JPH0961000A - Double effect absorption water cooler water heater - Google Patents

Double effect absorption water cooler water heater

Info

Publication number
JPH0961000A
JPH0961000A JP7213506A JP21350695A JPH0961000A JP H0961000 A JPH0961000 A JP H0961000A JP 7213506 A JP7213506 A JP 7213506A JP 21350695 A JP21350695 A JP 21350695A JP H0961000 A JPH0961000 A JP H0961000A
Authority
JP
Japan
Prior art keywords
temperature regenerator
pressure
flow rate
high temperature
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7213506A
Other languages
Japanese (ja)
Inventor
Ritsu Honma
間 立 本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP7213506A priority Critical patent/JPH0961000A/en
Publication of JPH0961000A publication Critical patent/JPH0961000A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

PROBLEM TO BE SOLVED: To perform stable operation even when the pressure fluctuation of an absorption solution system is high by providing a sensor to measure temperature or a pressure in a high temperature regenerator and a control means to regulate a flow rate of an absorption solution through control of a flow rate regulation means in response to the measuring result of a sensor. SOLUTION: A high temperature regenerator 1 is connected to a low temperature regenerator 2 through a first needle valve V1. Further, the low temperature regenerator 2 communicates with or is connected to a condenser 3 through a fourth needle valve V4. Moreover, the condenser 3 is connected to an absorber 5 and the absorber 5 is connected to the high temperature regenerator 1 through a second needle valve V2. Further, a pressure sensor 8 is connected to the high temperature regenerator 1 and the sensor 8 is connected respectively to first and second actuators 6 and 7. The first actuator 6 is connected to a fourth valve V4 and the second actuator 7 to the first and second valves V1 and V2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、高温再生器及び低
温再生器を具備する二重効用吸収冷温水機に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a double-effect absorption chiller / heater equipped with a high temperature regenerator and a low temperature regenerator.

【0002】[0002]

【従来の技術】作動媒体として臭化リチウム水溶液を用
いている従来からの吸収冷温水機においては、作動媒体
(以下、吸収溶液という)の物性上及び法規制上から機
内圧力は常に大気圧力以下で運転されていることは知ら
れている。
2. Description of the Related Art In a conventional absorption chiller-heater using an aqueous solution of lithium bromide as a working medium, the internal pressure is always lower than atmospheric pressure due to the physical properties of the working medium (hereinafter referred to as "absorption solution") and legal regulations. It is known to be driven in.

【0003】一方、吸収冷温水機は通常、機内構成要素
間の圧力差により吸収溶液が循環しているが、負荷変動
の場合にもその運転圧力は大気圧以内であり大きく変動
することがないので、固定オリフィス等により対処し、
様々な運転条件においても比較的安定した運転を実現す
る技術は公知である。
On the other hand, the absorption chiller-heater normally circulates the absorption solution due to the pressure difference between the components inside the machine, but even when the load changes, the operating pressure is within the atmospheric pressure and does not change greatly. So, deal with fixed orifices etc.
Techniques for achieving relatively stable operation under various operating conditions are known.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記の
技術においては、今後熱源機の高性能化を図る上で、従
来の臭化リチウムよりも作動範囲の広い次世代作動媒体
を用いる場合、媒体の物性上から熱源機の高性能化に大
きく寄与する作動条件は、機内圧力が大気圧を越える範
囲、すなわち最高でゲージ圧が1kg/cm2 Gでの運
転となる。そして、かかる高圧領域での運転では従来の
大気圧以下の運転と比較して、吸収溶液の物性上、温度
変化に対する圧力変化割合が急激に大きくなる傾向があ
る。
However, in the above technology, when a next-generation working medium having a wider working range than conventional lithium bromide is used in order to improve the performance of the heat source machine in the future, the medium From the viewpoint of physical properties, the operating condition that greatly contributes to the high performance of the heat source device is that the pressure inside the device exceeds the atmospheric pressure, that is, the maximum gauge pressure is 1 kg / cm 2 G. Then, in the operation in such a high pressure region, the pressure change ratio with respect to the temperature change tends to increase sharply in view of the physical properties of the absorbing solution, as compared with the conventional operation under atmospheric pressure.

