JPH0957051A - Double decomposition device - Google Patents

Double decomposition device

Info

Publication number
JPH0957051A
JPH0957051A JP7211533A JP21153395A JPH0957051A JP H0957051 A JPH0957051 A JP H0957051A JP 7211533 A JP7211533 A JP 7211533A JP 21153395 A JP21153395 A JP 21153395A JP H0957051 A JPH0957051 A JP H0957051A
Authority
JP
Japan
Prior art keywords
slurry
tank
gypsum
liquid
magnesium hydroxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7211533A
Other languages
Japanese (ja)
Other versions
JP3505287B2 (en
Inventor
Kenichi Nakagawa
健一 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP21153395A priority Critical patent/JP3505287B2/en
Priority to TW84114111A priority patent/TW301615B/zh
Priority to IN237CA1996 priority patent/IN186107B/en
Publication of JPH0957051A publication Critical patent/JPH0957051A/en
Application granted granted Critical
Publication of JP3505287B2 publication Critical patent/JP3505287B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)

Abstract

PROBLEM TO BE SOLVED: To efficiently separate the formed magnesium hydroxide and gypsum dihydrate, to enhance the utilization rate of the magnesium hydroxide and to increase the recovery of the gypsum dihydrate by providing a thickener and a regulating tank in addition to an agitated reaction tank and partly circulating a liq. reactant. SOLUTION: An aq. soln. contg. magnesium sulfate and sulfuric acid and a basic calcium liq. are charged in an agitated reaction tank (a) and allowed to react with each other to form a slurry of magnesium hydroxide and gypsum dihydrate. A slurry A rich in gypsum dihydrate is transferred to a gypsum separating stage, and a part of the formed slurry D is charged into a thickener (b). The slurry D is concentrated in the thickener (b), the concd. slurry is drawn off from the lower part and returned to the double decomposition tank (a), and the supernatant liq. is transferred to a regulating tank (c). The supernatant liq. is further separated in the tank (c), a liq. B rich in magnesium hydroxide is extracted from the upper part and returned to a desulfurizing stage, and a part of the regulated liq. F rich in gypsum dihydrate is extracted from the lower part and introduced into the thickener (b).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、硫黄酸化物を含む
排ガスを、マグネシウム系脱硫剤を含む処理液で脱硫処
理する脱硫方法中の一工程である複分解工程に使用する
複分解装置に関するものである。
TECHNICAL FIELD The present invention relates to a metathesis apparatus for use in a metathesis step, which is one step in a desulfurization method of desulfurizing exhaust gas containing sulfur oxides with a treatment liquid containing a magnesium-based desulfurizing agent. .

【0002】[0002]

【従来の技術】各種の排ガスの脱硫方法の一つとして、
脱硫剤に水酸化マグネシウムや軽焼酸化マグネシウム等
のマグネシウム系化合物を用いる方法が知られている。
この方法はまず脱硫工程において上記の脱硫剤を含む処
理液に排ガスを接触させ硫黄酸化物を処理液中に吸収さ
せ、次いでこの処理液を酸化工程に導いて空気等の酸素
を含むガスにより酸化して硫酸マグネシウムと硫酸の水
溶液とし、この水溶液をマグネシウム系化合物で中和す
る。中和後の硫酸マグネシウムの水溶液は、これを海や
河川等へそのまま放流するとマグネシウム源や硫酸根の
消費につながり、また放流自体が環境に及ぼす影響を考
えると望ましくない場合もある。
2. Description of the Related Art As one of various desulfurization methods for exhaust gas,
There is known a method of using a magnesium compound such as magnesium hydroxide or light burned magnesium oxide as a desulfurizing agent.
In this method, first, in the desulfurization process, exhaust gas is brought into contact with the treatment liquid containing the desulfurizing agent so that the sulfur oxide is absorbed in the treatment liquid, and then the treatment liquid is guided to an oxidation step to be oxidized by a gas containing oxygen such as air. Then, an aqueous solution of magnesium sulfate and sulfuric acid is prepared, and this aqueous solution is neutralized with a magnesium compound. If the aqueous solution of magnesium sulfate after neutralization is directly discharged to the sea or river, it will lead to consumption of magnesium source and sulfate radicals, and may be undesirable in view of the effect of the discharge itself on the environment.

