度が急激に低下する反面、熱膨
張率差が−0.11以上である場合には安定した引張強
度が維持される傾向が認められる。他方、釉薬およびサ
ンドの熱膨張率差と、釉薬およびサンドの誘電率差(ε
2-ε1 )との間には、図9に示すようにほぼ比例関係が
認められる。そして、釉薬およびサンドの熱膨張率差−
0.11に相当する両者間の誘電率差はほぼ−1.4で
ある。したがって、懸垂がいしの引張強度をも勘案した
とき、図8および図9に示す関係に基づき、釉薬および
サンドの誘電率差は、−1.4≦ε2 −ε1 ≦0の関係
を満足するものであることが望ましい。
Furthermore, when the relationship between the difference in the coefficient of thermal expansion between the glaze and the sand and the tensile strength of the suspension insulator is examined, as is apparent from FIG. 8, the difference in the coefficient of thermal expansion is -0.11.
If it is less than 1.0, the tensile strength is sharply reduced, while if the difference in coefficient of thermal expansion is −0.11 or more, stable tensile strength tends to be maintained. On the other hand, the difference in the coefficient of thermal expansion between the glaze and the sand and the difference in the dielectric constant between the glaze and the sand (ε
A nearly proportional relationship is recognized between 2-ε 1) and 2-ε 1). And the difference in the coefficient of thermal expansion between the glaze and the sand −
The dielectric constant difference between the two, which corresponds to 0.11, is approximately -1.4. Therefore, when the tensile strength of the suspension insulator is also taken into consideration, the dielectric constant difference between the glaze and the sand satisfies the relationship of −1.4 ≦ ε2 −ε1 ≦ 0 based on the relationships shown in FIGS. 8 and 9. Is desirable.

【0018】以上の記載から明らかなとおり、本発明に
よれば、懸垂磁器がいしにおけるサンドおよび釉薬の誘
電率の組み合わせに特に着目し、サンドの誘電率ε1 と
釉薬の誘電率ε2 との間でε2 −ε1 ≦0の関係を満足
させることにより、釉薬のインピーダンスを特に低下さ
せなくとも電極形状の影響を十分に緩和して絶縁破壊強
度を大幅に向上させることが可能となるものである。
As is clear from the above description, according to the present invention, particular attention is paid to the combination of the permittivity of the sand and the glaze in the suspended porcelain insulator, and the permittivity ε2 between the permittivity ε1 of the sand and the permittivity ε2 of the glaze is ε2. By satisfying the relationship of −ε1 ≦ 0, it becomes possible to sufficiently alleviate the influence of the electrode shape and significantly improve the dielectric breakdown strength without particularly lowering the impedance of the glaze.

【0019】なお、前述した実施例は単なる例示に過ぎ
ず、本発明を限定するものではない。そして、本発明が
その範囲を逸脱することなく種々の変形形態をもって実
施し得るものであることは、言うまでもない。
The above-described embodiment is merely an example and does not limit the present invention. Needless to say, the present invention can be implemented in various modified forms without departing from the scope thereof.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を好適に適用し得る懸垂がいしの正面図
であって、その半部を断面で示すものである。
FIG. 1 is a front view of a suspension insulator to which the present invention can be preferably applied, showing a half portion thereof in cross section.

【図2】図1の懸垂がいしに使用し得るサンドの製造工
程を示すフローチャートである。
FIG. 2 is a flow chart showing a manufacturing process of a sand which can be used in the suspension insulator of FIG.

【図3】図1の懸垂がいしにおける釉薬およびサンドの
誘電率差と急峻波破壊強度との関係を示すグラフであ
る。
FIG. 3 is a graph showing the relationship between the dielectric constant difference between the glaze and the sand and the steep wave breaking strength in the suspension insulator of FIG.

【図4】懸垂がいしの電界計算モデルを示す説明図であ
る。
FIG. 4 is an explanatory diagram showing an electric field calculation model of a suspension insulator.

【図5】本発明の実施例および参考例についての電界計
算モデルの計算結果を示す線図である。
FIG. 5 is a diagram showing a calculation result of an electric field calculation model for an example of the present invention and a reference example.

【図6】本発明の実施例および参考例についての電界計
算モデルの計算結果を示す線図である。
FIG. 6 is a diagram showing a calculation result of an electric field calculation model for an example of the present invention and a reference example.

【図7】本発明の実施例および参考例についての電界計
算モデルの計算結果を示す線図である。
FIG. 7 is a diagram showing a calculation result of an electric field calculation model for an example of the present invention and a reference example.

【図8】釉薬およびサンドの熱膨張率差と、懸垂がいし
の引張強度との関係を示すグラフである。
FIG. 8 is a graph showing the relationship between the difference in thermal expansion coefficient between the glaze and the sand and the tensile strength of the suspension insulator.

【図9】釉薬およびサンドの熱膨張率差と、釉薬および
サンドの誘電率差との関係を示すグラフである。
FIG. 9 is a graph showing the relationship between the difference in thermal expansion coefficient between glaze and sand and the difference in dielectric constant between glaze and sand.

