JPH0959703A - Operation of blast furnace - Google Patents

Operation of blast furnace

Info

Publication number
JPH0959703A
JPH0959703A JP21189595A JP21189595A JPH0959703A JP H0959703 A JPH0959703 A JP H0959703A JP 21189595 A JP21189595 A JP 21189595A JP 21189595 A JP21189595 A JP 21189595A JP H0959703 A JPH0959703 A JP H0959703A
Authority
JP
Japan
Prior art keywords
hot metal
concn
furnace
tio
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21189595A
Other languages
Japanese (ja)
Other versions
JP3858285B2 (en
Inventor
Masahide Yoshikawa
政秀 吉川
Takeshi Sasaki
剛 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP21189595A priority Critical patent/JP3858285B2/en
Publication of JPH0959703A publication Critical patent/JPH0959703A/en
Application granted granted Critical
Publication of JP3858285B2 publication Critical patent/JP3858285B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture Of Iron (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain both of the protection of a furnace bottom refractory and the stable operation of a blast furnace by deciding TiO2 charging quantity based on Si concn. in molten iron while controlling the Ti concn. in the molten iron. SOLUTION: At the time of rising the Ti concn. in the molten iron by charging the TiO2 source into the blast furnace, it is necessary to adjust this charging quantity so as to obtain the viscosity of molten iron, i.e., the Ti concn. in this critical concn. range. For example, in the case of adding 15kg/tp of TiO2 source, the Ti concn. is increased accompanying the increase of the Si concn. under relation of the Si concn. and the Ti concn. Then, the TiO2 charging quantity is decided based on the Si concn. in the molten iron while controlling the Ti concn. in the molten iron so as to obtain within the critical concn. range decided from the predetermined relation of the viscosity of the molten iron and the Ti concn. in the molten iron. By this method, at the time of charging the TiO2 source into the blast furnace, the unstable furnace condition of iron tapping trouble, etc., caused by excessive rising of the viscosity of the molten iron can be avoided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高炉炉底耐火物の損耗
を防止するためTiO2源を高炉に投入する高炉操業方法、
特にTiO2源を高炉に投入する際に、過度の溶銑粘度上昇
による出銑トラブル等の炉況不安定を回避することので
きる高炉操業方法に関する。
BACKGROUND OF THE INVENTION The present invention relates to a method for operating a blast furnace, in which a TiO 2 source is introduced into the blast furnace in order to prevent the blast furnace bottom refractory from being damaged.
In particular, the present invention relates to a blast furnace operating method capable of avoiding instability of the furnace condition such as tapping trouble due to excessive increase in hot metal viscosity when a TiO 2 source is charged into the blast furnace.

【0002】[0002]

【従来の技術】近年、製銑コスト低減の観点から、高炉
の長寿命化が重要な課題となっている。高炉の寿命を左
右する要因の一つに炉底部耐火物の損耗が挙げられる。
炉底部の場合、常に高温の溶銑が存在するような環境で
あるため、シャフト部と違い高炉操業中の休風時に補修
するような技術がなく、解決すべき多くの問題がある。
2. Description of the Related Art In recent years, extending the life of a blast furnace has become an important issue from the viewpoint of reducing the cost of ironmaking. One of the factors that influence the life of a blast furnace is the wear of the refractory at the bottom of the furnace.
In the case of the bottom of the furnace, since the environment is such that hot metal is always present, unlike the shaft part, there is no technique for repairing when the wind blows during blast furnace operation, and there are many problems to be solved.