【0005】すなわち、負荷変動時や起動時等、吸収溶
液の温度が急激に変化するような条件では、機内圧力が
大きく変動し、それに伴い、図6を参照して、例えば低
温再生器2と高温再生器1、吸収器5と高温再生器1等
の要素間の圧力差も急激に変動する。この圧力差の急激
な変化の主な原因は、冷却水温度に強く依存する低温再
生器2の圧力変動よりも運転条件に直接的に影響を受け
る高温再生器1の圧力変動である。
That is, under conditions where the temperature of the absorbing solution changes abruptly, such as when the load changes or when starting, the internal pressure of the machine changes greatly, and with this, referring to FIG. The pressure difference between the elements such as the high temperature regenerator 1 and the absorber 5 and the high temperature regenerator 1 also fluctuates rapidly. The main cause of this abrupt change in the pressure difference is the pressure fluctuation in the high temperature regenerator 1, which is directly influenced by the operating conditions, rather than the pressure fluctuation in the low temperature regenerator 2 which strongly depends on the cooling water temperature.

【0006】一方、従来の吸収冷温水機での吸収溶液の
循環動力は、低圧要素から高圧要素へはポンプ、高圧要
素から低圧要素へは構成要素間の圧力差であり、この圧
力差は要素間のオリフィス(11、12等)によって保
たれている。この方法は従来の様に圧力変動が小である
場合は有効であるが、高圧運転を想定した場合には吸収
溶液の温度変化にともなう圧力変動が大であるため、要
素間の圧力差変動も大となり吸収溶液の循環流動が不安
定となる。
On the other hand, the circulating power of the absorption solution in the conventional absorption chiller-heater is a pressure difference between the low pressure element to the high pressure element and a pressure difference between the high pressure element and the low pressure element. It is held by orifices (11, 12, etc.) in between. This method is effective when the pressure fluctuation is small as in the conventional method, but when the high pressure operation is assumed, the pressure fluctuation due to the temperature change of the absorbing solution is large, so that the pressure difference fluctuation between the elements also occurs. When it becomes large, the circulation flow of the absorbing solution becomes unstable.

【0007】それにより、冷暖房能力が不安定となるだ
けでなく、循環量の減少による高温再生器1の空焚きや
吸収溶液の急激な加熱による材質金属の腐食、さらには
冷媒蒸気経路への吸収溶液の混入等の問題が生ずる。
As a result, not only the cooling and heating capacity becomes unstable, but also the high temperature regenerator 1 is heated due to a decrease in the circulation amount and the material metal is corroded due to the rapid heating of the absorbing solution, and further the absorption into the refrigerant vapor path is caused. Problems such as solution mixing occur.

【0008】本発明は上述した従来技術の問題点に鑑み
て提案されたもので、吸収冷温水機の吸収溶液体系の圧
力変動が大きい場合でも安定した運転が出来る二重効用
吸収冷温水機を提供することを目的としている。
The present invention has been proposed in view of the above problems of the prior art, and provides a double-effect absorption chiller-heater capable of stable operation even when the pressure fluctuation of the absorption solution system of the absorption chiller-heater is large. It is intended to be provided.

【0009】[0009]

【課題を解決するための手段】本発明の二重効用吸収冷
温水機は、高温再生器及び低温再生器を具備する二重効
用吸収冷温水機において、高温再生器内の温度或は圧力
を測定するセンサと、吸収溶液の経路中に介装された流
量調整手段と、前記センサの測定結果に応答して流量調
整手段を制御して吸収溶液の流量を調整する制御手段、
とを含むことを特徴としている。
The double-effect absorption chiller-heater of the present invention is a double-effect absorption chiller-heater equipped with a high-temperature regenerator and a low-temperature regenerator. A sensor for measuring, a flow rate adjusting means interposed in the path of the absorbing solution, a control means for controlling the flow rate adjusting means in response to the measurement result of the sensor to adjust the flow rate of the absorbing solution,
And is characterized by including.

【0010】また本発明において、低温再生器から凝縮
器に連通する凝縮冷媒経路中に流量調整手段を介装し、
前記制御手段は、前記センサにより測定された高温再生
器の圧力に対応して低温再生器と凝縮器との間に介装さ
れた前記流量調整手段を制御しているのが好ましい。
Further, in the present invention, a flow rate adjusting means is provided in the condensed refrigerant path communicating from the low temperature regenerator to the condenser,
The control means preferably controls the flow rate adjusting means interposed between the low temperature regenerator and the condenser in response to the pressure of the high temperature regenerator measured by the sensor.

