JPH0961123A - Watermarked paper making measuring device - Google Patents

Watermarked paper making measuring device

Info

Publication number
JPH0961123A
JPH0961123A JP25437895A JP25437895A JPH0961123A JP H0961123 A JPH0961123 A JP H0961123A JP 25437895 A JP25437895 A JP 25437895A JP 25437895 A JP25437895 A JP 25437895A JP H0961123 A JPH0961123 A JP H0961123A
Authority
JP
Japan
Prior art keywords
image
marker
coordinates
processing
image information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25437895A
Other languages
Japanese (ja)
Inventor
Katsuo Yamada
克夫 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MEC Co Ltd
Original Assignee
MEC Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MEC Co Ltd filed Critical MEC Co Ltd
Priority to JP25437895A priority Critical patent/JPH0961123A/en
Publication of JPH0961123A publication Critical patent/JPH0961123A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To stably and accurately measure a watermarked paper even from an unclear image information by performing digital processing of the image information of a specific visual field of a paper to be inspected with a watermark arranged, and measuring, the projection coordinates, etc., of the short side of the marker. SOLUTION: An image pick-up part 1 picks up the image of a specific visual field of a paper to be inspected by a plurality of CCD cameras of a random shutter according to the arrival signal of a paper to be inspected from a photo sensor part 3. An image processing part 2 converts each picked-up image information to m-bit digital information, and measures and processes a watermark. Namely, a camera angle is set so that the arrangement direction of picked-up image matches the reference direction of the watermark and the image information is subjected to gray-level projection processing. For example, in the case when the marker direction is in parallel with the row direction, the short-side axis coordinates of the marker are obtained by referring to the gray-level information, and the projection coordinates of the short side are measured, thus achieving a stable and accurate measurement even from the marker image information with some defects.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、スカシ製紙の印刷用
紙上にスカシ作法により配置された、スカシマーカー測
定装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a squash marker measuring device which is arranged on a printing paper of squash paper by a squashing method.

【0002】[0002]

【従来の技術】従来のすかし作法により配置されたマー
カー測定を自動計測する事は、従来の画像処理装置で
は、コントラストの少ない画像であること、撮像画像信
号としては、欠陥画像になることも多く、正確にしかも
高速に計測することは非常に困難で、その検定には多数
の人手を必要とし、かつ正確に計測する事が困難であっ
た。
2. Description of the Related Art Automatically measuring markers arranged by a conventional watermarking method may result in an image with low contrast in a conventional image processing apparatus, and a captured image signal may be a defective image. It was very difficult to make many measurements accurately and at high speed, and many tests were required for the test, and it was difficult to make accurate measurements.

【0003】[0003]

【発明が解決しようとする課題】この様に、かなり不鮮
明な画像情報を、いかに、高速にかつ、正確に計測する
かは、例えば紙幣の印刷の如く高級な印刷製品を製作す
る上で、不可欠な要件で嘱望されていた。
As described above, how to measure considerably unclear image information at high speed and accurately is indispensable for producing high-quality printed products such as printing of banknotes. Was desired due to various requirements.

【0004】[0004]

【課題を解決するための手段】上記目標を達成するた
め、本発明に係わる測定装置は、検査対象用紙のスカシ
マーカーの配置された所定視野をCCDカメラにより撮
像し、該画像情報をディジタル処理する画像処理部から
構成して、濃度投影法にて、マーカー短辺の投影座標や
外形線の座標を計測するものである(以下、1次元計測
と称する)。更に、必要な場合は、この結果を元に、画
像情報の処理範囲を絞り込んで、長辺投影座標の計測を
する。これらの計測手段を複数配置して、被検査用紙の
複数の計測箇所を同時に平行して計測して、それらの計
測結果を統合処理する。
In order to achieve the above-mentioned object, a measuring apparatus according to the present invention images a predetermined field of view of a sheet to be inspected in which a skew marker is arranged with a CCD camera and digitally processes the image information. The image processing unit is configured to measure the projected coordinates of the short side of the marker and the coordinates of the outline by the density projection method (hereinafter referred to as one-dimensional measurement). Further, if necessary, the processing range of the image information is narrowed down based on this result, and the long-side projected coordinates are measured. By arranging a plurality of these measuring means, a plurality of measurement points on the sheet to be inspected are simultaneously measured in parallel, and the measurement results are integrated.

