JPH0960992A - Refrigerating device - Google Patents

Refrigerating device

Info

Publication number
JPH0960992A
JPH0960992A JP22019295A JP22019295A JPH0960992A JP H0960992 A JPH0960992 A JP H0960992A JP 22019295 A JP22019295 A JP 22019295A JP 22019295 A JP22019295 A JP 22019295A JP H0960992 A JPH0960992 A JP H0960992A
Authority
JP
Japan
Prior art keywords
refrigerant
gas
intermediate heat
liquid
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP22019295A
Other languages
Japanese (ja)
Inventor
Kiminobu Sato
仁宣 佐藤
Isami Yoneda
伊佐美 米田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP22019295A priority Critical patent/JPH0960992A/en
Publication of JPH0960992A publication Critical patent/JPH0960992A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Separation By Low-Temperature Treatments (AREA)

Abstract

PROBLEM TO BE SOLVED: To increase the degree of separation of a final separation component, to improve purity of a low boiling point component, to increase the degree of cooling of a substance to be cooled, and to stabilize a cooling temperature by providing a cooling means having the same number of stages as the number of components of a mixture refrigerant. SOLUTION: The outlet of the outer pipe of a fourth intermediate heat- exchanger 15 is connected to the inlet of a fifth gas liquid separator 50. A gas phase part 50a of the fifth gas liquid separator 50 is connected to the inlet of a cooler 19 through a fifth intermediate heat-exchanger 21 and a throttle 18. The liquid phase part 50b is connected to the inlet of the inner pipe of the fifth intermediate heat-exchanger 21 through a fifth throttle 22. After most of liquid R14 and a part of an R50 are reduced in a pressure by the fifth throttle 22, the R14 and the R50 flow in the inner pipe of the fifth intermediate heat- exchanger 21 and joined with a feedback refrigerant therein for vaporization. Since re-distillation operation of the high boiling point component R14 is effected by the fourth intermediate heat-exchanger 15 and the additionally mounted fifth gas liquid separator 50, the degree of separation of the high boiling point component R14 is increased.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は多段分留方式を採用
した超低温用の冷凍装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cryogenic refrigerating apparatus adopting a multistage fractional distillation system.

【0002】[0002]

【従来の技術】従来から、−100℃以下の超低温冷凍
装置として、例えば、特願06−264336に示され
るように1台の圧縮機と凝縮器並びに複数段の気液分離
器及び熱交換器からなる一元冷凍サイクルに沸点の異な
る多成分非共沸混合冷媒を封入し、凝縮と気液分離処理
により高沸点冷媒を分離する分留を繰返し行い、低沸点
冷媒を抽出して冷却器に導き、被冷却体を直接冷却した
り2次冷媒を冷却する多段分留方式超低温冷凍装置があ
る。
2. Description of the Related Art Conventionally, as an ultra-low temperature refrigerating apparatus at -100 ° C. or lower, for example, as shown in Japanese Patent Application No. 06-264336, one compressor and condenser, and a plurality of gas-liquid separators and heat exchangers. A multi-component non-azeotropic mixed refrigerant with different boiling points is enclosed in a one-way refrigeration cycle consisting of, and condensation and gas-liquid separation are repeated to carry out fractional distillation to separate the high-boiling refrigerant, extracting the low-boiling refrigerant and guiding it to the cooler. There is a multi-stage fractionation type ultra-low temperature refrigeration system that directly cools the object to be cooled or cools the secondary refrigerant.

【0003】図4は上記従来の冷凍装置(直接冷却方
式)の冷媒系統図である。図において、圧縮機1の吐出
側は油分離器2を介して凝縮器3の入口に接続されてい
る。凝縮器3の出口は補助凝縮器4を介して第1気液分
離器5の入口に接続されている。そして、第1気液分離
器5の気相部5aは第1中間熱交換器6の外管入口に接
続され、液相部5bは第1絞り7を介して第1中間熱交
換器6の内管入口に接続されている。
FIG. 4 is a refrigerant system diagram of the conventional refrigeration system (direct cooling system). In the figure, the discharge side of the compressor 1 is connected to the inlet of a condenser 3 via an oil separator 2. The outlet of the condenser 3 is connected to the inlet of the first gas-liquid separator 5 via the auxiliary condenser 4. The gas phase part 5a of the first gas-liquid separator 5 is connected to the outer pipe inlet of the first intermediate heat exchanger 6, and the liquid phase part 5b of the first intermediate heat exchanger 6 is connected via the first throttle 7. It is connected to the inner pipe entrance.

【0004】第1中間熱交換器6は2重管で形成されて
おり、外管内を流れる冷媒と内管内を流れる冷媒との間
の熱交換の効率を高めるため、外管入口と内管出口が中
間熱交換器6の一方の端に設けられ、外管出口と内管入
口は他方の端に設けられている。このようにして、第1
気液分離器5と第1中間熱交換器6と第1絞り7により
第1段の冷却手段1Sが形成される。以下同様に、第2
気液分離器8と第2中間熱交換器9と第2絞り10によ
って第2段の冷却手段2Sが、第3気液分離器11と第
3中間熱交換器12と第3絞り13によって第3段の冷
却手段3Sが、第4気液分離器14と第4中間熱交換器
15と第4絞り16によって第4段の冷却手段4Sが形
成される。
The first intermediate heat exchanger 6 is formed of a double tube, and in order to enhance the efficiency of heat exchange between the refrigerant flowing in the outer tube and the refrigerant flowing in the inner tube, the outer tube inlet and the inner tube outlet are provided. Is provided at one end of the intermediate heat exchanger 6, and the outer pipe outlet and the inner pipe inlet are provided at the other end. In this way, the first
The gas-liquid separator 5, the first intermediate heat exchanger 6, and the first throttle 7 form a first-stage cooling means 1S. Similarly, the second
The gas-liquid separator 8, the second intermediate heat exchanger 9, and the second throttle 10 form the second-stage cooling means 2S, and the third gas-liquid separator 11, the third intermediate heat exchanger 12, and the third throttle 13 make the first cooling means 2S. In the three-stage cooling means 3S, the fourth-stage cooling means 4S is formed by the fourth gas-liquid separator 14, the fourth intermediate heat exchanger 15, and the fourth throttle 16.