【0003】炉底部耐火物の保護技術としては、従来よ
り炉底冷却強化と同時に炉内へのTiO2源 (以下、単にTi
O2ということもある) の投入が行なわれてきた。高炉に
投入されたTiO2は高炉内で還元されて溶銑中に移行し、
その一部はTiN とTiC との固溶体、つまり赤銅色のチタ
ンベアとなる。この固溶体は融点が2000℃以上と高いた
め、炉底側壁耐火物の損耗部に固着して炉底を保護する
のである。現象的には溶銑へのTiO2投入によって溶銑粘
度をある一定値以上に上昇させることでそのようなチタ
ンベアの固着を促進させるのである。
As a technique for protecting the refractory at the bottom of the furnace, there has been a conventional method for strengthening the cooling of the bottom of the furnace and at the same time, for the source of TiO 2 (hereinafter simply referred to as Ti
Introduction of O 2 may be called) have been made. The TiO 2 charged into the blast furnace is reduced in the blast furnace and transferred to the hot metal,
Part of it becomes a solid solution of TiN and TiC, that is, titanium copper bear of red copper color. Since this solid solution has a high melting point of 2000 ° C. or higher, it adheres to the wear part of the refractory material on the side wall of the furnace bottom to protect the furnace bottom. Phenomenon is that by admixing TiO 2 into the hot metal, the viscosity of the hot metal is increased to a certain value or more to promote the adhesion of such titanium bare.

【0004】したがって、従来にあっては、炉底に損耗
が見られるとその領域の温度が上昇することから、炉底
に設けた温度計によって炉底温度を常時監視し、温度の
上昇が見られたら、TiO2源の投入を行うことによって炉
底の保護を行ってきている。
Therefore, in the conventional case, when the bottom of the furnace is worn, the temperature of the area rises. Therefore, the temperature of the bottom of the furnace is constantly monitored by a thermometer provided on the bottom of the furnace, and the temperature rise is observed. When this happens, the bottom of the furnace has been protected by introducing a TiO 2 source.

【0005】ところで、従来にあっても、このような高
炉炉底保護を目的にした高炉操業方法が提案されてお
り、例えば特公平6−4887号公報や、特開平4−297511
号公報等では、TiO2とともにコークスや金属( 金属酸化
物) を吹き込む方法が開示されている。
By the way, even in the past, a blast furnace operating method for the purpose of protecting the bottom of the blast furnace has been proposed, for example, Japanese Patent Publication No. 6-4887 and JP-A-4-297511.
Japanese Patent Laid-Open Publication No. 9-242242 discloses a method of blowing coke or metal (metal oxide) together with TiO 2 .

【0006】しかし、いずれの場合にも、基本的操作と
しては、炉底温度が上昇し炉底耐火物の損耗が懸念され
る場合には、TiO2投入量を単に増大させることで対処し
ている。例えば、耐火物損耗が激しく炉底保護を重視す
る場合、TiO2投入量を20kg/ptと大きく増加させること
もある。
However, in any case, as a basic operation, when the temperature of the bottom of the furnace rises and the wear of the bottom refractory is feared, it is possible to deal with it by simply increasing the input amount of TiO 2. There is. For example, when refractory wear is severe and importance is attached to the protection of the hearth, the TiO 2 input amount may be significantly increased to 20 kg / pt.

【0007】しかしながら、その結果、多量のTiが溶銑
中に分配され、溶銑中Ti濃度が過度に上昇してしまうこ
とがある。溶銑中Ti濃度が上昇すると溶銑粘度の上昇は
避けられず、そしてそのように溶銑中Ti濃度、つまり溶
銑粘度が過度に上昇すると、溶銑がスムースに流れない
ことになり、出銑トラブルにつながり、高炉操業トラブ
ルを招くこととなる。
However, as a result, a large amount of Ti may be distributed in the hot metal and the Ti concentration in the hot metal may rise excessively. When the Ti concentration in the hot metal increases, the increase in the hot metal viscosity cannot be avoided, and when the Ti concentration in the hot metal, that is, the hot metal viscosity increases excessively, the hot metal does not flow smoothly, leading to tapping trouble, Blast furnace operation problems will be caused.

【0008】逆に、TiO2投入量が余り少ない場合には、
溶銑中Ti濃度がさほど上昇せず、溶銑粘度が狙ったほど
上がらず、炉底保護に効果が現れないこともあり、この
場合、炉底保護のためにさらにTiO2投入量を増大させる
必要がでてくる。しかもその間、炉底保護は行われない
ことになり、場合によっては重大事故につながる可能性
もある。したがって、現状では時として操業度の低下を
もたらすことはあっても多量のTiO2量を投入することで
炉底保護を図っている。
On the contrary, when the amount of TiO 2 input is too small,
In some cases, the Ti concentration in the hot metal does not rise so much, the viscosity of the hot metal does not rise as much as desired, and there is no effect on the protection of the furnace bottom.In this case, it is necessary to further increase the amount of TiO 2 input to protect the furnace bottom. Come out. Moreover, during that time, the bottom protection will not be performed, which may lead to a serious accident in some cases. Therefore, at present, even if it sometimes causes a decrease in the operating rate, a large amount of TiO 2 is added to protect the bottom of the furnace.