【0005】[0005]

【作用】スカシの画像情報は、スカシ特有の不確定情報
が多分に混在するが、この投影法の採用により、スカシ
特有情報量の多さ、即ち非該当部分と、スカシと思われ
る情報の量率により、検出することができる。このこと
は、スカシ情報が斑に欠陥しているとき、分断している
様なときにも判定可能である。長辺投影座標の計測が必
要な場合、あらかじめ、同短辺投影座標について1次元
計測を行い、画像情報の範囲を限定して処理する事は、
大幅な処理時間の短縮になる。また、個別の計測エリア
は、製紙サイズと較べて大変微少なので、製紙の全容把
握するためには、計測点相互間の算定により製紙の広域
計測ができる。
[Function] In the image information of Squash, uncertain information peculiar to Squash is mixed, but by adopting this projection method, the amount of information peculiar to Squash is large, that is, the non-corresponding part and the amount of information which is considered to be Sukasi It can be detected by the rate. This can be determined even when the scan information is defective in spots, or even when it is divided. If measurement of the long side projection coordinates is necessary, one-dimensional measurement of the same short side projection coordinates is performed in advance, and processing by limiting the range of image information is performed.
Significant reduction in processing time. In addition, since the individual measurement area is very small compared to the papermaking size, in order to grasp the full range of papermaking, it is possible to measure the papermaking over a wide area by calculating between the measurement points.

【0006】[0006]

【実施例】以下、本発明についての実施例について、図
面を参照しながら詳述する。本発明に係わる測定装置
は、図1に概略的に示すように、複数のCCDカメラ信
号が同時入力出来る画像撮像部1、複数の画像情報を平
行して画像処理出来る画像処理部2、検体の検出をする
ホトセンサー部3、カメラ撮像情報あるいは処理画面等
の表示をする表示器4、各部の制御や統合処理等をする
ホストコンピュータ5から構成されている。
Embodiments of the present invention will now be described in detail with reference to the drawings. As shown schematically in FIG. 1, the measuring apparatus according to the present invention includes an image capturing section 1 capable of simultaneously inputting a plurality of CCD camera signals, an image processing section 2 capable of parallelly image-processing a plurality of image information, and a sample measuring device. It is composed of a photo sensor unit 3 for detection, a display unit 4 for displaying camera image information or a processing screen, and a host computer 5 for controlling each unit and performing an integrated process.

【0007】図2は、1例として、4コーナー縦横にス
カシマーカーがある製紙で、その4コーナー全て、計測
点とした場合について、求められる長さをXn、Ynと
して記しています。なお本図では、スカシマーカーの計
測は、短辺投影座標値のみを採用しています。本図で、
カメラ1〜4は視野A〜Dを受け持つものとします。よ
って、カメラ1はX1とY1、カメラ2はX2とY2,
カメラ3はX3とT3、かめら4はX4とY4の計測を
担い、同データーよりX5とX6、Y5とY6がホスト
コンピュータにて算定されます。
As an example, FIG. 2 shows the required lengths as Xn and Yn in the case of paper making with square markers on four corners in all directions and measuring points at all four corners. In this figure, only the short side projected coordinate value is used for measuring the squash marker. In this figure,
Cameras 1 to 4 are responsible for fields of view A to D. Therefore, camera 1 has X1 and Y1, camera 2 has X2 and Y2.
The camera 3 is responsible for measuring X3 and T3, and the camera 4 is responsible for measuring X4 and Y4. From the same data, X5 and X6 and Y5 and Y6 are calculated by the host computer.