【0005】第4中間熱交換器15の外管出口は補助冷
却器17及び絞り18を介して超低温貯蔵庫内に設けら
れた冷却器19の入口に接続されている。冷却器19の
出口は補助冷却器17を経て第4中間熱交換器15の内
管入口に接続されている。第4中間熱交換器15の内管
出口は第3中間熱交換器12の内管入口に、第3中間熱
交換器12の内管出口は第2中間熱交換器9の内管入口
に、第2中間熱交換器9の内管出口は第1中間熱交換器
6の内管入口に、第1中間熱交換器6の内管出口は補助
凝縮器4を介して圧縮機1の吸入側に接続されている。
The outer tube outlet of the fourth intermediate heat exchanger 15 is connected to the inlet of a cooler 19 provided in the ultra-low temperature storage via an auxiliary cooler 17 and a throttle 18. The outlet of the cooler 19 is connected to the inner pipe inlet of the fourth intermediate heat exchanger 15 via the auxiliary cooler 17. An inner pipe outlet of the fourth intermediate heat exchanger 15 is an inner pipe inlet of the third intermediate heat exchanger 12, an inner pipe outlet of the third intermediate heat exchanger 12 is an inner pipe inlet of the second intermediate heat exchanger 9, The inner pipe outlet of the second intermediate heat exchanger 9 is at the inner pipe inlet of the first intermediate heat exchanger 6, and the inner pipe outlet of the first intermediate heat exchanger 6 is at the suction side of the compressor 1 via the auxiliary condenser 4. It is connected to the.

【0006】この冷凍装置の冷媒回路内には沸点の異な
る5種類の冷媒を混合してなる冷媒組成物、即ち、冷媒
RC318(オクタフルオロシクロブタン)と、冷媒R
32(ジフルオロメタン)と、冷媒R23(トリフルオ
ロメタン)と、冷媒R14(テトラフルオロメタン)
と、冷媒R50(メタン)とからなる非共沸混合冷媒が
あらかじめ混合された状態で封入される。各冷媒の沸点
は大気圧において、RC318が−5.75℃、R32
が−51.69℃、R23が−82.15℃、R14が
−127.9℃、R50が−161.5℃である。ま
た、各冷媒の組成は例えば、RC318が56重量%、
R32が5重量%、R23が17重量%、R14が17
重量%、R50が5重量%である。
In the refrigerant circuit of this refrigeration system, a refrigerant composition prepared by mixing five kinds of refrigerants having different boiling points, that is, refrigerant RC318 (octafluorocyclobutane) and refrigerant R
32 (difluoromethane), refrigerant R23 (trifluoromethane), and refrigerant R14 (tetrafluoromethane)
And a non-azeotropic mixed refrigerant composed of the refrigerant R50 (methane) is sealed in a premixed state. At the atmospheric pressure, the boiling point of each refrigerant is RC5.7 at −5.75 ° C., R32
Is −51.69 ° C., R23 is −82.15 ° C., R14 is −127.9 ° C., and R50 is −161.5 ° C. The composition of each refrigerant is, for example, RC318 of 56% by weight,
5% by weight of R32, 17% by weight of R23, 17 of R14
% By weight and R50 is 5% by weight.

【0007】次に本装置の動作を説明する。圧縮機1か
ら吐出された高温高圧のガス状混合冷媒は油分離器2に
入り、ここで油を分離除去した後、凝縮器3に流入し、
ここで冷却水によって例えば30℃程に冷却された後、
補助凝縮器4に流入する。ここで帰還冷媒によって例え
ば15℃程に更に冷却されることによりその中の高沸点
冷媒、即ち、RC318の全部とR32の一部が液化し
て第1気液分離器5に流入する。
Next, the operation of this apparatus will be described. The high-temperature and high-pressure gaseous mixed refrigerant discharged from the compressor 1 enters the oil separator 2, where the oil is separated and removed, and then flows into the condenser 3,
Here, after being cooled to about 30 ° C. by cooling water,
It flows into the auxiliary condenser 4. Here, the high boiling point refrigerant therein, that is, all of RC318 and a part of R32 are liquefied and further flow into the first gas-liquid separator 5 by being further cooled to about 15 ° C. by the return refrigerant.

【0008】ここで高沸点冷媒RC318の全部とR3
2の一部とからなる液状冷媒から低沸点冷媒R50、R
14、R23及び未凝縮のR32からなる残留ガス状冷
媒が分離される。分離された液状冷媒RC318の全部
とR32の一部は第1絞り7で減圧された後、第1中間
熱交換器6の内管に流入し、ここで帰還ガス冷媒と合流
して蒸発する。
[0008] Here, all of the high boiling point refrigerant RC318 and R3
Liquid refrigerant consisting of a part of 2 and low boiling point refrigerants R50, R
The residual gaseous refrigerant consisting of 14, R23 and uncondensed R32 is separated. All of the separated liquid refrigerant RC318 and a part of R32 are decompressed by the first throttle 7, then flow into the inner pipe of the first intermediate heat exchanger 6, where they are combined with the return gas refrigerant and evaporated.

【0009】一方、残留ガス状冷媒R32の一部と、R
23、R14、R50の全部は第1中間熱交換器6の外
管を流過する過程で内管を流れる帰還冷媒及び分離され
た残留ガス状冷媒と熱交換することによって例えば−1
5℃程に冷却されることによってその中のR32の全部
とR23の一部が液化する。
On the other hand, a part of the residual gaseous refrigerant R32 and R
All of 23, R14, and R50 exchange heat with the return refrigerant and the separated residual gaseous refrigerant that flow through the inner tube in the process of flowing through the outer tube of the first intermediate heat exchanger 6, for example, −1.
By cooling to about 5 ° C., all of R32 and part of R23 therein are liquefied.

【0010】次いで、この冷媒は第2気液分離器8に流
入しここで液状冷媒と残留ガス状冷媒とに分離される。
液状のR32の全部とR23の一部は第2絞り10で減
圧された後、第2中間熱交換器9の内管に流入し、ここ
で帰還冷媒と合流して蒸発する。
Next, this refrigerant flows into the second gas-liquid separator 8 where it is separated into a liquid refrigerant and a residual gaseous refrigerant.
The entire liquid R32 and a part of R23 are decompressed by the second throttle 10, and then flow into the inner pipe of the second intermediate heat exchanger 9, where they are combined with the return refrigerant and evaporated.

【0011】一方、残留ガス冷媒R23の一部とR1
4、R50の全部は第2中間熱交換器9の外管を流過す
る過程で内管を流れる冷媒によって例えば−40℃程に
冷却されることによりその中のR23の全部とR14の
一部が液化する。
On the other hand, a part of the residual gas refrigerant R23 and R1
4, all of R50 are cooled to, for example, about −40 ° C. by the refrigerant flowing through the inner pipe of the second intermediate heat exchanger 9 in the process of flowing through the outer pipe, so that all of R23 and a part of R14 therein. Liquefies.