【0003】上記方法において硫酸マグネシウム水溶液
を放流しない方法が望まれるが、これに関する従来技術
としては、川崎マグネシウム石膏法が知られている(実
用公害防止技術集覧(1)、化学工業社出版、p.1
4)。この方法は脱硫剤に水酸化マグネシウムと水酸化
カルシウムの混合スラリーを用いて脱硫工程で硫黄酸化
物を吸収させ、次いでこの処理液を硫酸によりpHを
2.0−4.0に調整しつつ空気等により酸化すること
により硫酸マグネシウムと二水石膏を生成させ、次いで
沈降分離工程と遠心分離器により二水石膏と硫酸マグネ
シウム水溶液とに分離する。分離された硫酸マグネシウ
ム水溶液は水酸化マグネシウムと水酸化カルシウムの混
合スラリーを含む原料調整工程に循環供給され、ここで
混合スラリー中の水酸化カルシウムの一部と複分解反応
により水酸化マグネシウムと二水石膏が生成し、これと
残部の水酸化カルシウムを含む混合物は脱硫剤として吸
収工程へ循環供給される。しかし、この方法では脱硫液
には二水石膏が混合されてくるため脱硫工程循環用ポン
プや配管のスケール付着が起こり易い欠点がある。
In the above-mentioned method, a method in which an aqueous solution of magnesium sulfate is not discharged is desired, but as a conventional technique related to this, the Kawasaki magnesium gypsum method is known (Practical pollution control technology list (1), Kagaku Kogyo Publishing, p.1
4). In this method, a mixed slurry of magnesium hydroxide and calcium hydroxide is used as a desulfurizing agent to absorb sulfur oxides in a desulfurization process, and then the treatment liquid is adjusted to pH 2.0-4.0 with sulfuric acid and air is added thereto. And the like to generate magnesium sulfate and gypsum dihydrate, and then to separate gypsum dihydrate and an aqueous solution of magnesium sulfate by a sedimentation separation step and a centrifuge. The separated magnesium sulfate aqueous solution is circulated and supplied to a raw material adjusting step including a mixed slurry of magnesium hydroxide and calcium hydroxide, in which a part of the calcium hydroxide in the mixed slurry and the metathesis reaction cause magnesium hydroxide and gypsum dihydrate. Is produced, and the mixture containing this and the balance calcium hydroxide is circulated and supplied to the absorption step as a desulfurizing agent. However, this method has a drawback in that desulfurization solution is mixed with gypsum dihydrate, so that scale deposition on the desulfurization process circulation pump and piping is likely to occur.

【0004】硫酸マグネシウム水溶液を放流しない他の
従来技術として次の方法が開示されている(特公平5−
7045)。酸化工程で生成した硫酸マグネシウムの水
溶液を複分解槽へ導き、これに水酸化カルシウムや生石
灰等を加えて反応させることにより、二水石膏と水酸化
マグネシウムを生成し、これら混合物を湿式分級器等に
導き、ここで水酸化マグネシウムを主とした微粒子スラ
リーと、二水石膏を主とした水酸化マグネシウムを含む
粗粒子スラリーとに分離する。分離した前者の微粒子ス
ラリーは脱硫剤として脱硫工程に循環供給し、後者の粗
粒子スラリーには少量の随伴されてくる水酸化マグネシ
ウムが含まれているので、これを別工程に導き、ここに
脱硫工程より硫黄酸化物を吸収した処理液の一部を供給
して、スラリー中の水酸化マグネシウムと反応させて亜
硫酸マグネシウムに変換し、この亜硫酸マグネシウムを
含む液を沈降分離工程等により二水石膏と分離し、脱硫
工程へ循環供給し脱硫剤として再利用する。
The following method has been disclosed as another conventional technique in which the magnesium sulfate aqueous solution is not discharged (Japanese Patent Publication No.
7045). The aqueous solution of magnesium sulfate generated in the oxidation step is introduced into a double decomposition tank, and calcium hydroxide, quick lime, etc. are added to it to react, producing gypsum dihydrate and magnesium hydroxide, and the mixture is put into a wet classifier, etc. Then, the slurry is separated into a fine particle slurry mainly containing magnesium hydroxide and a coarse particle slurry mainly containing magnesium hydroxide mainly containing dihydrate gypsum. The separated fine particle slurry of the former is circulated and supplied to the desulfurization process as a desulfurizing agent, and the latter coarse particle slurry contains a small amount of accompanying magnesium hydroxide, so this is led to another process and desulfurized there. By supplying a portion of the treatment liquid that has absorbed sulfur oxides from the process, it is converted to magnesium sulfite by reacting with magnesium hydroxide in the slurry, the liquid containing this magnesium sulfite and dihydrate gypsum by sedimentation separation step etc. It is separated and recycled to the desulfurization process and reused as a desulfurizing agent.

【0005】しかしこの方法においては上記亜硫酸マグ
ネシウムは水酸化マグネシウムより溶解度は高いもの
の、生成した亜硫酸マグネシウムの一部は不溶物として
二水石膏とともに系内より分離排出され、マグネシウム
系脱硫剤の再利用率は充分とは言えなかった。
However, in this method, although the above-mentioned magnesium sulfite has a higher solubility than magnesium hydroxide, a part of the produced magnesium sulfite is separated and discharged from the system together with dihydrate gypsum as an insoluble matter, and the magnesium-based desulfurizing agent is reused. The rate was not enough.

【0006】[0006]

【発明が解決しようとする課題】この発明の目的は、前
記複分解反応を行わせる複分解工程において、生成する
水酸化マグネシウムと二水石膏の分離を効率よく行い、
水酸化マグネシウムの利用率を高めると共に、二水石膏
の回収率も高めることのできる複分解装置を提供するこ
とである。
The object of the present invention is to efficiently separate magnesium hydroxide and gypsum dihydrate produced in the metathesis step for carrying out the metathesis reaction.
An object of the present invention is to provide a metathesis device capable of increasing the utilization rate of magnesium hydroxide and the recovery rate of gypsum dihydrate.