【0008】図1に基ずき動作手順を説明する。被検査
用紙はベルトコンベアー等の搬送手段にて、所定場所に
搬送されます。所定の場所に被検査用紙が達するとホト
センサー信号が画像撮像部に検査品の到来を通知し、ラ
ンダムシャッターCCDエリアカメラにて、複数のCC
Dカメラは所定視野を撮像します。マーカー情報をより
良好にサンプルするため、搬送ベルトは黒或いは暗い色
にする事、用紙を搬送ベルトから浮かないよう留意する
ことが要請される。
The operation procedure based on FIG. 1 will be described. The paper to be inspected is conveyed to a specified place by a conveyor such as a belt conveyor. When the sheet to be inspected reaches a predetermined place, a photo sensor signal notifies the image pickup unit of the arrival of the inspected item, and a random shutter CCD area camera allows a plurality of CC
The D camera captures a given field of view. In order to sample the marker information better, it is required that the conveyor belt be black or a dark color, and care should be taken not to lift the paper from the conveyor belt.

【0009】それぞれ撮像された画像情報は、m(mは
整数)ビットのディジタル変換をされて、画像演算部に
て、スカシマーカー計測処理が行われる。本機の場合、
1画面当たりのの処理時間は、約50msですので、計
測周期が100ms以内の場合は、4画面同時処理の画
像演算部になります。例えば、計測周期が200ms以
上の場合は、1画面処理の画像演算部で間に合うことに
なります。
The image information of each image is digitally converted into m (m is an integer) bits, and a squash marker measurement process is performed in the image calculation unit. In the case of this machine,
The processing time per screen is about 50 ms, so if the measurement cycle is within 100 ms, it will be an image processing unit for simultaneous processing of four screens. For example, if the measurement cycle is 200 ms or more, the image processing unit for single-screen processing will be in time.

【0011】図4に1画像演算部について、その概念的
構成を示す。図に於いて、IPは1994年株式会社イ
ーゼル小石川認識技術研究所発表のSALAをベースに
構成したものが考えられる。同IPには、画像入力3系
統があり、行遅延入力して、2次元の局所空間フィルタ
ーを構成しています。それにワーク用バッファーメモリ
ー複数枚、画像入出I/F、CPUI/F、その他から
構成されている。同IPは300もの画像処理機能があ
り、バッファーメモリ所定空間の画像信号をラスター状
に入力させることにより、所望の処理結果が得られるも
のです。
FIG. 4 shows a conceptual configuration of the one-image calculation unit. In the figure, it can be considered that the IP is based on SALA announced by Easel Co., Ltd. Koishikawa Co., Ltd. in 1994. The IP has three image input systems, and row delay input is used to construct a two-dimensional local spatial filter. In addition, it is composed of a plurality of work buffer memories, an image input / output I / F, a CPU I / F, and others. The IP has as many as 300 image processing functions, and the desired processing result can be obtained by inputting the image signals in the predetermined space of the buffer memory in a raster pattern.

【0012】画像演算部に転送された画像情報は、バッ
ファーメモリーに1時記憶され、本発明の主旨であるス
カシマーカー計測作業が実行される。スカシマーカーは
製成の所以、量産品でも、各製品画一的でなく、個々非
常に出来具合がバラつくものであるが設定場所が決まっ
ていること、製紙自体の基本の外形が特定されているこ
とから、これらの特徴を加味して計測手法が考案され
た。
The image information transferred to the image calculation section is temporarily stored in the buffer memory, and the squash marker measuring operation which is the gist of the present invention is executed. Since the production of Sukasima markers is not uniform for each product even in mass-produced products, the quality of each product varies greatly, but the setting location is fixed, and the basic outline of the paper manufacturing itself is specified. Therefore, the measurement method was devised considering these characteristics.