【0009】[0009]

【発明が解決しようとする課題】本発明の目的は、炉底
耐火物保護のためTiO2投入量を増大させるに際し、所定
の溶銑粘度の上昇を図るとともに、過度の溶銑粘度上昇
による出銑トラブル等の炉況悪化そして高炉操業度低下
を回避する技術を開発することにある。本発明の具体的
目的は、炉底耐火物保護のために高炉にTiO2源を投入す
る際に、その投入量を管理して高炉安定操業を実現する
技術を開発することである。
SUMMARY OF THE INVENTION An object of the present invention is to increase a predetermined amount of TiO 2 to protect a furnace bottom refractory and to increase a predetermined hot metal viscosity, and to prevent a tapping trouble due to an excessive increase in hot metal viscosity. It is to develop the technology to avoid the deterioration of the furnace condition and the deterioration of the blast furnace operating rate. A specific object of the present invention is to develop a technique for controlling the amount of the TiO 2 source when the TiO 2 source is charged to the blast furnace for the purpose of protecting the furnace bottom refractory and realizing a stable operation of the blast furnace.

【0010】[0010]

【課題を解決するための手段】ここに、本発明者らは、
上述の目的達成のために種々検討を重ね、溶銑中のTiの
挙動がSiと似ていることに注目し、炉底保護のために高
炉にTiO2源を投入するに際し、溶銑中Siレベル (炉熱レ
ベル) によりTiO2源投入後の溶銑中Ti濃度をある程度把
握できることを見い出した。
Here, the present inventors
Various studies were conducted in order to achieve the above-mentioned object, and attention was paid to the fact that the behavior of Ti in the hot metal is similar to that of Si.When introducing a TiO 2 source into the blast furnace to protect the furnace bottom, the Si level in the hot metal ( It was found that the Ti concentration in the hot metal after charging the TiO 2 source can be understood to some extent by the furnace heat level).

【0011】すなわち、TiO2源投入によって増加する溶
銑中Ti濃度は、そのときの溶銑Siレベル、つまり炉熱レ
ベルによって決定でき、したがって、所定の溶銑粘度上
昇を実現するための投入TiO2量を溶銑Siレベルに応じて
決定できることを知り、本発明を完成した。
That is, the Ti concentration in the hot metal which is increased by introducing the TiO 2 source can be determined by the hot metal Si level at that time, that is, the furnace heat level. Therefore, the amount of TiO 2 input for realizing a predetermined hot metal viscosity increase can be determined. The present invention has been completed, knowing that it can be determined according to the hot metal Si level.

【0012】ここに、本発明は、高炉炉底温度が予め決
められた臨界温度を超えたときに所定量のTiO2を追加投
入する高炉操業方法において、予め求めておいた溶銑粘
度と溶銑Ti濃度との関係から決定される臨界濃度領域内
にくるように溶銑Ti濃度を管理しながら、溶銑Si濃度に
基づいてTiO2投入量を決定することを特徴とする高炉操
業方法である。
Here, in the present invention, in a blast furnace operating method in which a predetermined amount of TiO 2 is additionally charged when the bottom temperature of the blast furnace exceeds a predetermined critical temperature, the hot metal viscosity and the hot metal Ti which are obtained in advance are It is a blast furnace operating method characterized by determining the amount of TiO 2 input based on the hot metal Si concentration while controlling the hot metal Ti concentration so that it falls within a critical concentration region determined from the relationship with the concentration.

【0013】[0013]

【作用】ここで、添付図面を参照しながら、本発明の作
用についてさらに具体的に説明する。図1は、溶銑粘度
と溶銑中Ti濃度との一般的関係を示すグラフである。
The operation of the present invention will be described more specifically with reference to the accompanying drawings. FIG. 1 is a graph showing a general relationship between hot metal viscosity and Ti concentration in hot metal.