【0012】この冷媒は第3気液分離器11に流入し、
ここで液状冷媒とガス状冷媒とに分離される。液状のR
23とR14の一部は第3絞り13で減圧された後、第
3中間熱交換器12の内管に流入し、ここで外管を流れ
る冷媒と合流して蒸発する。
This refrigerant flows into the third gas-liquid separator 11,
Here, it is separated into a liquid refrigerant and a gaseous refrigerant. Liquid R
A part of 23 and R14 is decompressed by the third throttle 13, then flows into the inner pipe of the third intermediate heat exchanger 12, where it joins with the refrigerant flowing through the outer pipe and evaporates.

【0013】一方、残留ガス状冷媒R14の一部とR5
0の全部は第3中間熱交換器12の外管を流過する過程
で内管を流過する冷媒によって例えば−70℃程に冷却
されることによりその中のR14の大部分とR50の一
部が液化して第4気液分離器14に流入し、ここで液状
冷媒とガス状冷媒とに分離される。
On the other hand, a part of the residual gaseous refrigerant R14 and R5
0 is cooled to about −70 ° C. by the refrigerant flowing through the inner pipe in the process of flowing through the outer pipe of the third intermediate heat exchanger 12, so that most of R14 therein and one of R50. The part is liquefied and flows into the fourth gas-liquid separator 14, where it is separated into a liquid refrigerant and a gaseous refrigerant.

【0014】液状のR14の大部分とR50の一部は第
4絞り16で減圧された後、第4中間熱交換器15の内
管に流入し、ここで帰還冷媒と合流して蒸発する。一
方、残留ガス冷媒R14の一部とR50の大部分は第4
中間熱交換器15の外管を流過する過程で内管を流過す
る冷媒によって例えば−100℃程に冷却されることに
よりR14の全部とR50の相当部分が液化して補助冷
却器17に流入し、ここで冷却器19からの帰還冷媒に
よって例えば−115℃程に更に冷却されてR50の大
部分が液化する。
Most of the liquid R14 and a part of R50 are reduced in pressure by the fourth throttle 16, then flow into the inner pipe of the fourth intermediate heat exchanger 15, where they are combined with the return refrigerant and evaporated. On the other hand, part of the residual gas refrigerant R14 and most of R50 are the fourth
During the process of flowing through the outer pipe of the intermediate heat exchanger 15, the refrigerant flowing through the inner pipe cools the mixture to about -100 ° C., for example, so that all of R14 and R50 are liquefied to the auxiliary cooler 17. It flows in, and is further cooled here by the return refrigerant from the cooler 19 to, for example, about −115 ° C., and most of R50 is liquefied.

【0015】これら液化したR14及びR50は第5絞
り18に減圧されることにより降温して例えば、−15
5℃程で冷却器19に流入し、ここで蒸発することによ
り超低温貯蔵庫内を−150℃の低温に冷却する。
These liquefied R14 and R50 are reduced in temperature by being depressurized by the fifth throttle 18 to, for example, -15.
It flows into the cooler 19 at about 5 ° C., and evaporates there to cool the inside of the ultra-low temperature storage to a low temperature of −150 ° C.

【0016】冷却器19で蒸発した冷媒は補助冷却器1
7、各中間熱交換器15,12,9,6,凝縮器4をこ
の順に通って圧縮機1に帰還する。なお、圧縮機1の吐
出配管から吐出冷媒に混入して流出した潤滑油は油分離
器2内で分離され配管20を経て流出し、圧縮機1への
帰還冷媒に合流して圧縮機1に戻される。
The refrigerant evaporated in the cooler 19 is the auxiliary cooler 1
7. Return to the compressor 1 through the intermediate heat exchangers 15, 12, 9, 6, and the condenser 4 in this order. Lubricating oil mixed with the discharge refrigerant from the discharge pipe of the compressor 1 and flowing out is separated in the oil separator 2 and flows out through the pipe 20 to join the return refrigerant to the compressor 1 to the compressor 1. Will be returned.

【0017】[0017]

【発明が解決しようとする課題】上記従来の多段分留方
式超低温冷凍装置においては、沸点の異なる冷媒(例え
ば、高沸点順にRC318,R32,R23,R14,
R50の5成分)を混合してなる非共沸混合冷媒に圧縮
及び凝縮を行ってから、気液分離および冷却処理を繰返
して低沸点冷媒(R50)を抽出するための〔混合冷媒
の成分数−1〕段(例えば4段)の気液分離器5,8,
11,14、絞り7,10,13,16、及び中間熱交
換器6,9,12,15からなる冷却手段1S,2S,
3S,4Sを有していた。
In the conventional multistage fractional distillation ultra-low temperature refrigeration system described above, refrigerants having different boiling points (for example, RC318, R32, R23, R14,
R50 (5 components) are mixed and compressed into a non-azeotropic mixed refrigerant, and then gas-liquid separation and cooling processes are repeated to extract a low boiling point refrigerant (R50) [number of mixed refrigerant components] -1] (for example, 4) gas-liquid separators 5, 8,
Cooling means 1S, 2S including 11, 14, throttles 7, 10, 13, 16 and intermediate heat exchangers 6, 9, 12, 15.
It had 3S and 4S.

【0018】記述の都合上、用語の定義を確認してお
く。化学工学では、蒸発と凝縮とを行って、液体成分を
それぞれの成分に分ける操作を「蒸留」という。一般に
3種以上の多成分を含む混合物を蒸留によって分離する
場合を「精留」又は「分留」といい、2成分からなる混
合物に対する処理を「単蒸留」という。凝縮によって得
られた液を「留出物」という。一回の蒸留では一般に目
的成分の分離の度合いは不十分であるので、その留出物
について再び蒸留を行って更に分離の度合いを高める。
これを「再蒸留」という。
For convenience of description, the definition of terms will be confirmed. In chemical engineering, the operation of evaporating and condensing and dividing the liquid component into each component is called "distillation". Generally, a case where a mixture containing three or more multi-components is separated by distillation is called "rectification" or "fractional distillation", and a treatment for a mixture of two components is called "single distillation". The liquid obtained by condensation is called "distillate". Since the degree of separation of the target component is generally insufficient in a single distillation, the distillate is distilled again to further increase the degree of separation.
This is called "re-distillation".