【0007】[0007]

【課題を解決するための手段】この発明は、 1.硫黄酸化物を含む排ガスをマグネシウム系脱硫剤を
含む処理液と連続的に気液接触させて排ガス中に含まれ
る硫黄酸化物を吸収除去する下記主工程、 (1)排ガスと脱硫処理液とを接触させて硫黄酸化物を
吸収除去する脱硫工程 (2)硫黄酸化物を吸収した脱硫処理液を空気酸化によ
り硫酸マグネシウムと硫酸の水溶液とする酸化工程 (3)酸化工程で得られた硫酸マグネシウムと硫酸の水
溶液に塩基性カルシウムを加えて、水酸化マグネシウム
と二水石膏のスラリーを生成させる複分解工程および (4)前記複分解工程で生成した二水石膏を系外にとり
出す石膏分離工程 からなる脱硫方法における前記複分解工程で使用する複
分解装置であって、その装置が攪拌反応槽a、シックナ
ーbおよび調整槽cから成り、攪拌反応槽aには攪拌機
を備え、前記酸化工程を経た硫酸マグネシウム又は硫酸
マグネシウムと硫酸とを含む水溶液と、塩基性カルシウ
ム液とが装入されて反応し、水酸化マグネシウムと二水
石膏とのスラリーを生成し、二水石膏に富むスラリー
(A)は排出されて石膏分離工程に移送されるととも
に、生成スラリーの一部(D)は前記シックナーbに装
入され、シックナーbにおいては、前記生成スラリーが
濃縮されて濃縮液が下部から抜き出されて前記複分解槽
aに戻され、上澄液は調整槽cに移送され、調整槽cに
おいては、上記上澄液がさらに分離されて、水酸化マグ
ネシウムに富む液(B)は上部から抜き出されて脱硫工
程に戻され、二水石膏に富む調整液の一部(F)は下部
から抜き出されて前記シックナーbに装入され、(D)
と(F)の量を調節することによりシックナーbの沈降
速度を変え、複分解工程における水酸化マグネシウムと
二水石膏の分離調整を可能にしたことを特徴とする複分
解装置および 2.前記複分解装置が攪拌反応槽a′および調整槽c′
から成り、攪拌反応槽a′は、下端が槽底面に達しない
内筒、および内筒内の液を下方に流動させる攪拌機を有
し、前記酸化工程を経た硫酸マグネシウム又は硫酸とマ
グネシウムと硫酸とを含む水溶液および塩基性カルシウ
ム液は、内筒上部に装入され、攪拌されながら反応して
水酸化マグネシウムと二水石膏のスラリーとなり、内筒
の下部を経て内外筒間の環状部の上方に反応スラリーが
上昇し、攪拌反応槽a′の底部からは二水石膏に富むス
ラリー(A′)が抜き出されて石膏分離工程に移送さ
れ、前記環状部の上部からは水酸化マグネシウムに富む
スラリー(C′)が調整槽c′に移送され、調整槽c′
においては、上記スラリーがさらに分離されて水酸化マ
グネシウムに富む液(B′)は槽上部から抜き出されて
脱硫工程に戻され、二水石膏に富む調整液は槽下部から
抜き出されて前記攪拌反応槽a′の内筒上部に装入さ
れ、(A′)と(C′)の液量比を変えることにより攪
拌反応槽内のスラリーの滞留時間を調節し、複分解工程
における水酸化マグネシウムと二水石膏の分離調整を可
能にしたことを特徴とする複分解装置である。
SUMMARY OF THE INVENTION The present invention provides: The following main step of continuously removing the sulfur oxides contained in the exhaust gas by gas-liquid contacting the exhaust gas containing the sulfur oxides with the treatment liquid containing the magnesium-based desulfurizing agent, and (1) the exhaust gas and the desulfurization treatment liquid Desulfurization step of contacting to absorb and remove sulfur oxides (2) Oxidation step of air-oxidizing the desulfurization treatment liquid having absorbed sulfur oxides to an aqueous solution of magnesium sulfate and sulfuric acid (3) Magnesium sulfate obtained in the oxidation step A desulfurization method comprising a metathesis step of adding basic calcium to an aqueous solution of sulfuric acid to form a slurry of magnesium hydroxide and gypsum dihydrate, and (4) a gypsum separation step of taking out the gypsum dihydrate produced in the metathesis step out of the system. The multi-decomposition device used in the multi-decomposition step in 1., which comprises a stirring reaction tank a, a thickener b and an adjusting tank c. An aqueous solution containing magnesium sulfate or magnesium sulfate and sulfuric acid that has undergone the oxidation step, and a basic calcium solution are charged and reacted to produce a slurry of magnesium hydroxide and gypsum dihydrate, and dihydrate The gypsum-rich slurry (A) is discharged and transferred to the gypsum separation step, and a part (D) of the produced slurry is charged into the thickener b, where the produced slurry is concentrated and concentrated. The liquid is extracted from the lower part and returned to the metathesis tank a, and the supernatant liquid is transferred to the adjusting tank c, and in the adjusting tank c, the supernatant liquid is further separated, and a liquid rich in magnesium hydroxide ( B) is extracted from the upper part and returned to the desulfurization step, and a part (F) of the dihydrate-gypsum-rich adjusting liquid is extracted from the lower part and charged into the thickener b, (D).
1. By controlling the amounts of (F) and (F), the sedimentation rate of thickener b can be changed to enable separation and adjustment of magnesium hydroxide and gypsum dihydrate in the metathesis step, and 1. The multi-decomposition device comprises a stirring reaction tank a ′ and an adjusting tank c ′.
The stirring reaction tank a ′ has an inner cylinder whose lower end does not reach the bottom surface of the tank, and a stirrer for flowing the liquid in the inner cylinder downward, and magnesium sulfate or sulfuric acid and magnesium and sulfuric acid which have undergone the oxidation step. The aqueous solution containing the and the basic calcium liquid are charged in the upper part of the inner cylinder, and react with stirring to form a slurry of magnesium hydroxide and gypsum dihydrate, passing through the lower part of the inner cylinder and above the annular part between the inner and outer cylinders. The reaction slurry rises, and the dihydrate-gypsum-rich slurry (A ') is extracted from the bottom of the stirring reaction tank a'and transferred to the gypsum separating step, and the magnesium hydroxide-rich slurry is discharged from the upper part of the annular portion. (C ') is transferred to the adjusting tank c'and the adjusting tank c'
In the above, the slurry is further separated, the magnesium hydroxide-rich liquid (B ') is withdrawn from the upper part of the tank and returned to the desulfurization step, and the dihydrate-gypsum-rich adjusting liquid is withdrawn from the lower part of the tank. It is charged in the upper part of the inner cylinder of the stirring reaction tank a ', and the residence time of the slurry in the stirring reaction tank is adjusted by changing the liquid volume ratio of (A') and (C '), and magnesium hydroxide in the metathesis process is adjusted. It is a multi-decomposition device characterized by enabling separation and adjustment of gypsum and gypsum dihydrate.