【0014】図中、炉底耐火物保護のためには溶銑粘度
はある程度は必要であり、そのときの溶銑粘度を最少必
要粘度と称す。一方、溶銑粘度が過度に上昇すると出銑
トラブルを引き起こすことになり、そのときの限界粘度
を最大限界粘度と称する。具体的にはそれらの値は溶銑
温度によっても変わるが、一般的には最少必要粘度はほ
ぼ5cp、最大限界粘度はほぼ10cpである。そしてそれぞ
れの粘度が得られるときの溶銑中Ti濃度を最少必要Ti濃
度、最大限界Ti濃度と称し、両者の間の濃度領域を臨界
濃度領域と称する。図示例では上述の各粘度に対応して
下限、上限をそれぞれTi:0.1 〜0.15%、Ti:0.20〜0.
25%とする領域が臨界濃度領域である。
In the figure, the hot metal viscosity is required to some extent to protect the furnace bottom refractory, and the hot metal viscosity at that time is called the minimum required viscosity. On the other hand, if the hot metal viscosity rises excessively, tapping trouble will occur, and the limiting viscosity at that time is called the maximum limiting viscosity. Specifically, those values vary depending on the hot metal temperature, but generally, the minimum required viscosity is about 5 cp and the maximum limiting viscosity is about 10 cp. The Ti concentration in the hot metal when the respective viscosities are obtained is called the minimum required Ti concentration and the maximum limit Ti concentration, and the concentration region between them is called the critical concentration region. In the illustrated example, the lower limit and the upper limit are Ti: 0.1 to 0.15% and Ti: 0.20 to 0.
The region of 25% is the critical concentration region.

【0015】すなわち、高炉にTiO2源を投入して溶銑中
Ti濃度を上昇させる際にはこの臨界濃度領域に溶銑粘
度、つまりTi濃度がくるようにその投入量を調整する必
要がある。
That is, the TiO 2 source was charged into the blast furnace to produce hot metal.
When increasing the Ti concentration, it is necessary to adjust the input amount so that the hot metal viscosity, that is, the Ti concentration falls within this critical concentration region.

【0016】図2は、一定量のTiO2源を投入した場合の
溶銑中Si濃度と溶銑中Ti濃度との関係を示すグラフであ
り、図中、例えばTiO2源を15Kg/pt 添加したとすると、
そのときのSi濃度とTi濃度との関係は左端のグラフのよ
うになる。溶銑中Si濃度の増加に伴ってTi濃度も増加し
ていくことが分かる。
FIG. 2 is a graph showing the relationship between the Si concentration in the hot metal and the Ti concentration in the hot metal when a fixed amount of the TiO 2 source is added. In the figure, for example, 15 Kg / pt of the TiO 2 source was added. Then,
The relationship between the Si concentration and the Ti concentration at that time is shown in the graph at the left end. It can be seen that the Ti concentration also increases as the Si concentration in the hot metal increases.

【0017】すなわち、高炉の装入物中のSiO2は溶銑中
にはSiとして、スラグ中にはSiO2として分配される。こ
の分配比は高炉の炉熱等に支配されており、炉熱が高く
なると溶銑中のSi量が上昇し、逆にスラグ中SiO2量は減
少する。TiO2も上記のSiO2と同様の動きをしており、溶
銑中Si含有量が高い時には溶銑中Ti濃度も上昇する。
That is, SiO 2 in the charge of the blast furnace is distributed as Si in the hot metal and as SiO 2 in the slag. This distribution ratio is governed by the furnace heat of the blast furnace, etc. When the furnace heat rises, the amount of Si in the hot metal rises, while the amount of SiO 2 in the slag decreases. TiO 2 also behaves similarly to the above-mentioned SiO 2, and when the Si content in the hot metal is high, the Ti concentration in the hot metal also rises.