【0019】上記従来の超低温冷凍装置においては、高
沸点冷媒RC318は第1気液分離器5で先ず蒸留され
第2,第3気液分離器8,11で再蒸留が行われる。R
32は第2気液分離器8で先ず蒸留され、第3,第4気
液分離器11,14で再蒸留が行われる。R23は第3
気液分離器で先ず蒸留され、第4気液分離器14で再蒸
留が行われる。このようにRC318、R32及びR2
3については再蒸留が行われるので十分な度合いまで分
離することができる。しかし、R14については、第4
気液分離器14で一回の蒸留が行われるだけであるの
で、その分離度合いは低水準となり冷却器19に供給さ
れる冷媒は、純粋なR50ではなく、R50にR14が
混じった非共沸混合冷媒となるという問題がある。
In the above conventional ultra-low temperature refrigeration system, the high boiling point refrigerant RC318 is first distilled in the first gas-liquid separator 5 and redistilled in the second and third gas-liquid separators 8 and 11. R
32 is first distilled in the second gas-liquid separator 8 and redistilled in the third and fourth gas-liquid separators 11 and 14. R23 is the third
It is first distilled in the gas-liquid separator and redistilled in the fourth gas-liquid separator 14. Thus RC318, R32 and R2
Since 3 is redistilled, it can be separated to a sufficient degree. However, regarding R14, the fourth
Since only one distillation is performed in the gas-liquid separator 14, the degree of separation is low and the refrigerant supplied to the cooler 19 is not pure R50 but a non-azeotropic mixture of R50 and R14. There is a problem that it becomes a mixed refrigerant.

【0020】このように冷却器19に供給される冷媒が
R50にR14の混じった2成分非共沸混合冷媒になる
と、冷却器19の出入口で温度差が生ずる(冷却器出口
温度が入口の温度より上昇する)ので、冷却器19の平
均温度が上昇し、被冷却体の冷却度合いが悪くなった
り、また、R14の混入程度は運転状況により変化し、
上記温度差も変動するので、被冷却体の温度が安定しな
いという不具合が生ずる。
When the refrigerant supplied to the cooler 19 is a two-component non-azeotropic mixed refrigerant in which R50 and R14 are mixed as described above, a temperature difference occurs at the inlet and outlet of the cooler 19 (the cooler outlet temperature is the inlet temperature. Therefore, the average temperature of the cooler 19 rises, the cooling degree of the object to be cooled deteriorates, and the mixing degree of R14 changes depending on operating conditions.
Since the temperature difference also fluctuates, there arises a problem that the temperature of the cooled object is not stable.

【0021】本発明は上記従来技術の欠点を解消し、冷
却器の出入口での温度差を殆んどなくし、被冷却体の冷
却度合いを高めると共に冷却温度を安定させようとする
ものである。
The present invention solves the above-mentioned drawbacks of the prior art, reduces the temperature difference at the inlet and outlet of the cooler, increases the cooling degree of the object to be cooled, and stabilizes the cooling temperature.

【0022】[0022]

【課題を解決するための手段】本発明は上記課題を解決
したものであって、沸点の異なる複数種数の冷媒からな
る混合冷媒を封入してなり、この混合冷媒を圧縮する圧
縮機と、この圧縮機で圧縮された高温高圧の混合冷媒を
冷却する凝縮器と、この冷却され一部が液化した混合冷
媒を主として高沸点液冷媒と残留ガス冷媒に分離する気
液分離器とこの気液分離器で分離された液冷媒を減圧す
る絞り機構と上記気液分離器で分離された残留ガス冷媒
を上記絞り機構によって減圧された液冷媒及び帰還ガス
冷媒と熱交換させて冷却する中間熱交換器とからなり高
沸点冷媒から順次低沸点冷媒を分離して冷却する複数段
の冷却手段と、最終段の冷却手段で冷却された低沸点液
冷媒を減圧した後蒸発させる冷却器と、この冷却器で冷
却作用を果した後流出した冷媒を逆に前記最終段の中間
熱交換器から順次第1段の中間熱交換器までを経由して
上記圧縮機へ帰還させる管路を具備してなる冷凍装置に
おいて、次の特徴を有する冷凍装置に関するものであ
る。
Means for Solving the Problems The present invention has been made to solve the above problems, and is a compressor for enclosing a mixed refrigerant composed of a plurality of types of refrigerants having different boiling points, and compressing the mixed refrigerant. A condenser that cools the high-temperature and high-pressure mixed refrigerant compressed by this compressor, a gas-liquid separator that separates the cooled and partially liquefied mixed refrigerant into a high-boiling-point liquid refrigerant and a residual gas refrigerant, and this gas-liquid A throttling mechanism for depressurizing the liquid refrigerant separated by the separator and an intermediate heat exchange for cooling the residual gas refrigerant separated by the gas-liquid separator by exchanging heat with the liquid refrigerant depressurized by the throttling mechanism and the return gas refrigerant. Cooling means for separating and cooling the low boiling point refrigerant from the high boiling point refrigerant sequentially, a cooler for depressurizing and evaporating the low boiling point liquid refrigerant cooled by the final cooling means, and this cooling After performing the cooling function in the vessel A refrigerating apparatus comprising a pipe for returning the discharged refrigerant to the compressor through the intermediate heat exchanger at the final stage and sequentially through the intermediate heat exchanger at the first stage, The present invention relates to a refrigerating device.

【0023】(1)混合冷媒の成分数と同一段数の上記
冷却手段を備えた。
(1) The cooling means is provided in the same number of stages as the number of components of the mixed refrigerant.

【0024】(2)上記(1)項に記載の冷凍装置にお
いて、その最終段の気液分離器を精留塔に置き換え、低
沸点冷媒R50の抽出純度を一層高めたものであって、
その要旨とするところは、最終段の前段の上記冷却手段
で高沸点冷媒の大部分が分離され冷却され一部が液化し
た混合冷媒を受入れこれを塔内で再蒸留を繰返し高純度
の低沸点冷媒と高沸点液冷媒とに分離する精留塔と、こ
の精留塔で分離された上記液冷媒を減圧する絞り機構
と、上記精留塔で分離された上記高純度低沸点ガス冷媒
を上記絞り機構によって減圧された液冷媒及び帰還ガス
冷媒と熱交換させて冷却する中間熱交換器と、この中間
熱交換器で冷却され液化した冷媒の一部を上記精留塔に
戻す還流管とを備えてなる最終段冷却手段を具備した。
(2) In the refrigerating apparatus according to the above item (1), the final stage gas-liquid separator is replaced with a rectification column to further enhance the extraction purity of the low boiling point refrigerant R50,
The gist of this is that most of the high boiling point refrigerant is separated and cooled by the cooling means in the preceding stage of the final stage, and the mixed refrigerant that has been cooled and partly liquefied is received and this is redistilled repeatedly in the column to obtain a high purity low boiling point refrigerant. A rectification column for separating a refrigerant and a high-boiling-point liquid refrigerant, a throttling mechanism for decompressing the liquid refrigerant separated by the rectification column, and the high-purity low-boiling-point gas refrigerant separated by the rectification column. An intermediate heat exchanger for cooling by exchanging heat with the liquid refrigerant and the return gas refrigerant decompressed by the throttle mechanism, and a reflux pipe for returning a part of the liquefied refrigerant cooled by the intermediate heat exchanger to the rectification tower. A final stage cooling means was provided.