【符号の説明】[Explanation of symbols]

1絶縁体、2a頭部周壁、4サンド、6キャップ金具、
7セメント
1 insulator, 2a head peripheral wall, 4 sand, 6 cap metal fittings,
7 cement

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】頂壁および周壁を有する中空円筒状の頭部
を含み、素地表面に釉薬が施され、かつ、周壁の内周面
および外周面にセラミック質のサンドが接着された磁器
製の絶縁体と、該絶縁体の頭部に対しセメントにより接
合されたキャップ金具およびピン金具とを具え、サンド
の誘電率ε1 と釉薬の誘電率ε2 との間に次の関係: ε2 −ε1 ≦0 を満足させることを特徴とする懸垂がいし。
1. A porcelain porcelain comprising a hollow cylindrical head having a top wall and a peripheral wall, a surface of the base material being glazed, and ceramic sand being adhered to the inner and outer peripheral surfaces of the peripheral wall. An insulator and a cap fitting and a pin fitting joined to the head of the insulator by cement are provided, and the following relationship between the permittivity ε1 of the sand and the permittivity ε2 of the glaze is: ε2 −ε1 ≤0 Suspension insulator characterized by satisfying.
【請求項2】サンドの誘電率ε1 と釉薬の誘電率ε2 と
の間に次の関係: −1.4≦ε2 −ε1 ≦0 を満足させることを特徴とする、請求項1記載の懸垂が
いし。
2. The suspension according to claim 1, wherein the following relationship is satisfied between the permittivity ε1 of the sand and the permittivity ε2 of the glaze: -1.4≤ε2 -ε1≤0. .
【請求項3】前記サンドは、サンド素地を土練機によっ
てヌードル状に押し出し成形し、乾燥後に粉砕し、整粒
機により整粒してヌードルの直径とほぼ同径で鋭角的な
エッジの少ない粒状体とした後に焼成してなることを特
徴とする、請求項1または2に記載の懸垂がいし。
3. The sand is obtained by extruding a sand substrate into a noodle shape by a kneading machine, drying and pulverizing, and sizing by a sizing machine to have a diameter substantially the same as the diameter of the noodle and less sharp edges. The suspension insulator according to claim 1 or 2, wherein the suspension insulator is formed into a granular body and then fired.
JP21742995A 1995-08-25 1995-08-25 Suspended insulator Withdrawn JPH0963379A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP21742995A JPH0963379A (en) 1995-08-25 1995-08-25 Suspended insulator
CN95118203A CN1084031C (en) 1995-08-25 1995-09-28 Suspension insulator
CN 95223911 CN2252389Y (en) 1995-08-25 1995-09-28 Suspension insulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21742995A JPH0963379A (en) 1995-08-25 1995-08-25 Suspended insulator

Publications (1)

Publication Number Publication Date
JPH0963379A true JPH0963379A (en) 1997-03-07

Family

ID=16704084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21742995A Withdrawn JPH0963379A (en) 1995-08-25 1995-08-25 Suspended insulator

Country Status (2)

Country Link
JP (1) JPH0963379A (en)
CN (2) CN2252389Y (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112707714A (en) * 2021-01-29 2021-04-27 中材江西电瓷电气有限公司 Formula and preparation process of high-strength cylindrical head suspension insulator

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102254655B (en) * 2011-07-13 2012-11-28 江苏南瓷绝缘子有限公司 Glaze-coated sand method of electrified railway contact net rod-shaped porcelain insulator

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62274510A (en) * 1986-05-22 1987-11-28 日本碍子株式会社 Suspension insulator
JPH0799653B2 (en) * 1987-02-04 1995-10-25 日本碍子株式会社 Suspension insulator
JP2568547B2 (en) * 1987-04-28 1997-01-08 日本碍子株式会社 Suspension insulator
CN1044005A (en) * 1989-01-08 1990-07-18 全苏绝缘体和附属装置特种工艺设计局 High voltage suspended insulator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112707714A (en) * 2021-01-29 2021-04-27 中材江西电瓷电气有限公司 Formula and preparation process of high-strength cylindrical head suspension insulator

Also Published As

Publication number Publication date
CN1144387A (en) 1997-03-05
CN2252389Y (en) 1997-04-16
CN1084031C (en) 2002-05-01

Similar Documents

Publication Publication Date Title
US4843047A (en) Method for producing a high strength feldspathic porcelain
US5796019A (en) Method of manufacturing an electrically conductive cermet
DE2946162A1 (en) PIEZOELECTRIC RESONATOR
JPH0963379A (en) Suspended insulator
JPH11228226A (en) Piezoelectric ceramic composition
JP3386739B2 (en) Porcelain insulator and method of manufacturing the same
DE19942137C2 (en) Process for producing a porcelain, porcelain and use of the porcelain as a ceramic insulator
JPH0468257B2 (en)
DE2932870A1 (en) METHOD FOR PRODUCING PIEZOELECTRIC CERAMIC MATERIALS
CN102351521B (en) Preparation method of special sand for rod type ceramic insulator for high-speed electric railway contact net
US5641720A (en) Corundum porcelain composition, processes for its preparation and use
JP4094162B2 (en) High voltage porcelain insulator
JP2680538B2 (en) Suspension insulator
JP7457002B2 (en) Manufacturing method of high-density artificial graphite electrode
CN114933472A (en) Manufacturing process of aluminum steatite porcelain
JPS61104580A (en) Ignition plug
JP3395577B2 (en) Method of manufacturing dielectric ceramic electronic component
JPH0653601B2 (en) Method for manufacturing sand for insulators
JP2004247719A (en) Layered ceramic capacitor
SU945144A1 (en) Batch for making refractory products
KR910002172B1 (en) Sintered particles use for the electric insulation and preparation method thereof
JP3333443B2 (en) Manufacturing method of ceramic green sheet for laminated electronic components
JPH05139820A (en) Production of high-strength ceramic ware
JP3326089B2 (en) Insulator porcelain with excellent steep wave strength
RU2074149C1 (en) Method of preparing periclase electrotechnical powders

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20021105