【0018】なお、図には上、下限管理値の間の領域と
して前記臨界濃度領域も記載してあり、すでに述べたよ
うに、溶銑中Ti濃度はこの領域内に規制される。換言す
れば、図1の溶銑粘度と溶銑Ti濃度との関係から決定さ
れる臨界濃度領域内であれば、これらの上限、下限の管
理値は適宜決定すればよい。
In the figure, the critical concentration region is also described as a region between the lower limit control values, and as described above, the Ti concentration in the hot metal is regulated within this region. In other words, if within the critical concentration range determined from the relationship between the hot metal viscosity and the hot metal Ti concentration in FIG. 1, these upper and lower control values may be appropriately determined.

【0019】したがって、例えば炉底温度の上昇した時
点での溶銑中Si濃度が0.30%であったとすると、そのと
きに溶銑中Ti濃度が上述の臨界濃度領域内にくるにはTi
O2源投入量は15Kg/pt としなければならない。もちろ
ん、投入量をさらに細分化しておけばさらに13キロ程度
の投入量でも許容されることが分かる。
Therefore, for example, if the Si concentration in the hot metal at the time when the furnace bottom temperature rises is 0.30%, at that time, the Ti concentration in the hot metal must be within the above-mentioned critical concentration region.
The amount of O 2 source input must be 15 kg / pt. Of course, if the input amount is further subdivided, it can be seen that an input amount of about 13 kg is acceptable.

【0020】そして、15キロの投入を続けていると、Si
量の変化如何によっては、例えば、Si量が上昇して0.45
%以上になると溶銑中Ti濃度は上記臨界濃度領域を外れ
てしまうので、今度はTiO2源の投入量を例えば10Kg/pt
に変更するのである。Si量が低下するときは逆の操作を
行う。以下、同様にして常に、溶銑中Si濃度を監視しな
がら、投入TiO2量を制御するのである。本発明は以上の
ような原理によってTiO2源の投入量を制御するのである
が、その具体的操作は次のようにして行う。
Then, if 15 kilograms are continuously input, Si
Depending on how the amount changes, for example, the amount of Si increases to 0.45
%, The Ti concentration in the hot metal deviates from the above critical concentration range, so the input amount of the TiO 2 source is, for example, 10 Kg / pt.
It is changed to. When the Si content decreases, the reverse operation is performed. In the same manner, the amount of input TiO 2 is controlled while constantly monitoring the Si concentration in the hot metal. The present invention controls the input amount of the TiO 2 source on the basis of the above principle. The specific operation is performed as follows.

【0021】まず、高炉炉底温度を常時監視することに
より、その温度が予め決められた臨界温度を超えたこと
を検出する。なお、通常は、高炉投入原料の中には常に
一定量のTiO2が含有されており、そのような状態で高炉
操業を続けているのである。特にTiO2含有量が多い鉱石
を高炉に投入することをしない。
First, by constantly monitoring the bottom temperature of the blast furnace, it is detected that the temperature exceeds a predetermined critical temperature. Normally, the blast furnace feedstock always contains a certain amount of TiO 2 , and the blast furnace operation is continued in such a state. Especially, the ore having a high TiO 2 content is not charged into the blast furnace.

【0022】しかし、炉底温度が上昇して前述の臨界温
度を越えたときには、まず、本発明にしたがって、高炉
原料にTiO2含有量の多い鉱石を加えて高炉に投入するか
あるいは、羽口よりTiO2源鉱石を吹き込むことで高炉に
投入する。なお、両者の投入形態を含めて本明細書では
「高炉に投入する」という。そのとき、まず、粘度上昇
による出銑トラブル等の炉況不安定を回避するため、目
標となる溶銑中Tiの臨界濃度領域を決定する。これは最
大臨界粘度と最少必要粘度との間の量であればよく、そ
の間において適宜設定することでそれに相当する臨界濃
度領域を決定しておく。一方、溶銑中Si量を検出し、あ
らかじめ求めておいた溶銑中Si濃度とTi濃度との関係に
基づいて、Ti濃度が臨界濃度領域内にくるように投入す
べきTiO2源の量を決定する。そして、TiO2投入量を、溶
銑Siレベル (炉熱レベル) に応じて、常に上述の臨界濃
度領域内にくるように調整するのである。
However, when the furnace bottom temperature rises and exceeds the above-mentioned critical temperature, first, according to the present invention, ore having a high TiO 2 content is added to the blast furnace raw material and charged into the blast furnace, or the tuyere The TiO 2 source ore is blown into the blast furnace. In addition, in the present specification, including both charging modes, it is referred to as “charging into the blast furnace”. At that time, first, the target critical concentration region of Ti in the hot metal is determined in order to avoid instability of the furnace condition such as tapping trouble due to viscosity increase. This may be an amount between the maximum critical viscosity and the minimum required viscosity, and the critical concentration region corresponding to it may be determined by appropriately setting the amount between them. On the other hand, the amount of Si in the hot metal is detected, and the amount of TiO 2 source to be added so that the Ti concentration is within the critical concentration region is determined based on the relationship between the Si concentration in the hot metal and the Ti concentration that was previously obtained. To do. Then, the TiO 2 input amount is adjusted according to the hot metal Si level (furnace heat level) so that it is always within the above-mentioned critical concentration region.