【0025】上記(1)項の手段においては、混合冷媒
を例えば高沸点順にRC318,R32,R23,R1
4,R50の5成分よりなるものとすると、最終分離成
分であるR14は最終段の前段である第4気液分離器で
先ず1回目の蒸留が行われR14の大部分とR50の一
部が液として分離される。そしてR50の大部分とR1
4の一部の残留ガス冷媒は冷却されて最終段の第5気液
分離器に入り、ここで再蒸留が行われ残留ガス冷媒中の
一部のR14の大部分が液として分離されるので、1回
目の蒸留操作で終了する従来のものに比べて、R14の
分離度合いを高めることができる。
In the means of the above item (1), the mixed refrigerant is, for example, RC318, R32, R23, R1 in the order of high boiling points.
Assuming that it is composed of five components of R4 and R50, the final separation component R14 is first distilled in the fourth gas-liquid separator which is the previous stage of the final stage, and most of R14 and a part of R50 are obtained. Separated as a liquid. And most of R50 and R1
Part of the residual gas refrigerant of No. 4 is cooled and enters the fifth gas-liquid separator at the final stage, where it is redistilled and most of a part of R14 in the residual gas refrigerant is separated as a liquid. The degree of separation of R14 can be increased as compared with the conventional one which is completed by the first distillation operation.

【0026】上記(2)項の手段においては、例えば上
記5成分の混合冷媒において、第4気液分離器でのR1
4の1回目の蒸留でガスとして残ったR50の大部分と
R14の一部の残留ガス冷媒は冷却されて最終段の第5
冷却手段を構成する精留塔に入り、ここで塔内を流下す
る還流液と塔内を上昇するガス冷媒との間に物質移動を
伴う気液接触が行われ、その結果繰返し再蒸留が行われ
る。従って、R14の分離度合いを一層高めることがで
きる。
In the means of the above item (2), for example, in the mixed refrigerant of the above five components, R1 in the fourth gas-liquid separator is used.
Most of R50 remaining as gas in the first distillation of No. 4 and a part of the residual gas refrigerant of R14 are cooled and cooled to the fifth stage of the final stage.
After entering the rectification column that constitutes the cooling means, gas-liquid contact involving mass transfer is performed between the reflux liquid flowing down in the column and the gas refrigerant rising in the column, resulting in repeated redistillation. Be seen. Therefore, the degree of separation of R14 can be further increased.

【0027】[0027]

【発明の実施の形態】図1は本発明の実施の第1形態に
係る冷凍装置の冷媒系統図である。図において、50は
第5気液分離器、21は第5中間熱交換器、22は第5
絞り、5Sは上記各機器からなる第5冷却手段である。
この手段は従来の補助冷却器17に替えて設置されたも
のである。配管の接続については後述する。上記以外の
部分は従来技術(図4)と同じであるから構成の説明は
省略する。
1 is a refrigerant system diagram of a refrigerating apparatus according to a first embodiment of the present invention. In the figure, 50 is a fifth gas-liquid separator, 21 is a fifth intermediate heat exchanger, and 22 is a fifth.
A diaphragm 5S is a fifth cooling unit including the above-mentioned devices.
This means is installed in place of the conventional auxiliary cooler 17. The pipe connection will be described later. Since the other parts than the above are the same as those of the conventional technique (FIG. 4), the description of the configuration will be omitted.

【0028】上記系統において、第4中間熱交換器15
の外管出口は第5気液分離器50の入口に接続されてい
る。そして、第5気液分離器50の気相部50aは第5
中間熱交換器21及び絞り18を介して冷却器19の入
口に接続されている。液相部50bは第5絞り22を介
して第5中間熱交換器21の内管入口に接続されてい
る。
In the above system, the fourth intermediate heat exchanger 15
The outer tube outlet of is connected to the inlet of the fifth gas-liquid separator 50. The gas phase portion 50a of the fifth gas-liquid separator 50 has the fifth
It is connected to the inlet of the cooler 19 via the intermediate heat exchanger 21 and the throttle 18. The liquid phase portion 50b is connected to the inner pipe inlet of the fifth intermediate heat exchanger 21 via the fifth throttle 22.

【0029】しかして、第3中間熱交換器12及び第4
気液分離器14によるR14分留操作によって大部分の
R14が液化分離され、抽出された残り若干のR14を
含むR50のガス状混合冷媒は第4中間熱交換器15に
流入しここで冷却され、R14の大部分とR50の一部
が液化して第5気液分離器50に流入しここで液状冷媒
とガス状冷媒とに分離される。液状のR14の大部分と
R50の一部は第5絞り22で減圧された後、第5中間
熱交換器21の内管に流入し、ここで帰還冷媒と合流し
て蒸発する。
Thus, the third intermediate heat exchanger 12 and the fourth
Most of R14 is liquefied and separated by the R14 fractional distillation operation by the gas-liquid separator 14, and the R50 gaseous mixed refrigerant containing a small amount of the remaining R14 flows into the fourth intermediate heat exchanger 15 and is cooled there. , R14 and a part of R50 are liquefied and flow into the fifth gas-liquid separator 50, where they are separated into a liquid refrigerant and a gaseous refrigerant. Most of the liquid R14 and part of R50 are decompressed by the fifth throttle 22, then flow into the inner pipe of the fifth intermediate heat exchanger 21, where they are combined with the return refrigerant and evaporated.