【0011】上述した様な構成を具備する本発明の二重
効用吸収冷温水機によれば、吸収溶液の作動範囲或は機
内圧力が大気圧を越える運転条件になった場合、高温再
生器及び低温再生器に流入し、そこから流出する吸収溶
液の量を流量調整手段、例えばニードルバルブ、により
所望の値に制御するので、安定した状態で冷温水機の運
転が出来る。
According to the double-effect absorption chiller-heater of the present invention having the above-mentioned structure, the high-temperature regenerator and the high-temperature regenerator are operated when the operating range of the absorption solution or the internal pressure of the machine exceeds the atmospheric pressure. Since the amount of the absorbing solution flowing into the low temperature regenerator and flowing out from the low temperature regenerator is controlled to a desired value by the flow rate adjusting means, for example, a needle valve, the chiller-heater can be operated in a stable state.

【0012】また、低温再生器と凝縮器との間に介装さ
れた前記流量調整手段であるニードルバルブを高温再生
器の圧力を検知して制御することにより、高温再生器の
圧力が急激に上昇した場合における冷媒蒸気の凝縮器へ
の「冷媒蒸気抜け」を防止する事が出来る。
Further, by detecting and controlling the pressure of the high temperature regenerator by controlling the needle valve which is the flow rate adjusting means interposed between the low temperature regenerator and the condenser, the pressure of the high temperature regenerator is rapidly increased. It is possible to prevent "refrigerant vapor escape" to the condenser of the refrigerant vapor when rising.

【0013】[0013]

【発明の実施の形態】以下、図面を参照して、本発明の
実施の形態を説明する。図において、従来技術と同じ機
能の部材には同じ符号を付して、重複説明は省略する。
Embodiments of the present invention will be described below with reference to the drawings. In the drawings, members having the same functions as those of the conventional technique are designated by the same reference numerals, and duplicate description will be omitted.

【0014】図1は本発明に係る二重効用吸収冷温水機
のシリーズフローの場合のブロック図を示し、高温再生
器1は第1のニードルバルブV1を介して低温再生器2
に接続している。また低温再生器2は、第4のニードル
バルブV4を介装している凝縮冷媒経路L23−1と、
冷媒蒸気経路L23−2、の2つの経路を介して凝縮器
3に連通或いは接続している。また凝縮器3は、凝縮冷
媒経路L34、蒸発器4及び冷媒蒸気経路L45を介し
て吸収器5に接続され、その吸収器5はポンプ19及び
第2のニードルバルブV2を介して、吸収溶液経路によ
って高温再生器1と接続されている。
FIG. 1 is a block diagram of a series flow of a double-effect absorption chiller-heater according to the present invention, in which a high temperature regenerator 1 is a low temperature regenerator 2 via a first needle valve V1.
Connected to Further, the low temperature regenerator 2 includes a condensed refrigerant passage L23-1 having a fourth needle valve V4,
The refrigerant vapor path L23-2 communicates with or is connected to the condenser 3 via two paths. Further, the condenser 3 is connected to the absorber 5 via the condensed refrigerant path L34, the evaporator 4 and the refrigerant vapor path L45, and the absorber 5 is connected via the pump 19 and the second needle valve V2 to the absorption solution path. Is connected to the high temperature regenerator 1.

【0015】高温再生器1と低温再生器2とは冷媒蒸気
経路で接続され、低温再生器2と吸収器5とは第2のオ
リフィス12を介して吸収溶液経路で接続され、蒸発器
4は蒸発せずに残った冷媒を循環するポンプ9を有する
経路を備えている。
The high temperature regenerator 1 and the low temperature regenerator 2 are connected by a refrigerant vapor path, the low temperature regenerator 2 and the absorber 5 are connected by an absorption solution path through a second orifice 12, and the evaporator 4 is connected. A path having a pump 9 that circulates the remaining refrigerant that has not evaporated is provided.

【0016】また、高温再生器1には圧力センサ8が接
続され、そのセンサ8は第1のアクチュエータ6と第2
のアクチュエータ7とにそれぞれ接続され、第1のアク
チュエータ6は第4のニードルバルブV4、第2のアク
チュエータ7は第1及び第2のニードルバルブV1、V
2にそれぞれ接続されている。
A pressure sensor 8 is connected to the high temperature regenerator 1, and the sensor 8 includes a first actuator 6 and a second actuator 6.
, And the second actuator 7 is connected to the first and second needle valves V1 and V2, respectively.
2 respectively.

