JPH0963036A - Magnetic recording medium - Google Patents

Magnetic recording medium

Info

Publication number
JPH0963036A
JPH0963036A JP24378595A JP24378595A JPH0963036A JP H0963036 A JPH0963036 A JP H0963036A JP 24378595 A JP24378595 A JP 24378595A JP 24378595 A JP24378595 A JP 24378595A JP H0963036 A JPH0963036 A JP H0963036A
Authority
JP
Japan
Prior art keywords
magnetic
film
thin film
fine particles
magnetic recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24378595A
Other languages
Japanese (ja)
Inventor
Shigeru Hirono
滋 廣野
Takayoshi Hayashi
孝好 林
Shigeru Umemura
茂 梅村
Yasuko Ando
康子 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP24378595A priority Critical patent/JPH0963036A/en
Publication of JPH0963036A publication Critical patent/JPH0963036A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a magnetic recording medium fit for high recording density by imparting a structure formed by dispersing ferromagnetic fine particles having a prescribed compsn. in a carbon-base thin film. SOLUTION: This magnetic recording medium has a structure formed by dispersing ferromagnetic fine particles of Co, Fe, Ni or an alloy of them in a carbon-base thin film. In order to produce the magnetic thin film medium, sputtering, vacuum deposition or CVD is adopted. The base of the amorphous film in which the metallic fine particles are embedded is carbon and a component such as hydrogen, Si or β-Si02 may be contained in the film. Isolated magnetic fine particles excellent in magnetic insulating property can be dispersed in a diamondlike carbon film used as a protective film so far.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、高密度記録が可能
な磁気記録媒体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic recording medium capable of high density recording.

【0002】[0002]

【従来の技術】近年、スパッタリングや真空蒸着法など
で製造される磁気記録用合金磁性薄膜媒体の高記録密度
化においては、記録ビットは0.2μm以下に減少し、
結晶粒径オーダに近づいてきている。磁化が膜全体にわ
たり一様であって磁化反転が磁壁移動により容易に生ず
る「均一型」磁性薄膜を用いた場合は、このような微細
なビットを安定に記録することは困難となってきてい
る。このため、強磁性領域が磁気的に孤立し、あたかも
強磁性微粒子の集合体のような「微粒子型」膜構造を有
する磁性薄膜の開発が必要とされてきている。これは、
垂直磁気記録用薄膜(S. Iwasaki, K. Ouchi andN. Hon
da : IEEE Trans. Magn., MAG-16 (1980) p.1111-1113
)においても、また、長手記録用薄膜(Y. Yogi, T. A.
Nguyen, S. E. Lambort, G. L. Gorman and G. Casill
o : IEEE Trans. Magn., MAG-26 (1990) p.1578-1580)
においても、それぞれ高密度化が必須であると言われて
いる。
2. Description of the Related Art In recent years, in order to increase the recording density of alloy magnetic thin film media for magnetic recording manufactured by sputtering or vacuum evaporation method, the recording bit is reduced to 0.2 μm or less,
It is approaching the crystal grain size order. It is becoming difficult to record such fine bits stably when using a “uniform” magnetic thin film whose magnetization is uniform over the entire film and magnetization reversal easily occurs due to domain wall motion. . Therefore, it is necessary to develop a magnetic thin film in which the ferromagnetic regions are magnetically isolated and which has a “fine particle type” film structure as if it were an aggregate of ferromagnetic fine particles. this is,
Thin film for perpendicular magnetic recording (S. Iwasaki, K. Ouchi and N. Hon
da: IEEE Trans. Magn., MAG-16 (1980) p.1111-1113
), The longitudinal recording thin film (Y. Yogi, TA
Nguyen, SE Lambort, GL Gorman and G. Casill
o: IEEE Trans. Magn., MAG-26 (1990) p.1578-1580)
It is said that high density is essential in each case.