【0030】一方、残留ガス冷媒R14の一部とR50
の大部分は第5中間熱交換器21の外管を流過する過程
で内管を流過する冷媒によって例えば−115℃程に冷
却されて液化し、絞り18で減圧されて冷却器19に流
入する。このように、第4中間熱交換器15と追設した
第5気液分離器50によって高沸点成分R14の再蒸留
操作が行われるので、従来の回路に比べると高沸点成分
R14の分離度合いを高めることができる。
On the other hand, a part of the residual gas refrigerant R14 and R50
Of the intermediate heat exchanger 21 is liquefied by being cooled to about −115 ° C. by the refrigerant flowing through the inner pipe in the process of flowing through the outer pipe of the fifth intermediate heat exchanger 21 and decompressed by the throttle 18 to the cooler 19. Inflow. In this way, since the redistillation operation of the high boiling point component R14 is performed by the fourth intermediate heat exchanger 15 and the fifth gas-liquid separator 50 additionally provided, the degree of separation of the high boiling point component R14 is higher than that in the conventional circuit. Can be increased.

【0031】図2は本発明の実施の第2形態に係る冷凍
装置の冷媒系統図、図3は同系統に用いられる精留塔の
図であり、(a)は縦断面図、(b)は(a)のB部詳
細図である。図において、30は精留塔、21は第5中
間熱交換器、22は第5絞り、23は還流管、5S’は
上記各機器からなる第5冷却手段である。この手段は従
来の補助冷却器17、あるいは第1実施形態における第
5冷却手段5Sに替えて設置されたものである。配管の
接続については後述する。上記以外の部分は従来技術
(図4)あるいは第1実施形態(図1)と同じであるか
ら構成の説明を省略する。
FIG. 2 is a refrigerant system diagram of a refrigerating apparatus according to the second embodiment of the present invention, FIG. 3 is a diagram of a rectification column used in the same system, (a) is a longitudinal sectional view, and (b) is a sectional view. [Fig. 3] is a detailed view of a B part in (a). In the figure, 30 is a rectification column, 21 is a fifth intermediate heat exchanger, 22 is a fifth throttle, 23 is a reflux pipe, and 5S 'is a fifth cooling means including the above-mentioned devices. This means is installed in place of the conventional auxiliary cooler 17 or the fifth cooling means 5S in the first embodiment. The pipe connection will be described later. The parts other than the above are the same as those of the conventional technique (FIG. 4) or the first embodiment (FIG. 1), and therefore the description of the configuration is omitted.

【0032】上記系統において、第4中間熱交換器15
の外管出口は精留塔30の入口に接続されている。そし
て、精留塔30の頂部にあるガス出口は第5中間熱交換
器21及び絞り18を介して超低温貯蔵庫内に設けられ
た冷却器19の入口に接続されている。精留塔30の底
部にある液出口は第5絞り22を介して第5中間熱交換
器21の内管入口に接続されている。また、第5中間熱
交換器21の外管出口には液冷媒の一部を精留塔30に
戻すための還流管23が精留塔30上部に接続されてい
る。冷却器19の出口は第5中間熱交換器21を経て第
4中間熱交換器15の内管入口に接続されている。
In the above system, the fourth intermediate heat exchanger 15
The outer tube outlet of is connected to the inlet of the rectification column 30. The gas outlet at the top of the rectification column 30 is connected to the inlet of a cooler 19 provided in the ultralow temperature storage via a fifth intermediate heat exchanger 21 and a throttle 18. The liquid outlet at the bottom of the rectification column 30 is connected to the inner pipe inlet of the fifth intermediate heat exchanger 21 via the fifth throttle 22. A reflux pipe 23 for returning a part of the liquid refrigerant to the rectification column 30 is connected to the upper part of the rectification column 30 at the outer pipe outlet of the fifth intermediate heat exchanger 21. The outlet of the cooler 19 is connected to the inner pipe inlet of the fourth intermediate heat exchanger 15 via the fifth intermediate heat exchanger 21.

【0033】次に精留塔30の構造の一例及び作用につ
いて図2(a)及び(b)によって説明する。図におい
て、精留塔30の塔内は適当な段数に目皿板31によっ
て仕切られ、目皿板31には小さな孔32が無数に穿設
されている。また、目皿板31の片すみに溢流管33が
取付けられており下段の上に出るようになっている。そ
して、塔の途中の段に入口34、頂部にガス出口35、
底部に液出口36、塔の最上段に還流液入口37が設け
られている。
Next, an example of the structure and operation of the rectification column 30 will be described with reference to FIGS. 2 (a) and 2 (b). In the figure, the inside of the rectification column 30 is partitioned by an appropriate number of plate plates 31, and a large number of small holes 32 are formed in the plate plate 31. Further, an overflow pipe 33 is attached to one end of the perforated plate 31 so that the overflow pipe 33 comes out above the lower stage. And, an inlet 34 is provided at a stage in the middle of the tower, a gas outlet 35 is provided at the top,
A liquid outlet 36 is provided at the bottom, and a reflux liquid inlet 37 is provided at the top of the tower.

【0034】しかして、第3中間熱交換器12及び第4
気液分離器14によるR14分留操作によって大部分の
R14が液化分離され、抽出された残り若干のR14を
含むR50のガス状混合冷媒は第4中間熱交換器15に
流入し、ここで冷却されその一部が凝縮液化し気液二相
の状態となる(従来はこの状態で補助冷却器17、絞り
18を経て冷却器19に供給されていた)。そして、こ
の状態で精留塔30内に入口34から流入する。
Thus, the third intermediate heat exchanger 12 and the fourth
Most of R14 is liquefied and separated by the R14 fractional distillation operation by the gas-liquid separator 14, and the R50 gaseous mixed refrigerant containing a small amount of the remaining R14 flows into the fourth intermediate heat exchanger 15 and is cooled there. Then, a part thereof is condensed and liquefied to be in a gas-liquid two-phase state (conventionally, in this state, the gas was supplied to the cooler 19 via the auxiliary cooler 17 and the throttle 18). Then, in this state, it flows into the rectification column 30 through the inlet 34.

【0035】また、第5中間熱交換器21で冷却され液
化した冷媒の一部が還流管23を経て還流液入口37か
ら塔内最上段の上部に流入する。この還流液は目皿板3
1上にたまり、一方の隅から他方の溢流管33に向って
流れ、溢流管33のせきを越えて下段の目皿板31上へ
降りていく。一方、入口34から流入したR14とR5
0との混合冷媒のガス部分は目皿板31上の細孔32を
通り上記の還流液の中を泡をなして通り抜け、さらに上
段に上っていく。
A part of the liquefied refrigerant cooled in the fifth intermediate heat exchanger 21 flows through the reflux pipe 23 from the reflux liquid inlet 37 to the uppermost upper part of the tower. This reflux liquid is a plate 3
The water accumulates on one side, flows from one corner toward the overflow pipe 33 on the other side, goes over the weir of the overflow pipe 33, and descends on the lower plate 31. On the other hand, R14 and R5 flowing from the inlet 34
The gas portion of the mixed refrigerant with 0 passes through the fine holes 32 on the perforated plate 31 and forms a bubble through the above reflux liquid, and further rises to the upper stage.