【0008】[0008]

【発明の実施の形態】先ず本発明が属する技術分野であ
る脱硫方法について概要を図面(図3)によって説明す
る(但し、複分解工程の装置は従来法による)。図にお
いて1は脱硫工程の主装置である脱硫塔で、これに排ガ
スG1が装入され、マグネシウム系脱硫剤(Mg(O
H)2 のスラリー)補給タンク10から装入された脱硫
液がポンプで塔上部からシャワー状に流下する間に排ガ
ス中の硫黄酸化物は主として亜硫酸マグネシウムの形で
吸収除去され塔上部より排出する。
BEST MODE FOR CARRYING OUT THE INVENTION First, an outline of a desulfurization method, which is a technical field to which the present invention belongs, will be described with reference to the drawings (FIG. 3) (however, a device for a metathesis process is a conventional method). In the figure, reference numeral 1 denotes a desulfurization tower which is a main device of a desulfurization process, into which exhaust gas G1 is charged, and a magnesium-based desulfurizing agent (Mg (O
H) 2 slurry) While the desulfurization liquid charged from the replenishment tank 10 flows down from the upper part of the tower like a shower by a pump, the sulfur oxides in the exhaust gas are absorbed and removed mainly in the form of magnesium sulfite and discharged from the upper part of the tower. .

【0009】脱硫塔下部の処理液は酸化工程の主装置で
ある酸化槽2に送られ空気で酸化されて、処理液中の亜
硫酸マグネシウムは硫酸マグネシウムと硫酸になる。
The treatment liquid in the lower part of the desulfurization tower is sent to the oxidation tank 2 which is the main unit of the oxidation process and is oxidized by air, so that the magnesium sulfite in the treatment liquid becomes magnesium sulfate and sulfuric acid.

【0010】次に複分解工程の主装置である複分解槽3
に移され、こゝで水酸化カルシウムの原料タンク4から
水酸化カルシウムが装入され、後に詳述する複分解反応
がおきて水酸化マグネシウムと二水石膏のスラリーが生
成する。
Next, the multi-decomposition tank 3 which is the main device of the multi-decomposition process
Then, calcium hydroxide is charged from the raw material tank 4 of calcium hydroxide, and a metathesis reaction described in detail later occurs to generate a slurry of magnesium hydroxide and gypsum dihydrate.

【0011】このスラリーは次いで石膏分離工程の主装
置である沈降分離機8に送られ、こゝで分離された水酸
化マグネシウムスラリーは脱硫塔に戻されて脱硫剤とし
て再使用され、二水石膏は下部から排出され、さらに例
えば遠心分離機で分離され系外にとり出される。
This slurry is then sent to a settling separator 8 which is the main unit of the gypsum separation process, and the magnesium hydroxide slurry separated here is returned to the desulfurization tower and reused as a desulfurizing agent to obtain gypsum dihydrate. Is discharged from the lower part, further separated by, for example, a centrifuge, and taken out of the system.

【0012】前述の複分解工程で行われる複分解反応
は、酸化工程で生成した硫酸マグネシウムの水溶液に水
酸化カルシウムや生石灰等を加えて水酸化マグネシウム
と二水石膏に複分解するもので、次式で表わすことがで
きる。
The metathesis reaction carried out in the metathesis step described above is a metathesis reaction in which magnesium hydroxide and quicklime are added to an aqueous solution of magnesium sulfate produced in the oxidation step to give metathesis into magnesium hydroxide and gypsum dihydrate. be able to.

【0013】MgSO4 +Ca(OH)2 +2H2O → Mg(OH)2
CaSO4・2H2O この工程において生成する水酸化マグネシウムは、前述
のように脱硫工程に戻されて脱硫剤として再利用され、
一方二水石膏は石膏分離工程で分離されて系外にとり出
され別な用途に利用される。したがって、複分解工程で
生成する水酸化マグネシウムと二水石膏のスラリーは効
率よく濃縮分離されることが望ましい。
MgSO 4 + Ca (OH) 2 + 2H 2 O → Mg (OH) 2 +
CaSO 4 · 2H 2 O Magnesium hydroxide produced in this step is returned to the desulfurization step and reused as a desulfurizing agent as described above,
On the other hand, gypsum dihydrate is separated in the gypsum separation process, taken out of the system, and used for another purpose. Therefore, it is desirable that the slurry of magnesium hydroxide and gypsum dihydrate produced in the metathesis process be efficiently concentrated and separated.