【0013】その1は、スカシマーカーの基準とする方
向が、撮像画像配列方向に一致するように、CCDカメ
ラの角度を設定しておきます。画像演算部では、斯様に
して検出された画像情報に関し、濃度投影処理を実行し
ます。図4で、スカシマーカー方向が列方向に平行なる
場合、列軸方向への濃度投影を実行して得られた濃度分
布図を示す。濃度情報を参照して、マーカーの短辺中心
はXp(短辺は幅が非常に小さい)にあることが認識で
きる。この濃度投影法により、従来の連結性から判定す
る方法では、1部情報の欠落があった場合検出ミスにつ
ながったのであるが、情報量が大幅に欠落しない限り、
安定に検出できるようになった。また、同分布状況から
スカシマーカーの傾斜状況を知る事もできる。
First, the angle of the CCD camera is set so that the reference direction of the squash marker coincides with the arrangement direction of the captured image. The image calculation unit performs density projection processing on the image information detected in this way. FIG. 4 shows a density distribution chart obtained by executing density projection in the column axis direction when the skew marker direction is parallel to the column direction. By referring to the density information, it can be recognized that the center of the short side of the marker is at Xp (the width of the short side is very small). According to the conventional method of judging from connectivity by this density projection method, if there is a missing part of information, it leads to a detection error.
It can be detected stably. Also, it is possible to know the slope condition of the skew marker from the same distribution condition.

【0014】また、前述したように、スカシマーカーの
もう1つの問題点として、スカシ画像情報が小さい即ち
コントラストが少ない場合が数多く発生する。その場合
単純に、前述のごとき濃度投影手段では、照明ムラ、そ
の他の画像情報により投影データから明解にマーカー座
標の認識が出来ない。よって、その欠陥を補償するた
め、元画像に微分処理してから、、濃度投影する事も考
えられる。微分処理とは、局所空間内で、中央画素と特
定周辺画素値との差分に応じた出力をさせる処理であ
る。この処理により、例えば照明ムラ、シェーディング
等のなだらかに変化する情報を排除して、変化分につい
ての情報を得られる。
Further, as described above, as another problem of the skew marker, there are many cases where the skew image information is small, that is, the contrast is small. In that case, simply, the density projection means as described above cannot clearly recognize the marker coordinates from the projection data due to uneven illumination and other image information. Therefore, in order to compensate for the defect, it is possible to perform the density projection after performing the differential processing on the original image. The differentiating process is a process of outputting according to the difference between the central pixel and the specific peripheral pixel value in the local space. By this processing, for example, information that changes gently such as uneven illumination and shading can be excluded, and information about the change can be obtained.

【0015】次に図4に於いて、マーカーの長辺座標の
測定法について説明すると、マーカーの短辺座標の前後
Xp±u間に処理エリアを限定して、行軸座標を求め
る。この場合に於いでは、検定エリアを絞り込んである
ので、その度合いにより、IPによる濃度投影処理か、
CPUによる同様処理かのいずれでも、検定領域が限定
されているので処理時間は早いが、マーカー情報に欠陥
があると、正確な計測は困難である。ここでは、スカシ
マーカ方向が列方向の場合について説明したが、行方向
でも同様にして、まず、短辺投影座標を求めて、処理エ
リアを制限して、求めることに変わりはない。
Next, referring to FIG. 4, the method of measuring the long side coordinates of the marker will be described. The processing area is limited to Xp ± u before and after the short side coordinates of the marker to determine the row axis coordinates. In this case, since the verification area is narrowed down, depending on the degree, the density projection processing by IP,
In any of the same processing by the CPU, the processing time is short because the verification area is limited, but if the marker information is defective, accurate measurement is difficult. Here, the case where the squash marker direction is the column direction has been described, but similarly in the row direction, first, the short-side projected coordinates are first obtained, and the processing area is limited to obtain the same.

【0016】さて、スカシマーカーの方向が標準即ち画
像情報配列方向と平行性が失われると、短辺の濃度投影
分布は、幅広になってくる。この幅を検定して非平行、
即ち製紙に傾きか、変形その他の以上があるとの目安は
できる。製紙の外形線の計測については、特別問題はな
いので、計測方法について特に主張する事はないが、ス
カシマーカー計測に、効率的に組み合わせて計測され
る。
When the direction of the squash marker loses parallelism with the standard, that is, the image information arrangement direction, the density projection distribution on the short side becomes wide. This width is tested and non-parallel,
That is, it can be estimated that the papermaking has an inclination, deformation, or other factors. Since there is no special problem regarding the measurement of the outline of papermaking, there is no particular claim about the measurement method, but the measurement is efficiently combined with the squash marker measurement.