【0036】このように、ガスの泡が還流液の中をくぐ
り抜けていく。これは物質移動を伴う気液接触操作であ
って、ガス中に残る高沸点成分(R14)が凝縮して液
中に移動し、また、液中の低沸点成分(R50)は前者
の凝縮の潜熱を得て蒸発しガス中に移動する。また、入
口34から流入したR14とR50との混合冷媒の液部
分は目皿板31を下へ下へと流れるうちに低沸点成分
(R50)の再蒸発を行う。
In this way, gas bubbles pass through the reflux liquid. This is a gas-liquid contact operation involving mass transfer, in which the high boiling point component (R14) remaining in the gas condenses and moves into the liquid, and the low boiling point component (R50) in the liquid condenses in the former case. It gets latent heat, evaporates and moves into gas. Further, the liquid portion of the mixed refrigerant of R14 and R50 that has flowed in from the inlet 34 re-evaporates the low boiling point component (R50) while flowing downward through the perforated plate 31.

【0037】このように、精留塔30に流入した混合冷
媒のガス部分は塔内各段を通り抜けるたびごとにガス中
の高沸点成分(R14)が分離され、極めて高い高沸点
成分(R14)の分離度合いを得て、ガス出口35から
流出し第5中間熱交換器21で冷却液化され、絞り18
を経て冷却器19に流入する。このように、精留塔30
内の目皿板31の1段は、一回の再蒸留の機能を有す
る。再蒸留を繰返し行なう連続式の装置がとりもなおさ
ず精留塔である。一方、入口34から流入したR14と
R50との混合冷媒の液部分は下段に下っていく毎に液
中の低沸点成分(R50)が分離され、下段に流下する
還流液とともに、精留塔30内底部に貯留され、液出口
36から流出し第5絞り22で減圧された後、第5中間
熱交換器21の内管に流入し、帰還冷媒と合流する。
As described above, in the gas portion of the mixed refrigerant flowing into the rectification column 30, the high boiling point component (R14) in the gas is separated every time it passes through each stage in the column, and the extremely high boiling point component (R14) is separated. Is obtained, the gas flows out from the gas outlet 35, is cooled and liquefied in the fifth intermediate heat exchanger 21, and the throttle 18
And flows into the cooler 19. In this way, the rectification tower 30
One stage of the inner plate 31 has a function of redistillation once. It is a rectification tower without fail because it is a continuous device that repeats redistillation repeatedly. On the other hand, the low boiling point component (R50) in the liquid is separated every time the liquid portion of the mixed refrigerant of R14 and R50 flowing from the inlet 34 descends to the lower stage, and together with the reflux liquid flowing down to the lower stage, the rectification column 30 It is stored in the inner bottom portion, flows out from the liquid outlet 36, is decompressed by the fifth throttle 22, then flows into the inner pipe of the fifth intermediate heat exchanger 21, and merges with the return refrigerant.

【0038】[0038]

【発明の効果】第1の発明においては、混合冷媒の成分
数(例えば5成分)と同一段数(例えば5段)の冷却手
段を具備しているため、最終分離成分(R14)の分離
度合いを高め低沸点成分(R50)の純度を高めること
ができる。この結果、冷却器の出入口での温度差を殆ん
どなくすることができ被冷却体の冷却度合いを高めると
共に冷却温度を安定させることができる。
In the first aspect of the present invention, since the cooling means having the same number of stages (for example, 5 stages) as the number of components (for example, 5 components) of the mixed refrigerant is provided, the degree of separation of the final separated component (R14) can be improved. The purity of the low boiling point component (R50) can be increased. As a result, the temperature difference between the inlet and outlet of the cooler can be almost eliminated, the degree of cooling of the object to be cooled can be increased, and the cooling temperature can be stabilized.

【0039】第2の発明においては、第1の発明におけ
る最終段気液分離器の代りに精留塔が設けられているた
め、第1の発明より一層低沸点成分(R50)の純度を
高めることができる。この結果、第1の発明と同様の効
果を一層高めることができる。
In the second invention, since the rectification column is provided in place of the final-stage gas-liquid separator in the first invention, the purity of the low boiling point component (R50) is further increased as compared with the first invention. be able to. As a result, the same effect as that of the first invention can be further enhanced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の第1形態に係る冷凍装置の冷媒
系統図。
FIG. 1 is a refrigerant system diagram of a refrigeration apparatus according to a first embodiment of the present invention.

【図2】本発明の実施の第2形態に係る冷凍装置の冷媒
系統図。
FIG. 2 is a refrigerant system diagram of a refrigerating apparatus according to a second embodiment of the present invention.

【図3】同系統に用いられる精留塔の図であり、(a)
は縦断面図、(b)は(a)のB部詳細図。
FIG. 3 is a diagram of a rectification column used in the same system, (a)
Is a longitudinal sectional view, and (b) is a detailed view of a portion B of (a).

【図4】従来の冷凍装置の冷媒系統図。FIG. 4 is a refrigerant system diagram of a conventional refrigeration system.

【符号の説明】[Explanation of symbols]

1 圧縮機 3 凝縮器 5,8,11,14,50 気液分離器 6,9,12,15,21 中間熱交換
器 7,10,13,16,22 絞り機構 19 冷却器 30 精留塔 1S,2S,3S,4S,5S,5S’ 冷却手段
1 Compressor 3 Condenser 5,8,11,14,50 Gas-liquid separator 6,9,12,15,21 Intermediate heat exchanger 7,10,13,16,22 Throttling mechanism 19 Cooler 30 Fractionation tower 1S, 2S, 3S, 4S, 5S, 5S 'Cooling means