【0017】次に図2を参照して、図1で示す実施形態
の作用について説明する。作動に際し、先ず圧力計8で
高温再生器1の圧力を検出する(ステップS1)。検出
した圧力より、各経路が所望の流量を確保するために必
要なバルブ開度を決定する(ステップS2)。ついで、
バルブ開度が決定された絞り量になっているか否か判断
する(ステップS3)。YESだったら戻り、NOの場
合はアクチュエータ7を作動させて(ステップS4)、
ステップS3に戻る。
Next, the operation of the embodiment shown in FIG. 1 will be described with reference to FIG. In operation, the pressure of the high temperature regenerator 1 is first detected by the pressure gauge 8 (step S1). Based on the detected pressure, each valve determines the valve opening required to secure a desired flow rate (step S2). Then,
It is determined whether or not the valve opening is the determined throttle amount (step S3). If YES, return, and if NO, actuate actuator 7 (step S4),
It returns to step S3.

【0018】また、図3を参照すると、圧力計8で、高
温再生器1の圧力を検出し(ステップS1)、検出した
圧力より、バルブV4の標準開度において、冷媒蒸気抜
けが起こるか否か判断する(ステップS2)。NO、す
なわち抜けない場合はアクチュエータ6を作動し、バル
ブV4を標準開度として戻り(ステップS3)、YES
だったら、即ち冷媒蒸気が抜ける状態であれば、アクチ
ュエータ6を作動し、バルブV4を高圧対応開度として
(ステップS4)戻り、制御を終わる。
Further, referring to FIG. 3, the pressure gauge 8 detects the pressure of the high temperature regenerator 1 (step S1), and whether or not refrigerant vapor escape occurs at the standard opening of the valve V4 from the detected pressure. It is determined (step S2). NO, that is, if it does not come out, the actuator 6 is operated and the valve V4 is returned to the standard opening (step S3), YES.
If so, that is, if the refrigerant vapor is discharged, the actuator 6 is operated, the valve V4 is set to a high-pressure compatible opening (step S4), and the control is ended.

【0019】図1−3で示す実施形態によれば、冷媒蒸
気の圧力範囲が大気圧を越えたり、或は、機内の圧力変
動が大きい場合であっても、正常に安定した運転が可能
である。
According to the embodiment shown in FIGS. 1-3, even when the pressure range of the refrigerant vapor exceeds the atmospheric pressure or the pressure fluctuation inside the machine is large, the normal and stable operation is possible. is there.

【0020】なお、上記の実施の形態は吸収溶液の圧力
範囲が大気圧を越える次世代作動媒体に限定されるもの
ではなく、従来の媒体においてもより安定した運転を確
保する事が出来、好ましい。
The above embodiment is not limited to the next-generation working medium in which the pressure range of the absorbing solution exceeds atmospheric pressure, and more stable operation can be ensured even in the conventional medium, which is preferable. .

【0021】図4は、本発明におけるパラレルフローの
二重効用吸収冷温水機の実施形態を示している。高温再
生器1から第1のニードルバルブV1を介して吸収溶液
経路で吸収器5に接続し、その第1のバルブV1の下流
側と低温再生器2とを第3のオリフィス13を介して接
続し、第2のニードルバルブV2の上流側と低温再生器
2とを第3のニードルバルブV3を介して接続してい
る。すなわち、パラレルフローであるため、高温再生器
1と低温再生器2をそれぞれ吸収器5と接続する経路を
設けているのである。また、第3のニードルバルブV3
を第2のアクチュエータ7に接続している。その他の構
成及び作用(或いは制御ルーチン)については、図4の
実施の形態は図2及び図3の実施の形態と同様である。
FIG. 4 shows an embodiment of a parallel-flow double-effect absorption chiller / heater according to the present invention. The high temperature regenerator 1 is connected to the absorber 5 via the first needle valve V1 in the absorption solution path, and the downstream side of the first valve V1 and the low temperature regenerator 2 are connected via the third orifice 13. Then, the upstream side of the second needle valve V2 and the low temperature regenerator 2 are connected via the third needle valve V3. That is, because of the parallel flow, the paths for connecting the high temperature regenerator 1 and the low temperature regenerator 2 to the absorber 5 are provided. Also, the third needle valve V3
Are connected to the second actuator 7. Regarding other configurations and operations (or control routines), the embodiment of FIG. 4 is similar to the embodiment of FIGS. 2 and 3.