【0014】従来の研究によれば、二水石膏は結晶面が
生長し、水酸化マグネシウムは微小な結晶粒子がコロイ
ド状に凝集して生長することが知られており、この知見
から、二水石膏はできるだけ反応系内に長く滞留させて
結晶を大きく生成させ、かつ、攪拌、移送等で結晶の破
壊が起らないようにすること、水酸化マグネシウムは反
応系からできるだけ早くとり出すようにすればよいこと
がわかる。本発明はこの知見を実現できる装置である。
以下に本発明の複分解装置を実施例により説明する。
[0014] According to the conventional research, it is known that gypsum dihydrate has a crystal surface growing, and magnesium hydroxide grows by aggregating fine crystal particles in a colloidal form. Gypsum should be retained in the reaction system as long as possible to form large crystals, and should not be destroyed by stirring, transferring, etc., and magnesium hydroxide should be removed from the reaction system as soon as possible. I understand that it is good. The present invention is an apparatus that can realize this finding.
The multi-decomposition device of the present invention will be described below with reference to examples.

【0015】[0015]

【実施例】【Example】

実施例1 図1は本発明の複分解装置の構成例を示す。この構成例
において装置は攪拌機を備えた攪拌反応槽a、シックナ
ーbおよび調整槽cより成る。図において、攪拌反応槽
aには、不図示の酸化工程を経た硫酸マグネシウムと硫
酸を含む水溶液と、水酸化カルシウムの原料タンク4か
らの10〜30重量%程度の水酸化カルシウム水スラリ
ーとが装入され、さらに後述するシックナーbからの戻
り液も加えられ、攪拌混合しながら前記硫酸マグネシウ
ムと水酸化カルシウムとの複分解反応および硫酸と水酸
化カルシウムとの反応を行わせ、水酸化マグネシウムと
二水石膏の固体粒子を生成させる。反応温度は80℃以
下、好ましくは室温〜60℃である。
Embodiment 1 FIG. 1 shows a structural example of a multi-decomposition device of the present invention. In this structural example, the apparatus comprises a stirring reaction tank a equipped with a stirrer, a thickener b, and an adjusting tank c. In the figure, the stirring reaction tank a is equipped with an aqueous solution containing magnesium sulfate and sulfuric acid that has undergone an oxidation step (not shown), and a calcium hydroxide aqueous slurry of about 10 to 30 wt% from the calcium hydroxide raw material tank 4. Then, a return liquid from a thickener b, which will be described later, is also added, and while being stirred and mixed, a metathesis reaction between the magnesium sulfate and calcium hydroxide and a reaction between sulfuric acid and calcium hydroxide are carried out, and magnesium hydroxide and dihydrate are added. Produce solid particles of gypsum. The reaction temperature is 80 ° C. or lower, preferably room temperature to 60 ° C.

【0016】水酸化カルシウムの水スラリーの供給量
は、攪拌反応槽a中の液のpHが約10〜12程度にな
るように調整するのがよい。なお、この水酸化カルシウ
ムに代えて、生石灰(CaO)や炭酸カルシウムなどの
他の塩基性カルシウム化合物を用いてもよい。
The amount of the calcium hydroxide aqueous slurry supplied is preferably adjusted so that the pH of the liquid in the stirring reaction tank a is about 10-12. Note that other basic calcium compounds such as quick lime (CaO) and calcium carbonate may be used instead of this calcium hydroxide.

【0017】このようにして得られる二種の固体粒子を
含む水スラリーは、ついで槽下部よりその一部(D)が
ポンプP2により抜き出されてシックナーbに供給さ
れ、こゝでスラリーが濃縮され濃縮スラリーは、シック
ナーbの底部からポンプP3により抜き出されて攪拌反
応槽aに戻される。シックナーbの上澄液は調整槽cに
移され、調整槽の液の一部(F)はポンプP4でシック
ナーに戻される。(D)と(F)の量を調節することに
よりシックナーbの液の滞留時間を調整することができ
るため、シックナーの底部から抜き出される液中の二水
石膏の結晶の大きさおよび濃度を調節することができ、
ひいては攪拌反応槽の底部から抜き出しポンプP1によ
り不図示の石膏分離工程に移送される液(A)中の二水
石膏の結晶大きさおよび濃度を高めることができる。
The water slurry containing the two types of solid particles thus obtained is then partially extracted (D) from the lower part of the tank by the pump P2 and supplied to the thickener b, where the slurry is concentrated. The concentrated slurry is extracted from the bottom of the thickener b by the pump P3 and returned to the stirring reaction tank a. The supernatant of the thickener b is transferred to the adjusting tank c, and a part (F) of the liquid in the adjusting tank is returned to the thickener by the pump P4. Since the residence time of the liquid in the thickener b can be adjusted by adjusting the amounts of (D) and (F), the size and concentration of dihydrate gypsum crystals in the liquid extracted from the bottom of the thickener can be adjusted. Can be adjusted,
As a result, the crystal size and concentration of gypsum dihydrate in the liquid (A) transferred from the bottom of the stirring reaction tank to the gypsum separation step (not shown) by the pump P1 can be increased.