【0017】斯様にして、複数の計測点について、それ
ぞれの処理系が計測したデーターはホストコンピュータ
にて統合処理され、製紙計測点間の寸法が算出され、所
用の処理に活用される。
In this way, the data measured by the respective processing systems at a plurality of measurement points are integrated by the host computer, the dimensions between the paper making measurement points are calculated, and the data are utilized for the required processing.

【0018】[0018]

【発明の効果】以上説明したように、本発明によれば、
スカシマーカー撮像画像が、画像配列方向に平行になる
よう、ランダムシャッターCCDカメラで撮像し、同マ
ーカーの濃度投影手段を主とする処理により、多少の欠
陥のあるマーカー画像情報からでも、マーカー短点座標
を測定出来るようになった。又、複数箇所の多重処理に
より、精度よく、製紙全体的計測が出来るので、製紙の
歪み品の排除、位置合わせ手段に大いに寄与する。本装
置は、簡単な手法により、安定して、しかも極めて高速
に測定できるものである。本製品での、測定時間は50
ms程度である。
As described above, according to the present invention,
Even if the marker image information has some defects, the short mark marker image is captured by a random shutter CCD camera so that the captured image is parallel to the image array direction and the density projection means of the marker is mainly used. You can now measure coordinates. In addition, since multiple processing at a plurality of locations enables accurate measurement of the entire papermaking process, it greatly contributes to eliminating distorted papermaking products and aligning means. This device can perform stable and extremely high-speed measurement by a simple method. With this product, the measurement time is 50
ms.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係わるシングル、スカシマーカー測定
装置1構成例を概略的に示す図である。
FIG. 1 is a diagram schematically showing a configuration example of a single or squash marker measuring device 1 according to the present invention.

【図2】スカシマーカー製紙の1計測例を示す図であ
る。
FIG. 2 is a diagram showing one measurement example of squash marker papermaking.

【図2】画像演算部についての概念的構成例を示す図で
ある。
FIG. 2 is a diagram illustrating a conceptual configuration example of an image calculation unit.

【図3】列方向スカシマーカー画像の処理例を示す図で
ある。
FIG. 3 is a diagram showing a processing example of a column direction scan marker image.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成7年12月25日[Submission date] December 25, 1995

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図面の簡単な説明[Correction target item name] Brief description of drawings

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係わるスカシマーカー測定装置の1構
成例を概略的に示す図である。
FIG. 1 is a diagram schematically showing one configuration example of a squash marker measuring device according to the present invention.

【図2】スカシマーカー製紙の1計測例を示す図であ
る。
FIG. 2 is a diagram showing one measurement example of squash marker papermaking.

【図3】画像演算部についての概念的構成例を示す図で
ある。
FIG. 3 is a diagram illustrating a conceptual configuration example of an image calculation unit.

【図4】列方向スカシマーカー画像の処理例を示す図で
ある。
FIG. 4 is a diagram showing a processing example of a column direction scan marker image.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】(イ)CCDカメラ複数入力の画像撮像部
1と、その画像をディジタル処理する画像処理部2と、
ホトセンサー部3と、表示器4と、ホストコンピュータ
5により構成される装置で、 (ロ)基準とする、スカシマーカーの方向と撮像画像の
配列方向が一致するよう、かつこれに平行する近傍外形
線を含めた適正な視野に設定して、 (ハ)被検定品についての、スカシマーカーの短辺軸座
標や外形線の座標の計測をなし、 (ニ)或いはこれに加え、画像情報の処理エリアを絞り
込んで、スカシマーカー長辺軸座標や外形線座標を計測
するもので、 (ホ)濃度投影手段により、短辺軸座標の測定では、特
有の欠落や不連続な撮像画像情報でも、安定して計測が
出来る特徴と、 (ヘ)長辺軸座標の測定では、同手段及び処理エリアの
限定により、濃度投影値に対するスカシマーカー情報比
の増加による安定判別効果と、処理量の減少に伴う処理
時間の短縮効果があることの特徴と、 (ト)被検体の複数箇所の、計測データーをホストコン
ピュータにより、統合処理して、複数計測点相互間計測
が出来る事を特徴とするスカシマーカー計測装置。
1. An image pickup unit 1 having a plurality of inputs of a CCD camera, and an image processing unit 2 for digitally processing the image.
A device including a photo sensor unit 3, a display unit 4, and a host computer 5, and (b) a reference outer shape in which the direction of the squash marker and the arrangement direction of the captured image are the same and are parallel to the reference direction. Set the proper field of view including the line, and (c) measure the coordinates of the short side axis of the squash marker and the coordinates of the outline of the DUT, and (d) or in addition, process image information. The area is narrowed down and the long side axis coordinates and outline line coordinates are measured. (E) By the density projection means, the short side axis coordinates are stable even with specific missing or discontinuous captured image information. (F) In the measurement of the long side axis coordinates, due to the same means and limitation of the processing area, the stability determination effect due to the increase in the ratio of the skew marker information to the density projection value and the decrease in the processing amount place A characteristic of a time-saving effect, and (g) a measurement function measuring device at a plurality of points of an object, which is integrated by a host computer and can be measured between a plurality of measuring points. .
JP25437895A 1995-08-28 1995-08-28 Watermarked paper making measuring device Pending JPH0961123A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25437895A JPH0961123A (en) 1995-08-28 1995-08-28 Watermarked paper making measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25437895A JPH0961123A (en) 1995-08-28 1995-08-28 Watermarked paper making measuring device