【0023】そして、最後に炉底温度が低下したなら
ば、TiO2源の投入を停止し、再び定常操業に戻るのであ
る。したがって、本発明によれば、炉底保護の目的でTi
O2源を投入する際、溶銑中のSiレベル、つまり炉熱レベ
ルにあわせてTiO2投入量を管理すれば、TiO2量を増大さ
せるときに溶銑粘度が過度に上昇するために起こる炉況
トラブルを回避できるのである。
Then, when the temperature of the bottom of the furnace finally decreases, the supply of the TiO 2 source is stopped and the normal operation is resumed. Therefore, according to the present invention, Ti
When the TiO 2 input amount is controlled according to the Si level in the hot metal when the O 2 source is input, that is, the furnace heat level, the furnace condition occurs because the hot metal viscosity increases excessively when the TiO 2 amount is increased. You can avoid trouble.

【0024】また、本発明によれば、溶銑Siレベルが高
い炉熱レベルの時に炉底温度が上昇した場合などには、
従来法ではTiO2投入量をしばしば上げ過ぎてしまうが、
そのようなときに生じる操業上のトラブルは効果的に防
止できる。
Further, according to the present invention, when the furnace bottom temperature rises when the hot metal Si level is high and the furnace bottom temperature rises,
In the conventional method, the amount of TiO 2 input is often raised too much,
Operational problems that occur at such times can be effectively prevented.

【0025】かくして、安定操業維持のため、溶銑中Si
濃度によってTiO2投入量を管理することによってそのよ
うな操業上のトラブルも回避が可能となるのである。次
に、実施例のよって上述のような本発明の作用効果をさ
らに具体的に説明する。
Thus, in order to maintain stable operation, Si in the hot metal is
By controlling the amount of TiO 2 input according to the concentration, such operational troubles can be avoided. Next, the function and effect of the present invention as described above will be described more specifically by way of examples.

【0026】[0026]

【実施例】本例では、炉底の臨界温度を200 ℃に設定
し、炉底温度が200 ℃を超えた時点で本発明にしたがっ
て、高炉原料に対するTiO2源の投入量を制御した。この
とき、予め図1の関係から図2の関係を求めておいた。
EXAMPLE In this example, the critical temperature of the bottom of the furnace was set to 200 ° C., and when the temperature of the bottom of the furnace exceeded 200 ° C., the input amount of the TiO 2 source to the blast furnace raw material was controlled according to the present invention. At this time, the relationship of FIG. 2 was previously obtained from the relationship of FIG.

【0027】(実施例1) 炉底温度が臨界温度の200 ℃を超えたため、炉底耐火
物保護のためTiO2源投入開始を決断。 ↓ このとき溶銑Siレベルは0.30%以下と低目であったた
め、図2に示す関係からTiO2投入量を少しあげる程度
(装入TiO2量8〜10kg/up)では、溶銑中Ti濃度もあまり
上昇せず、炉底保護効果が薄いと判断し、大きくTiO2
入量をあげた。 ↓ の理由によりTiO2投入量を20kg/pt と大きく上昇
させた。
Example 1 Since the furnace bottom temperature exceeded the critical temperature of 200 ° C., it was decided to start feeding a TiO 2 source to protect the furnace bottom refractory. ↓ At this time, since the hot metal Si level was low at 0.30% or less, the amount of TiO 2 input was increased a little from the relationship shown in FIG.
With (charged TiO 2 amount of 8 to 10 kg / up), the Ti concentration in the hot metal did not increase so much, and it was judged that the effect of protecting the furnace bottom was weak, so the amount of TiO 2 added was increased. Due to the reason ↓, the input amount of TiO 2 was greatly increased to 20 kg / pt.