【0018】さらに調整槽cの上部から液(B)が抜き
出されポンプP5を経て不図示の脱硫工程に戻されるの
で、液(B)中の二水石膏の含有率はきわめて低くな
る。例えば従来の複分解槽においては、一般に平均粒子
径(長径)が70μm以上通常200μmまでの粗大粒
子に成長し、一方水酸化マグネシウムは1μm以下、通
常0.3〜20μm程度の微粒子となってこれが粒子間
で凝集してみかけ上10〜20μm程度の大きさになる
が、本装置においては、液(A)中の二水石膏は平均1
00μmまでの粗大粒子に成長し、水酸化マグネシウム
は15μmである。 実施例2 図2は本発明の複分解装置の他の構成例を示す。この構
成においては攪拌反応槽a′および調整槽c′から成
る。調整槽c′は実質的に実施例1の調整槽と同じであ
る。攪拌反応槽a′には攪拌機のほかに槽底面に達しな
い内筒5を備え、内筒の上部に供給された液は内筒の上
部から下部へ攪拌移動し内筒の下端と槽の底面との間隙
を通って内外筒間の環状部を上昇するような構造になっ
ている。
Further, since the liquid (B) is extracted from the upper part of the adjusting tank c and returned to the desulfurization step (not shown) via the pump P5, the content of dihydrate gypsum in the liquid (B) becomes extremely low. For example, in a conventional metathesis tank, the average particle size (major axis) generally grows into coarse particles having a particle size of 70 μm or more and usually 200 μm, while magnesium hydroxide has a particle size of 1 μm or less, usually 0.3 to 20 μm. Although it apparently aggregates to a size of about 10 to 20 μm, the average amount of gypsum dihydrate in the liquid (A) is 1 in this device.
It grows to coarse particles up to 00 μm, magnesium hydroxide is 15 μm. Embodiment 2 FIG. 2 shows another structural example of the multi-decomposition device of the present invention. In this structure, it comprises a stirring reaction tank a'and an adjusting tank c '. The adjusting tank c ′ is substantially the same as the adjusting tank of the first embodiment. In addition to the stirrer, the stirring reaction tank a ′ is provided with an inner cylinder 5 that does not reach the bottom of the tank, and the liquid supplied to the upper part of the inner cylinder is stirred and moved from the upper part of the inner cylinder to the lower part of the inner cylinder and the bottom of the tank. The structure is such that the annular portion between the inner and outer cylinders is lifted through the gap between and.

【0019】図において攪拌反応槽a′の内筒の上部に
は不図示の酸化工程を経た硫酸マグネシウムと硫酸を含
む水溶液と、水酸化カルシウムの原料タンク4からの1
0〜30重量%程度の水酸化カルシウム水スラリーとが
装入され、さらに後述する調整槽c′からの戻り液も加
えられ、前述のような流れで移動しながら、実施例1の
攪拌反応槽a内と同様の反応がおこる。このときの水酸
化カルシウムの水スラリーの供給量および反応条件等は
実施例1の場合と同様である。
In the figure, an aqueous solution containing magnesium sulfate and sulfuric acid, which has been subjected to an oxidation process (not shown), is provided at the upper part of the inner cylinder of the stirring reaction tank a ', and 1 from the raw material tank 4 for calcium hydroxide.
About 0 to 30% by weight of calcium hydroxide aqueous slurry was charged, and the return liquid from the adjusting tank c ′ described later was also added. While moving in the above-described flow, the stirring reaction tank of Example 1 The same reaction as in a occurs. At this time, the amount of water slurry of calcium hydroxide supplied and the reaction conditions are the same as in Example 1.

【0020】この攪拌反応槽a′においては反応液の槽
内の流路が長いために生成した二水石膏の結晶は生長し
沈降する。石膏は、攪拌反応槽内の滞留時間を長くすれ
ばするほど成長が進行するので、この部分で滞留時間を
長くすることが好ましい。この反応槽の内外筒環状部の
上部からは二水石膏を若干含み水酸化マグネシウムに富
むスラリー(C′)が調整槽c′に送られる。調整槽
c′ではさらにこのスラリー中の固体成分が分離され二
水石膏をほとんど含まず水酸化マグネシウムに富む液
(B′)は、調整槽c′の上部から抜き出され、ポンプ
P5によって不図示の脱硫工程に脱硫液として戻され
る。調整槽の下部からは水酸化マグネシウムをほとんど
含まず二水石膏に富むスラリーがポンプP4′により攪
拌反応槽a′の内筒上部に戻される。したがって、攪拌
反応槽a′の底部からポンプP1によって抜き出され、
不図示の石膏分離工程に送られる液(A′)中には水酸
化マグネシウムをほとんど含まず、結晶が大きく濃度の
高い二水石膏が含まれる。
In this agitation reaction tank a ', since the flow path of the reaction solution in the tank is long, the crystals of gypsum dihydrate formed grow and settle. Since the growth of gypsum progresses as the residence time in the stirring reaction tank becomes longer, it is preferable to make the residence time longer in this portion. From the upper part of the annular portion of the inner and outer cylinders of this reaction tank, a slurry (C ') containing a little gypsum dihydrate and rich in magnesium hydroxide is sent to the adjusting tank c'. In the adjusting tank c ′, the solid component in the slurry is further separated, and the liquid (B ′) containing almost no gypsum dihydrate and rich in magnesium hydroxide is withdrawn from the upper part of the adjusting tank c ′ and is not illustrated by the pump P5. Is returned to the desulfurization step as desulfurization liquid. From the lower part of the adjusting tank, a slurry containing almost no magnesium hydroxide and rich in gypsum dihydrate is returned to the upper part of the inner cylinder of the stirring reaction tank a'by a pump P4 '. Therefore, it is withdrawn by the pump P1 from the bottom of the stirring reaction tank a ′,
The liquid (A ') sent to the gypsum separation step (not shown) contains dihydrate gypsum containing almost no magnesium hydroxide but having large crystals and a high concentration.

【0021】この実施例においては、(A′)と
(C′)の液量比を変えることにより攪拌槽内のスラリ
ーの滞留時間調節することができる点が特徴である。
This embodiment is characterized in that the residence time of the slurry in the stirring tank can be adjusted by changing the liquid volume ratio of (A ') and (C').