【0003】現在、面内磁気記録用に用いられているC
oCrTa、CoCrPt系薄膜、あるいは垂直磁気記
録用のCoCrなどのいわゆるCoCr基合金薄膜にお
いては、Coリッチな強磁性領域とCrリッチな非磁性
領域とに分離する組成分離現象が発生することが見いだ
されている(Y. Maeda and K. Takahasi : J. Appl.Phy
s., 68 (1990) p.4571-4759) 。近年、この現象を利用
して、「微粒子型」の磁性薄膜を形成する手法が広く研
究されている。面内磁気記録および垂直磁気記録のどち
らの磁気記録方式においても、高記録密度化を図るため
には、磁気的な微粒子構造をより微細かつ均一に分散さ
せることが必要である。
C currently used for in-plane magnetic recording
In a so-called CoCr-based alloy thin film such as oCrTa, CoCrPt-based thin film, or CoCr for perpendicular magnetic recording, it has been found that a composition separation phenomenon that separates a Co-rich ferromagnetic region and a Cr-rich nonmagnetic region occurs. (Y. Maeda and K. Takahasi: J. Appl.Phy
s., 68 (1990) p.4571-4759). In recent years, a method of forming a “fine particle type” magnetic thin film by utilizing this phenomenon has been widely studied. In both the in-plane magnetic recording and the perpendicular magnetic recording, in order to achieve high recording density, it is necessary to disperse the magnetic fine particle structure finer and more uniformly.

【0004】従来上記に述べたように、CoCr系合金
薄膜では、組成分離構造が生じうることが知られている
が、この組成分離現象は統計的な現象であるので、すべ
ての強磁性領域を磁気的に孤立化させることは困難であ
った。
Conventionally, as described above, it is known that a composition separation structure can occur in a CoCr alloy thin film, but since this composition separation phenomenon is a statistical phenomenon, all the ferromagnetic regions are covered. It was difficult to isolate magnetically.

【0005】最近、上記の面内型合金薄膜においては、
ヘッドオンドメインの形成による磁気的な揺らぎによる
媒体ノイズが媒体開発の大きな課題となっている。この
ヘッドオンドメインによるノイズ低減には、対抗する磁
化による静磁エネルギーを低減する手法が有効である。
この静磁エネルギーの低減には、膜厚を減少させる手法
が有効であり、現在、主に、この膜厚を低減して媒体ノ
イズを低減する手法がとられている。このため、現在、
面内磁気記録用の媒体では膜厚が20〜30nm程度が
主に研究されている。一方、垂直磁気記録媒体でも、ヘ
ッド磁場の垂直成分を媒体に有効に作用させて垂直磁気
記録方式を実現させるため、磁気記録媒体は50nm程
度が研究されている。
Recently, in the above in-plane type alloy thin film,
Medium noise due to magnetic fluctuation due to formation of head-on domain is a major issue in medium development. To reduce noise due to this head-on domain, a method of reducing magnetostatic energy due to opposing magnetization is effective.
A method of reducing the film thickness is effective for reducing the magnetostatic energy, and at present, a method of reducing the film thickness to reduce the medium noise is mainly used. For this reason, currently
In the in-plane magnetic recording medium, a film thickness of about 20 to 30 nm is mainly studied. On the other hand, even in the perpendicular magnetic recording medium, a magnetic recording medium of about 50 nm has been studied in order to realize the perpendicular magnetic recording system by effectively acting the perpendicular component of the head magnetic field on the medium.