【0028】以上の効果より、次の結果が得られた。 (i) 炉底部に凝固層が形成され、炉底温度が下降した
(炉底耐火物保護ができた) 。 (ii)過度の溶銑中Ti濃度の上昇もなく操業上のトラブル
もなかった。
From the above effects, the following results were obtained. (i) A solidified layer was formed at the bottom of the furnace and the temperature of the furnace bottom dropped
(The furnace bottom refractories were protected). (ii) There was no excessive increase in the Ti concentration in the hot metal and no operational troubles.

【0029】(実施例2) 炉底温度が臨界温度の200 ℃を超えたため、炉底耐
火物保護のため高炉配合原料へのTiO2投入量を増大する
ことを決断。 ↓ 溶銑Siレベルは0.60%台と高目であるため、図2に
示す関係からTiO2投入量を大きくあげると溶銑Tiが過度
にあがり、操業上のトラブルを起こす可能性があると判
断 (操業上のトラブル:溶銑粘度の過度の上昇により、
炉内溶銑が排出困難となり炉内残銑をかかえ、操業度を
低下せざるを得なくなる等) 。 ↓ の理由によりTiO2投入量を10kg/pt と低目に設定
してアップした。
Example 2 Since the furnace bottom temperature exceeded the critical temperature of 200 ° C., it was decided to increase the amount of TiO 2 input to the blast furnace compounded raw material in order to protect the furnace bottom refractory. ↓ Since the hot metal Si level is high at the 0.60% level, it is judged from the relationship shown in Fig. 2 that if the amount of TiO 2 input is increased, the hot metal Ti will rise excessively, which may cause operational troubles (operation. Trouble above: Due to excessive increase in hot metal viscosity,
(It becomes difficult to discharge the hot metal in the furnace, and the residual hot metal in the furnace becomes involved, which inevitably reduces the operating rate.) Due to the reason ↓, the input amount of TiO 2 was set as low as 10 kg / pt and increased.

【0030】以上の効果より、次の結果が得られた。 (i) 溶銑Tiが過度に上昇することなく操業上のトラブル
はなかった (炉底保護を重視し、TiO2投入量を20kg/pt
としていたら溶銑粘度が過度にアップし、操業トラブル
を引き起こした可能性あり) 。
From the above effects, the following results were obtained. (i) There was no operational trouble without excessive rise of hot metal Ti (focusing on the protection of the bottom of the furnace, the amount of TiO 2 input was 20 kg / pt
If so, the hot metal viscosity may have increased excessively, which may have caused operating problems.)

【0031】(ii)炉底部に凝固層が形成され、炉底温度
が下降した (Siレベルが高かったため、TiO2投入量を10
kg/pt にあげる程度で十分に溶銑Ti量が上昇、炉底保護
に効果があった) 。
[0031] (ii) furnace bottom solidified layer is formed, since the furnace bottom temperature is lowered (Si levels were high, the TiO 2 input amount 10
Increasing the amount to kg / pt increased the amount of hot metal Ti sufficiently and was effective in protecting the hearth bottom.)

【0032】[0032]

【発明の効果】以上の例にみる通り、炉底保護を目的に
TiO2投入量をアップするに際し、TiO2投入量を溶銑Siレ
ベルに応じて制御することにより、(1) 炉底耐火物保
護、(2)高炉安定操業の両立を実現することができた。
As shown in the above example, the purpose of protecting the hearth bottom is as follows.
Upon up of TiO 2 input amount, by controlling in accordance with TiO 2 input amount to the hot metal Si level, it was possible to realize (1) hearth refractories protective, (2) both of blast furnace stable operation.

【図面の簡単な説明】[Brief description of drawings]

【図1】溶銑粘度と溶銑中Ti濃度との関係を示すグラフ
である。
FIG. 1 is a graph showing the relationship between hot metal viscosity and Ti concentration in hot metal.