【0022】結果において(A′)、(B′)それぞれ
の着目成分外の成分混入率を10%以下にすることが充
分可能である。上記説明で明らかなように、実施例2に
おいては攪拌反応槽a′中に内筒5を設けることにより
実施例1におけるシックナーbの機能を持たせたもので
ある。一例として攪拌反応槽の処理液量(L)50t/
hr、滞留時間(θ)2.5hr、液の上昇速度(U
t )1.5m/hrの条件では容量(Lv )は125m
3 となる。この条件で実施例1の(a)の槽の直径5.
6m、槽高6m(実効液高さ5m)、シックナーの直径
6.5m、深さ2.5mに対し、実施例2の(a′)に
おいては槽高を同じとして直径8.6mですむことにな
り、6.5mφのシックナーを省くことができるうえ、
シックナー下部のレーキ、ポンプP3などによる二水石
膏結晶の破砕も少なくなり、実施例1の構成はより好ま
しいものと言うことができる。
As a result, it is possible to sufficiently reduce the mixing ratio of the components (A ') and (B') other than the components of interest to 10% or less. As is clear from the above description, in the second embodiment, the function of the thickener b in the first embodiment is provided by providing the inner cylinder 5 in the stirring reaction tank a '. As an example, the processing liquid amount (L) in the stirred reaction tank is 50 t /
hr, residence time (θ) 2.5 hr, liquid rising speed (U
t ) The capacity (L v ) is 125 m under the condition of 1.5 m / hr.
It becomes 3 . Under these conditions, the diameter of the tank of Example 1 (a) was 5.
6m, tank height 6m (effective liquid height 5m), thickener diameter 6.5m, depth 2.5m, in Example 2 (a '), the tank height is the same and diameter 8.6m. In addition to eliminating the 6.5 mφ thickener,
The rake in the lower portion of the thickener, the crushing of gypsum dihydrate crystals by the pump P3, etc. are reduced, and the configuration of Example 1 can be said to be more preferable.

【0023】[0023]

【発明の効果】本発明の複分解装置をマグネシウム系脱
硫剤による湿式排ガス脱硫法に適用することにより、脱
硫剤の利用率を高めると共に、結晶の大きい二水石膏を
効率よく回収することができる。
By applying the metathesis apparatus of the present invention to a wet exhaust gas desulfurization method using a magnesium-based desulfurizing agent, the utilization rate of the desulfurizing agent can be increased and dihydrate gypsum with large crystals can be efficiently recovered.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の複分解装置の構成の一例を示す模式図
である。
FIG. 1 is a schematic diagram showing an example of a configuration of a double decomposition apparatus of the present invention.

【図2】本発明の複分解装置の構成の他の例を示す模式
図である。
FIG. 2 is a schematic diagram showing another example of the configuration of the double decomposition apparatus of the present invention.

【図3】従来の複分解装置を適用した脱硫方法の工程を
説明する模式図である。
FIG. 3 is a schematic diagram illustrating steps of a desulfurization method to which a conventional metathesis device is applied.

【符号の説明】[Explanation of symbols]

1 脱硫塔 2 酸化槽 3 複分解槽 4 水酸化カルシウム原料タンク 5 内筒 8 沈降分離機 10 マグネシウム系脱硫剤補給タンク a,a′ 複分解槽 b シックナー c,c′ 調整槽 1 Desulfurization tower 2 Oxidation tank 3 Double decomposition tank 4 Calcium hydroxide raw material tank 5 Inner cylinder 8 Sedimentation separator 10 Magnesium-based desulfurizing agent supply tank a, a'Double decomposition tank b Thickener c, c 'Adjustment tank