【0006】高密度の磁気記録状態では、媒体から発生
する磁界は媒体鉛直方向に急激に減少するため、この媒
体から発生する磁界を検出して再生を行う磁気ヘッドは
ヘッド・媒体用の距離を著しく低減せざるをえない状況
になっている。現在、磁気ヘットの浮上量は1000Å
以下が実現されるようになってきた。この様な、著しく
ヘッド浮上量が低減された状態では、ヘッド・媒体間の
トライポロジー特性が磁気ディスク装置の信頼性を定め
る決定的な要因になっている。上記に述べたように、近
年の薄膜磁性媒体では、膜厚を低減せざるを得ないが、
このような場合、膜の機械強度を十分向上させることが
できないため、DLC(Diamond Like Carbon) 、SiO
2 などの保護膜を磁性薄膜上に形成している。この保護
膜はヘット・媒体間の距離を実質上増大させるため、高
記録密度化には阻害要因となっている。
In a high-density magnetic recording state, the magnetic field generated from the medium sharply decreases in the vertical direction of the medium. Therefore, the magnetic head for reproducing by detecting the magnetic field generated from the medium has a head-medium distance. The situation is inevitably reduced. Currently, the flying height of the magnetic head is 1000Å
The following has come to be realized. In such a state in which the flying height of the head is significantly reduced, the tribological characteristic between the head and the medium is a decisive factor that determines the reliability of the magnetic disk device. As described above, in thin film magnetic media of recent years, the film thickness must be reduced,
In such a case, since the mechanical strength of the film cannot be sufficiently improved, DLC (Diamond Like Carbon), SiO
A protective film such as 2 is formed on the magnetic thin film. Since this protective film substantially increases the distance between the head and the medium, it is an obstacle to higher recording density.

【0007】以上述べたきたように、従来の薄膜媒体で
は下記にまとめるような欠点を有していた。 1)ノイズ低減に有効な磁気的絶縁を図るのが困難であ
る。 2)膜厚低減に伴い、金属磁性薄膜の機械強度を向上さ
せることが困難である。 3)磁性膜の保護のため、保護膜を形成せざるをえず、
この保護膜が、ヘッド・媒体間の距離を増大させ、高密
度化の阻害要因となっている。
As described above, the conventional thin film medium has the following drawbacks. 1) It is difficult to achieve magnetic insulation effective for noise reduction. 2) As the film thickness is reduced, it is difficult to improve the mechanical strength of the metal magnetic thin film. 3) In order to protect the magnetic film, there is no choice but to form a protective film.
This protective film increases the distance between the head and the medium and is an obstacle to higher density.

【0008】[0008]

【発明が解決しようとする課題】本発明は上記の欠点を
改善するために提案されたもので、その目的は高い媒体
SN比を実現するために必須な極めて微細な微粒子型膜
構造を有し、さらに、保護膜を必要とないしか、あるい
は、極めて薄い保護膜のみで十分な耐久性が得られる、
高記録密度用の磁気記録薄膜媒体を提供することにあ
る。
The present invention has been proposed in order to improve the above-mentioned drawbacks, and its purpose is to have an extremely fine particle type film structure essential for realizing a high medium to noise ratio. , Furthermore, no protective film is required, or sufficient durability can be obtained with only an extremely thin protective film,
An object is to provide a magnetic recording thin film medium for high recording density.

【0009】[0009]

【課題を解決するための手段】上記課題を解決するた
め、本発明は、カーボンを主成分とする薄膜中に、コバ
ルト、鉄、ニッケル、あるいは、これらの合金からなる
強磁性微粒子が分散された構造を有する磁気記録用薄膜
媒体、あるいは、カーボンを主成分とする薄膜中に、こ
れらの元素を主成分とする合金強磁性微粒子が分散され
た構造を有することを特徴とする。このような構造の磁
性薄膜媒体を作製するためには、スパッタリング法、真
空蒸着法、CVD法が有効である。また、金属微粒子を
埋め込むアモルファス膜の主成分はカーボンであるが、
このアモルファス膜に水素、Si、SiO2β等の元素
が含まれていても、上記の課題を解決可能である。
In order to solve the above problems, according to the present invention, ferromagnetic fine particles made of cobalt, iron, nickel or an alloy thereof are dispersed in a thin film containing carbon as a main component. A magnetic recording thin film medium having a structure or a thin film containing carbon as a main component has a structure in which alloy ferromagnetic fine particles containing these elements as a main component are dispersed. The sputtering method, the vacuum deposition method, and the CVD method are effective for producing the magnetic thin film medium having such a structure. Although the main component of the amorphous film in which the metal fine particles are embedded is carbon,
Even if the amorphous film contains elements such as hydrogen, Si, and SiO2β, the above problems can be solved.