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 沸点の異なる複数種数の冷媒からなる混
合冷媒を封入してなり、この混合冷媒を圧縮する圧縮機
と、この圧縮機で圧縮された高温高圧の混合冷媒を冷却
する凝縮器と、この冷却され一部が液化した混合冷媒を
主として高沸点液冷媒と残留ガス冷媒に分離する気液分
離器とこの気液分離器で分離された液冷媒を減圧する絞
り機構と上記気液分離器で分離された残留ガス冷媒を上
記絞り機構によって減圧された液冷媒及び帰還ガス冷媒
と熱交換させて冷却する中間熱交換器とからなり高沸点
冷媒から順次低沸点冷媒を分離して冷却する複数段の冷
却手段と、最終段の冷却手段で冷却された低沸点液冷媒
を減圧した後蒸発させる冷却器と、この冷却器で冷却作
用を果した後流出した冷媒を逆に前記最終段の中間熱交
換器から順次第1段の中間熱交換器までを経由して上記
圧縮機へ帰還させる管路を具備してなる冷凍装置におい
て、混合冷媒の成分数と同一段数の上記冷却手段を備え
たことを特徴とする冷凍装置。
1. A compressor for enclosing a mixed refrigerant composed of a plurality of kinds of refrigerants having different boiling points, and a compressor for compressing the mixed refrigerant, and a condenser for cooling the high-temperature and high-pressure mixed refrigerant compressed by the compressor. A gas-liquid separator for separating the cooled and partially liquefied mixed refrigerant into a high-boiling-point liquid refrigerant and a residual gas refrigerant, and a throttle mechanism for decompressing the liquid refrigerant separated by the gas-liquid separator, and the gas-liquid. It consists of an intermediate heat exchanger that cools the residual gas refrigerant separated by the separator by exchanging heat with the liquid refrigerant decompressed by the throttling mechanism and the return gas refrigerant. A plurality of stages of cooling means, a cooler for depressurizing and evaporating the low-boiling-point liquid refrigerant cooled by the cooling means of the final stage, and a refrigerant flowing out after performing the cooling action in this cooler, on the contrary to the final stage First stage from the intermediate heat exchanger In the refrigerating apparatus having a pipeline for returning to the compressor via the intermediate heat exchanger, the refrigerating apparatus is provided with the same number of cooling means as the number of components of the mixed refrigerant.
【請求項2】 最終段の前段の上記冷却手段で高沸点冷
媒の大部分が分離され冷却され一部が液化した混合冷媒
を受入れこれを塔内で再蒸留を繰返し高純度の低沸点冷
媒と高沸点液冷媒とに分離する精留塔と、この精留塔で
分離された上記液冷媒を減圧する絞り機構と、上記精留
塔で分離された上記高純度低沸点ガス冷媒を上記絞り機
構によって減圧された液冷媒及び帰還ガス冷媒と熱交換
させて冷却する中間熱交換器と、この中間熱交換器で冷
却され液化した冷媒の一部を上記精留塔に戻す還流管と
を備えてなる最終段冷却手段を具備したことを特徴とす
る請求項1に記載の冷凍装置。
2. A mixed refrigerant in which most of the high boiling point refrigerant is separated by the cooling means in the preceding stage of the final stage and cooled and a part of which is liquefied is received, and this is redistilled repeatedly in the column to obtain a high purity low boiling point refrigerant. A rectification column that separates into a high-boiling-point liquid refrigerant, a throttling mechanism that depressurizes the liquid refrigerant that is separated in the rectification column, and the high-purity low-boiling-point gas refrigerant that is separated in the rectification column is the throttling mechanism. An intermediate heat exchanger that cools the liquid refrigerant and the return gas refrigerant that have been decompressed by heat exchange, and a reflux pipe that returns a part of the liquefied refrigerant that is cooled by the intermediate heat exchanger to the rectification tower. The refrigerating apparatus according to claim 1, further comprising:
JP22019295A 1995-08-29 1995-08-29 Refrigerating device Withdrawn JPH0960992A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22019295A JPH0960992A (en) 1995-08-29 1995-08-29 Refrigerating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22019295A JPH0960992A (en) 1995-08-29 1995-08-29 Refrigerating device

Publications (1)

Publication Number Publication Date
JPH0960992A true JPH0960992A (en) 1997-03-04

Family

ID=16747333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22019295A Withdrawn JPH0960992A (en) 1995-08-29 1995-08-29 Refrigerating device

Country Status (1)

Country Link
JP (1) JPH0960992A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999022186A1 (en) * 1997-10-27 1999-05-06 Yuanming Yi Method of refrigeration purification and power generation of industrial waste gas and apparatus therefor
CN113701382A (en) * 2020-08-31 2021-11-26 中国科学院理化技术研究所 Mechanical compression type driven multistage supersonic speed low-temperature refrigeration system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999022186A1 (en) * 1997-10-27 1999-05-06 Yuanming Yi Method of refrigeration purification and power generation of industrial waste gas and apparatus therefor
CN113701382A (en) * 2020-08-31 2021-11-26 中国科学院理化技术研究所 Mechanical compression type driven multistage supersonic speed low-temperature refrigeration system

Similar Documents

Publication Publication Date Title
JP3939725B2 (en) Self-cleaning cryogenic system
US6601406B1 (en) Methods and apparatus for high propane recovery
EP0948723B1 (en) Self-cleaning cryogenic refrigeration system
CN101501431B (en) Air separation method
CN108955084B (en) Mixed refrigerant system and method
Bruinsma et al. Heat pumps in distillation
US20060260358A1 (en) Gas separation liquefaction means and processes
AU701090B2 (en) Method and installation for the liquefaction of natural gas
JP5197820B2 (en) Refrigeration cycle equipment
RU2009105108A (en) METHOD FOR LIQUIDING THE FLOW OF HYDROCARBONS AND A DEVICE FOR ITS IMPLEMENTATION
JPH09170875A (en) Low-temperature method and equipment for manufacturing oxygen product
EP0636576A1 (en) Ultra-high purity nitrous oxide producing method and unit
JPH1062039A (en) Oil separator of cooler and refrigeration system
IE20190043A1 (en) N2 generator with argon co-production
JP2009030966A (en) Method and device for producing argon by low-temperature air separation
CN117287872B (en) Composite condensation evaporator and application thereof
JPH0960992A (en) Refrigerating device
EP0524197B1 (en) Vapor compression cycle with apparatus for expanding the temperature glide for use with non-azeotropic working fluid mixture
JPH0678851B2 (en) Refrigeration equipment
JP2004019995A (en) Refrigeration device
JP3306518B2 (en) Method and apparatus for condensing and separating gas containing low boiling impurities
RU2175949C2 (en) Method of cleaning carbon dioxide from low-boiling impurities
JP2711879B2 (en) Low temperature refrigerator
JP2003314908A (en) Low-temperature refrigerating machine
US10203155B2 (en) Method and device for condensing a first fluid rich in carbon dioxide using a second fluid

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20021105