Publications (1)

Publication Number Publication Date
JPH0961123A true JPH0961123A (en) 1997-03-07

Family

ID=17264158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25437895A Pending JPH0961123A (en) 1995-08-28 1995-08-28 Watermarked paper making measuring device

Country Status (1)

Country Link
JP (1) JPH0961123A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000258132A (en) * 1999-03-05 2000-09-22 Printing Bureau Ministry Of Finance Japan Method and instrument for measuring expanding and contracting behavior of form
CN107907085A (en) * 2017-11-29 2018-04-13 无锡市汇鼎金属制管有限公司 A kind of metal tube processing length-measuring appliance

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000258132A (en) * 1999-03-05 2000-09-22 Printing Bureau Ministry Of Finance Japan Method and instrument for measuring expanding and contracting behavior of form
CN107907085A (en) * 2017-11-29 2018-04-13 无锡市汇鼎金属制管有限公司 A kind of metal tube processing length-measuring appliance

Similar Documents

Publication Publication Date Title
JP5044269B2 (en) Scanner-side heterogeneity correction method
JP6537376B2 (en) Image processing apparatus and image processing method
EP0477037B1 (en) A print evaluation apparatus
JPH0669219B2 (en) Image signal model representation method
JPH11211442A (en) Method and device for detecting defect of object surface
JPH0961123A (en) Watermarked paper making measuring device
JP2004170394A (en) Press plate inspection device and press plate inspection system
JP2011252886A (en) Inspection method for printed matter and inspection device therefor
JP7069436B2 (en) Image quality learning device, image quality judgment device, and image reading device
JPH06258226A (en) Appearance inspection method for tablet
JP2011112593A (en) Inspection method and inspection device of printed matter
JP3039704B2 (en) Printing evaluation method and printing evaluation device
JP3789751B2 (en) Image position inspection device
JPH09226098A (en) Print check method, device therefor and monitoring device for print check device
JP2876999B2 (en) Printing defect inspection equipment
JP3563797B2 (en) Image inspection method and apparatus
JP7300155B2 (en) Teaching device in solid preparation appearance inspection, and teaching method in solid preparation appearance inspection
JP6901774B2 (en) Test chart
JPS63316276A (en) Recognizing device
JPH11195121A (en) Device for evaluating picture and method therefor
JPS61194305A (en) Shape inspecting apparatus
JP3119376B2 (en) Printing evaluation method and printing evaluation device
JP2004264214A (en) Printed matter inspection device
JPH01269035A (en) Instrument for inspecting printed circuit board
JPH04339653A (en) Apparatus for inspecting printing fault

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040223

A131 Notification of reasons for refusal

Effective date: 20040525

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20041001

Free format text: JAPANESE INTERMEDIATE CODE: A02