【0022】図5はリバースフローの二重効用吸収冷温
水機の実施形態を示し、吸収器5からポンプ19を介し
て低温再生器2に至る吸収溶液経路が設けられている
点、低温再生器2と高温再生器1とをポンプ10及び第
2のニードルバルブV2で接続した点、を除きシリーズ
フローの実施の形態と同じであり、作用についても同様
である。但し、図5の実施形態では固定オリフィスを全
く使用していないので、所望の流量を最適値に維持する
ことが出来る利点がある。
FIG. 5 shows an embodiment of a reverse-flow double-effect absorption chiller-heater, in which an absorption solution path from the absorber 5 to the low-temperature regenerator 2 via the pump 19 is provided. 2 is the same as the embodiment of the series flow except that the pump 10 and the second needle valve V2 connect the high temperature regenerator 1 and the operation is also the same. However, in the embodiment of FIG. 5, since no fixed orifice is used at all, there is an advantage that a desired flow rate can be maintained at an optimum value.

【0023】[0023]

【発明の効果】本発明は上記のように構成されており、
以下の優れた効果を奏することができる。 (1) 高温再生器の圧力を検知して、高温再生器に流
出入する吸収溶液の流量をバルブにより制御している。 (2) パラレルフローの場合は高温再生器と低温再生
器に流入する吸収溶液の量をそれぞれバルブにより制御
している。 (3) 低温再生器と凝縮器との間の凝縮冷媒経路に高
温再生器の圧力を検知して作動するバルブを設け、高温
再生器の圧力が大幅に上昇しても冷媒蒸気抜けが生じな
いよう制御している。 (4) したがって、吸収冷温水機の安定した運転が確
保でき、大気圧を越える作動範囲を有する作動媒体の使
用が可能となる。
The present invention is configured as described above,
The following excellent effects can be achieved. (1) The pressure of the high temperature regenerator is detected and the flow rate of the absorbing solution flowing into and out of the high temperature regenerator is controlled by a valve. (2) In the case of parallel flow, the amount of absorbing solution flowing into the high temperature regenerator and the low temperature regenerator is controlled by valves. (3) A valve that operates by detecting the pressure of the high temperature regenerator is provided in the condensed refrigerant path between the low temperature regenerator and the condenser so that refrigerant vapor escape does not occur even if the pressure of the high temperature regenerator increases significantly. Control. (4) Therefore, the stable operation of the absorption chiller-heater can be secured, and the working medium having the working range exceeding the atmospheric pressure can be used.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の形態の1例を、シリーズフロー
の吸収冷温水機をブロック図として表現した図。
FIG. 1 is a block diagram showing an example of an embodiment of the present invention as an absorption chiller-heater of a series flow.

【図2】図1の第1ないし第2のバルブの制御のフロー
チャート図。
FIG. 2 is a flow chart of the control of the first and second valves of FIG.

【図3】図1の第4のバルブの制御のフローチャート
図。
FIG. 3 is a flowchart of control of a fourth valve of FIG.

【図4】パラレルフローの場合の例を示すブロック図。FIG. 4 is a block diagram showing an example in the case of parallel flow.

【図5】リバースフローの場合の例を示すブロック図。FIG. 5 is a block diagram showing an example in the case of reverse flow.

【図6】従来の技術の例を示す図。FIG. 6 is a diagram showing an example of a conventional technique.

【符号の説明】[Explanation of symbols]

1・・・高温再生器 2・・・低温再生器 3・・・凝縮器 4・・・蒸発器 5・・・吸収器 6、7・・・アクチュエータ 8・・・圧力センサ 9、19・・・ポンプ 11、12、13・・・オリフィス V1、V2、V3、V4・・・ニードルバルブ 1 ... High temperature regenerator 2 ... Low temperature regenerator 3 ... Condenser 4 ... Evaporator 5 ... Absorber 6, 7 ... Actuator 8 ... Pressure sensor 9, 19, ...・ Pumps 11, 12, 13 ... Orifices V1, V2, V3, V4 ... Needle valves