【0010】本発明においては、従来、保護膜として用
いられてきた、カーボンを主体とする膜中に磁性微粒子
を埋め込むため、磁気的な絶縁が完全に行えるだけでは
なく、保護膜がなくても媒体としての耐久性に優れてい
る。
In the present invention, since magnetic fine particles are embedded in a film mainly composed of carbon, which has been conventionally used as a protective film, not only magnetic insulation can be completely achieved but also a protective film is not required. It has excellent durability as a medium.

【0011】[0011]

【発明の実施の形態】本発明の特徴とする点は、カーボ
ンを主成分とする薄膜中に、コバルト、鉄、ニッケル、
あるいは、これらの合金からなる強磁性微粒子が分散さ
れた構造を有する磁気記録用薄膜媒体、あるいは、カー
ボンを主成分とする薄膜中に、これらの元素を主成分と
する合金強磁性微粒子が分散された構造を有することを
特徴とする磁気記録用の薄膜媒体である。
BEST MODE FOR CARRYING OUT THE INVENTION The feature of the present invention is that cobalt, iron, nickel,
Alternatively, alloy ferromagnetic fine particles containing these elements as main components are dispersed in a magnetic recording thin film medium having a structure in which ferromagnetic fine particles containing these alloys are dispersed, or in a thin film containing carbon as the main component. It is a thin film medium for magnetic recording characterized by having a different structure.

【0012】(実施例)膜作製方法としてRFスパッタ
法を採用した。ターゲットには、カーボンを用い、この
上にCo、Fe、Niのペレットを面積比で3%となる
ように配置して膜を形成した。スパッタガスには純Ar
ガスを用いた。後者の場合、CH4 の流量はArの流量
の20%となるようにした。基板温度は200℃とし、
基板にはガラス基板を用いた。RFパワーは200Wで
ある。500ÅのDLC複合膜を作製した。 表1にVSMで測定して磁気特性をまとめる。飽和磁化
はCo、Fe、Ni、Co+Fe(Co/Fe=2)を
ドープした試料でそれぞれ、380、420、220、
400emu/ccが得られ、CoとFeを用いた場合
に比較的大きな値が得られた。また、保磁力は1000
Oe程度が得られた。CoをドープしたDLC膜の表面
粗さをAFM(Atomic Force Microscopy)で評価した結
果を図1に示す。Rmax は10Å程度であり、著しく平
坦な表面が得られた。
(Example) An RF sputtering method was adopted as a film forming method. Carbon was used as a target, and Co, Fe, and Ni pellets were arranged on the target so that the area ratio was 3% to form a film. Pure Ar for sputter gas
Gas was used. In the latter case, the CH 4 flow rate was set to 20% of the Ar flow rate. The substrate temperature is 200 ° C,
A glass substrate was used as the substrate. RF power is 200W. A 500Å DLC composite film was prepared. Table 1 summarizes the magnetic characteristics measured by VSM. The saturation magnetizations of the samples doped with Co, Fe, Ni, and Co + Fe (Co / Fe = 2) are 380, 420, 220, respectively.
400 emu / cc was obtained, and a relatively large value was obtained when Co and Fe were used. The coercive force is 1000
A degree of Oe was obtained. The results of evaluating the surface roughness of the DLC film doped with Co by AFM (Atomic Force Microscopy) are shown in FIG. R max was about 10Å, and a remarkably flat surface was obtained.

【0013】[0013]

【発明の効果】以上、説明してきたように、本発明によ
れば、メタルドープ膜により、磁気的な絶縁に優れた孤
立した磁性微粒子を、従来、保護膜として使用していた
DLC膜中に分散させることができ、高記録密度に適し
た磁気記録媒体を形成することが可能となる効果を有す
る。
As described above, according to the present invention, the isolated magnetic fine particles excellent in magnetic insulation due to the metal-doped film are formed in the DLC film which has been conventionally used as a protective film. There is an effect that it can be dispersed and a magnetic recording medium suitable for high recording density can be formed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のCoをドープしたDLC膜の表面粗さ
を測定した結果を示す。
FIG. 1 shows the results of measuring the surface roughness of a Co-doped DLC film of the present invention.