【図2】所定量のTiO2源を投入したときの溶銑中Si濃度
と溶銑中Ti濃度との関係を示すグラフである。
FIG. 2 is a graph showing the relationship between the Si concentration in hot metal and the Ti concentration in hot metal when a predetermined amount of TiO 2 source is added.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 高炉炉底温度が予め決められた臨界温度
を超えたときに所定量のTiO2を追加投入する高炉操業方
法において、予め求めておいた溶銑粘度と溶銑Ti濃度と
の関係から決定される臨界濃度領域内にくるように溶銑
Ti濃度を管理しながら、溶銑Si濃度に基づいてTiO2投入
量を決定することを特徴とする高炉操業方法。
1. In a blast furnace operating method in which a predetermined amount of TiO 2 is additionally charged when the blast furnace bottom temperature exceeds a predetermined critical temperature, the previously determined relationship between hot metal viscosity and hot metal Ti concentration is used. Hot metal so that it falls within the determined critical concentration range
A method for operating a blast furnace, characterized in that while controlling the Ti concentration, the TiO 2 input amount is determined based on the hot metal Si concentration.
JP21189595A 1995-08-21 1995-08-21 Blast furnace operation method Expired - Lifetime JP3858285B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21189595A JP3858285B2 (en) 1995-08-21 1995-08-21 Blast furnace operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21189595A JP3858285B2 (en) 1995-08-21 1995-08-21 Blast furnace operation method

Publications (2)

Publication Number Publication Date
JPH0959703A true JPH0959703A (en) 1997-03-04
JP3858285B2 JP3858285B2 (en) 2006-12-13

Family

ID=16613426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21189595A Expired - Lifetime JP3858285B2 (en) 1995-08-21 1995-08-21 Blast furnace operation method

Country Status (1)

Country Link
JP (1) JP3858285B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1497602A1 (en) * 2002-03-12 2005-01-19 XSTRATA Queensland Limited Control of refractory wear

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1497602A1 (en) * 2002-03-12 2005-01-19 XSTRATA Queensland Limited Control of refractory wear
EP1497602A4 (en) * 2002-03-12 2006-03-08 Xstrata Queensland Ltd Control of refractory wear

Also Published As

Publication number Publication date
JP3858285B2 (en) 2006-12-13

Similar Documents

Publication Publication Date Title
JPH0959703A (en) Operation of blast furnace
JP3465471B2 (en) Blast furnace operation method
CN115572787B (en) Process method for reducing thermal state slag through slag splashing protection
KR960006322B1 (en) Method for removing stuck material on furnace wall in blast-furnace
JPS60228611A (en) Method for operating blast furnace
KR100423420B1 (en) A Method for Preventing Slopping during Converter Blowing
JP2003293024A (en) Method for operating electric furnace
JP5029085B2 (en) How to protect refractories at the bottom of the blast furnace
JP3617464B2 (en) Blast furnace operation method
JPH09209008A (en) Method for protecting furnace bottom part of blast furnace
JPH059515A (en) Method for operating blast furnace
JPS6260442B2 (en)
JPS63171809A (en) Control method for furnace heat in oxygen blast furnace
KR100423513B1 (en) Charging ratio control method for radius direction ore and cokes in blast furnace
JP2022152721A (en) Operation method of blast furnace
JPH0734109A (en) Operating method for blast furnace
KR100362658B1 (en) Electric furnace operation method to stabilize roadbed
JPH04131311A (en) Method for charging raw material in blast furnace
JPH06228616A (en) Operation of blast furnace
JPH0324211A (en) Method for controlling temperature of bottom of blast furnace
JPH10251716A (en) Mud material in blast furnace and method for protecting furnace buttom of blast furnace
CN115406259A (en) Feeding method for controlling temperature of titanium slag furnace bottom
CN117431357A (en) Method for controlling technological operation of large-scale closed submerged arc furnace
JP2001279308A (en) Method for operating blast furnace using metallic iron- based raw material
JP2002069517A (en) Method for operating smelting reduction furnace

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060530

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060829

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060911

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090929

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100929

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100929

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110929

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120929

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120929

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130929

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130929

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130929

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term