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 高温再生器及び低温再生器を具備する二
重効用吸収冷温水機において、高温再生器内の温度或は
圧力を測定するセンサと、吸収溶液の経路中に介装され
た流量調整手段と、前記センサの測定結果に応答して流
量調整手段を制御して吸収溶液の流量を調整する制御手
段、とを含む事を特徴とする二重効用吸収冷温水機。
1. In a double-effect absorption chiller-heater equipped with a high-temperature regenerator and a low-temperature regenerator, a sensor for measuring the temperature or pressure in the high-temperature regenerator and a flow rate interposed in the path of the absorbing solution. A double-effect absorption chiller-heater comprising: an adjusting means; and a control means for controlling the flow rate adjusting means to adjust the flow rate of the absorbing solution in response to the measurement result of the sensor.
【請求項2】 低温再生器から凝縮器に連通する凝縮冷
媒経路中に流量調整手段を介装し、前記制御手段は、前
記センサにより測定された高温再生器の圧力に対応して
低温再生器と凝縮器との間に介装された前記流量調整手
段を制御する請求項1に記載の二重効用吸収冷温水機。
2. A low-temperature regenerator, wherein a flow rate adjusting means is provided in a condensed refrigerant path communicating from the low-temperature regenerator to the condenser, and the control means corresponds to the pressure of the high-temperature regenerator measured by the sensor. The double-effect absorption chiller-heater according to claim 1, wherein the flow rate adjusting means interposed between the condenser and the condenser is controlled.
JP7213506A 1995-08-22 1995-08-22 Double effect absorption water cooler water heater Pending JPH0961000A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7213506A JPH0961000A (en) 1995-08-22 1995-08-22 Double effect absorption water cooler water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7213506A JPH0961000A (en) 1995-08-22 1995-08-22 Double effect absorption water cooler water heater

Publications (1)

Publication Number Publication Date
JPH0961000A true JPH0961000A (en) 1997-03-04

Family

ID=16640329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7213506A Pending JPH0961000A (en) 1995-08-22 1995-08-22 Double effect absorption water cooler water heater

Country Status (1)

Country Link
JP (1) JPH0961000A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999039140A1 (en) * 1998-01-29 1999-08-05 Sanyo Electric Co., Ltd. Absorption type refrigerating machine
JP2009058181A (en) * 2007-08-31 2009-03-19 Daikin Ind Ltd Absorption type refrigerating apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999039140A1 (en) * 1998-01-29 1999-08-05 Sanyo Electric Co., Ltd. Absorption type refrigerating machine
US6192694B1 (en) 1998-01-29 2001-02-27 Sanyo Electric Co., Ltd. Absorption type refrigerating machine
JP2009058181A (en) * 2007-08-31 2009-03-19 Daikin Ind Ltd Absorption type refrigerating apparatus

Similar Documents

Publication Publication Date Title
JP2002071234A (en) Refrigerator having a plurality of vaporizers
KR100522650B1 (en) Absorption Type Refrigerator and Controlling Method Therefor
CA2512516C (en) Feedforward control for absorption chiller
JPH04295566A (en) Engine-driven air-conditioning machine
WO1999039140A1 (en) Absorption type refrigerating machine
US4454726A (en) Control device of absorption type cold and warm water system
JPH0961000A (en) Double effect absorption water cooler water heater
US4322951A (en) Control device and method for conserving fuel in an absorption refrigeration system
JPH1073328A (en) Cooler
JP2007032895A (en) Supercritical refrigerating cycle device and its control method
JP4157723B2 (en) Triple effect absorption refrigerator
JPH0960999A (en) Double effect absorption water cooler water heater
JP3831427B2 (en) Heat input control method of absorption refrigerator
JP2529029B2 (en) Absorption refrigerator and control method thereof
KR0171307B1 (en) Proportional control apparatus of absorptive type airconditioner
US5722246A (en) Absorption refrigerating apparatus control method
JPH0252795B2 (en)
JP2003130486A (en) Absorption chilled or hot-water machine and method of controlling the machine
JP3203551B2 (en) Combustion control device for absorption chiller / heater
KR100423817B1 (en) Control method of absorption chiller
JPH08145494A (en) Absorption type heat pump
JP3280085B2 (en) Operation control method in absorption refrigerator
JP2900609B2 (en) Absorption refrigerator
CN116164427A (en) Heat exchange system and heat exchange method
JPH08233392A (en) Absorption type refrigerating machine