フロントページの続き (72)発明者 安藤 康子 東京都千代田区内幸町1丁目1番6号 日 本電信電話株式会社内Continuation of the front page (72) Inventor Yasuko Ando 1-1-6 Uchisaiwaicho, Chiyoda-ku, Tokyo Nihon Telegraph and Telephone Corporation

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 カーボンを主成分とする薄膜中に、コバ
ルト、鉄、ニッケル、あるいは、これらの合金からなる
強磁性微粒子が分散された構造を有する磁気記録媒体。
1. A magnetic recording medium having a structure in which ferromagnetic fine particles made of cobalt, iron, nickel, or an alloy thereof are dispersed in a thin film containing carbon as a main component.
【請求項2】 カーボンを主成分とする薄膜中に、コバ
ルト、鉄、ニッケルを主成分とする合金強磁性微粒子が
分散された構造を有することを特徴とする磁気記録媒
体。
2. A magnetic recording medium having a structure in which alloy ferromagnetic fine particles containing cobalt, iron or nickel as a main component are dispersed in a thin film containing carbon as a main component.
JP24378595A 1995-08-28 1995-08-28 Magnetic recording medium Pending JPH0963036A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24378595A JPH0963036A (en) 1995-08-28 1995-08-28 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24378595A JPH0963036A (en) 1995-08-28 1995-08-28 Magnetic recording medium

Publications (1)

Publication Number Publication Date
JPH0963036A true JPH0963036A (en) 1997-03-07

Family

ID=17108935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24378595A Pending JPH0963036A (en) 1995-08-28 1995-08-28 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JPH0963036A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6146761A (en) * 1997-09-16 2000-11-14 Alps Electric Co., Ltd. Functional particle-dispersed thin film, granular magnetic thin film and production processes thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6146761A (en) * 1997-09-16 2000-11-14 Alps Electric Co., Ltd. Functional particle-dispersed thin film, granular magnetic thin film and production processes thereof

Similar Documents

Publication Publication Date Title
JP5401069B2 (en) Perpendicular magnetic recording medium
US8603650B2 (en) Perpendicular magnetic recording disk and manufacturing method thereof
CN1211784C (en) Magnetic medium with covered ferromagnetic material for improving thermal stability
US20060147759A1 (en) Perpendicular magnetic recording media
JPWO2007114402A1 (en) Perpendicular magnetic recording disk and manufacturing method thereof
JP2012009086A (en) Perpendicular magnetic recording medium and method for manufacturing the same
WO2007074585A1 (en) Magnetic recording medium and magnetic recording and reproducing device using the magnetic recording medium
JP2006268972A (en) Perpendicular magnetic recording disk and its manufacturing method
JP2007200548A (en) Perpendicular magnetic recording disk
JP3786453B2 (en) Magnetic recording medium and magnetic recording / reproducing apparatus
JP2003085727A (en) Magnetic recording medium and magnetic memory device
KR20080052376A (en) Perpendicular magnetic recording medium with multilayer recording structure including intergranular exchange enhancement layer
JPH0573880A (en) Magnetic recording medium and manufacture thereof
JP4857232B2 (en) Method for manufacturing magnetic recording medium
US6809901B2 (en) Low moment material for magnetic recording head write pole
JP2004227618A (en) Disk substrate for perpendicular magnetic recording medium, perpendicular magnetic recording disk and their manufacturing method
JP2004227701A (en) Vertical magnetic recording medium
JP3173490B2 (en) Perpendicular magnetic recording media
JPH0963036A (en) Magnetic recording medium
JP2009187608A (en) Perpendicular magnetic recording patterned medium and magnetic recording and reproducing device
JP2007102833A (en) Perpendicular magnetic recording medium
JP3308239B2 (en) Perpendicular magnetic recording medium and magnetic recording / reproducing device
KR100374794B1 (en) Perpendicular magnetic recording media
JP4389381B2 (en) Magnetic recording medium and magnetic recording apparatus
JP2004273046A (en) Disk substrate for perpendicular magnetic recording medium and perpendicular magnetic recording disk