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 硫黄酸化物を含む排ガスを、マグネシウ
ム系脱硫剤を含む処理液と連続的に気液接触させて排ガ
ス中に含まれる硫黄酸化物を吸収除去する下記主工程 (1)前記排ガスと前記脱硫処理液とを接触させて前記
硫黄酸化物を吸収除去する脱硫工程 (2)前記硫黄酸化物を吸収した脱硫処理液を空気酸化
により硫酸マグネシウムと硫酸の水溶液とする酸化工程 (3)前記硫酸マグネシウムと硫酸の水溶液に塩基性カ
ルシウムを加えて、水酸化マグネシウムと二水石膏のス
ラリーを生成させる複分解工程および (4)前記複分解工程で生成した二水石膏を系外にとり
出す石膏分離工程 からなる脱硫方法における前記複分解工程で使用する複
分解装置であって、その装置が攪拌反応槽a、シックナ
ーbおよび調整槽cから成り、 攪拌反応槽aには、攪拌機を備え、前記酸化工程を経た
硫酸マグネシウム又は硫酸マグネシウムとを硫酸を含む
水溶液と、塩基性カルシウム液とが装入されて反応し、
水酸化マグネシウムと二水石膏とのスラリーを生成し、
二水石膏に富むスラリー(A)は排出されて石膏分離工
程に移送されるとともに、生成スラリーの一部(D)は
前記シックナーbに装入され、 シックナーbにおいては、前記生成スラリーが濃縮さ
れ、濃縮スラリーが下部から抜き出されて前記複分解槽
aに戻され、上澄液は調整槽cに移送され、 調整槽cにおいては、上記上澄液がさらに分離され、水
酸化マグネシウムに富む液(B)は上部から抜き出され
て脱硫工程に戻され、二水石膏に富む調整液の一部
(F)は下部から抜き出されて前記シックナーbに装入
され、 (D)と(F)の量を調節することによりシックナーb
の沈降速度を変え、複分解工程における水酸化マグネシ
ウムと二水石膏の分離調整を可能にしたことを特徴とす
る複分解装置。
1. The following main step of adsorbing and removing sulfur oxides contained in exhaust gas by continuously gas-liquid contacting exhaust gas containing sulfur oxides with a treatment liquid containing a magnesium-based desulfurizing agent (1) And a desulfurization treatment liquid are brought into contact with each other to absorb and remove the sulfur oxide (2) An oxidation process in which the desulfurization treatment liquid absorbing the sulfur oxide is converted into an aqueous solution of magnesium sulfate and sulfuric acid by air oxidation (3) A metathesis step of adding basic calcium to the aqueous solution of magnesium sulfate and sulfuric acid to form a slurry of magnesium hydroxide and gypsum dihydrate; and (4) a gypsum separation step of taking out the gypsum dihydrate produced in the metathesis step to the outside of the system. A metathesis device used in the metathesis step of the desulfurization method comprising the following: the device comprising a stirring reaction tank a, a thickener b and an adjusting tank c. The reaction vessel a is equipped with a stirrer, and magnesium sulfate or magnesium sulfate that has undergone the oxidation step is charged with an aqueous solution containing sulfuric acid and a basic calcium solution to react with each other.
Produces a slurry of magnesium hydroxide and gypsum dihydrate,
The slurry (A) rich in gypsum dihydrate is discharged and transferred to the gypsum separation step, and a part (D) of the produced slurry is charged into the thickener b, and in the thickener b, the produced slurry is concentrated. The concentrated slurry is withdrawn from the lower part and returned to the metathesis tank a, and the supernatant liquid is transferred to the adjusting tank c. In the adjusting tank c, the above supernatant liquid is further separated and a liquid rich in magnesium hydroxide. (B) is extracted from the upper part and returned to the desulfurization step, and a part (F) of the dihydrate-gypsum-rich adjusting liquid is extracted from the lower part and charged into the thickener b, and (D) and (F). ) Thickener b
The multi-decomposition apparatus characterized in that the settling speed of is changed to enable separation and adjustment of magnesium hydroxide and gypsum dihydrate in the multi-decomposition process.
【請求項2】 硫黄酸化物を含む排ガスを、マグネシウ
ム系脱硫剤を含む処理液と連続的に気液接触させて排ガ
ス中に含まれる硫黄酸化物を吸収除去する下記主工程 (1)前記排ガスと前記脱硫処理液とを接触させて前記
硫黄酸化物を吸収除去する脱硫工程 (2)前記硫黄酸化物を吸収した脱硫処理液を空気酸化
により硫酸マグネシウムと硫酸の水溶液とする酸化工程 (3)前記硫酸マグネシウムと硫酸の水溶液に塩基性カ
ルシウムを加えて、水酸化マグネシウムと二水石膏のス
ラリーを生成させる複分解工程および (4)前記複分解工程で生成した二水石膏を系外にとり
出す石膏分離工程 からなる脱硫方法における前記複分解工程で使用する複
分解装置であって、その装置が攪拌反応槽a′および調
整槽c′から成り、 攪拌反応槽a′は、下端が槽底面に達しない内筒、およ
び内筒内の液を下方に流動させる攪拌機を有し、前記酸
化工程を経た硫酸マグネシウム又は硫酸マグネシウムと
硫酸とを含む水溶液および塩基性カルシウム液は、内筒
上部に装入され、攪拌されながら反応して水酸化マグネ
シウムと二水石膏のスラリーとなり、内筒の下部より内
外筒間の環状部の上方に反応スラリーが上昇し、攪拌反
応槽a′の底部からは二水石膏に富むスラリー(A′)
が抜き出されて石膏分離工程に移送され、前記環状部の
上部からは水酸化マグネシウムに富むスラリー(C′)
が調整槽c′に移送され、 調整槽c′においては、上記スラリーがさらに分離され
て水酸化マグネシウムに富む液(B′)は槽上部から抜
き出されて脱硫工程に戻され、二水石膏に富む調整液は
槽下部から抜き出されて前記攪拌反応槽a′の内筒上部
に装入され、 (A′)と(C′)の液量比を変えることにより攪拌反
応槽内のスラリーの滞留時間を調節し、複分解工程にお
ける水酸化マグネシウムと二水石膏の分離調整を可能に
したことを特徴とする複分解装置。
2. The following main step of absorbing and removing the sulfur oxides contained in the exhaust gas by continuously bringing the exhaust gas containing the sulfur oxides into gas-liquid contact with a treatment liquid containing a magnesium-based desulfurizing agent (1) And a desulfurization treatment liquid are brought into contact with each other to absorb and remove the sulfur oxide (2) An oxidation process in which the desulfurization treatment liquid absorbing the sulfur oxide is converted into an aqueous solution of magnesium sulfate and sulfuric acid by air oxidation (3) A metathesis step of adding basic calcium to the aqueous solution of magnesium sulfate and sulfuric acid to form a slurry of magnesium hydroxide and gypsum dihydrate; and (4) a gypsum separation step of taking out the gypsum dihydrate produced in the metathesis step to the outside of the system. A metathesis apparatus for use in the metathesis step in the desulfurization method, which comprises an agitation reaction tank a ′ and an adjusting tank c ′, wherein the agitation reaction tank a ′ is , An inner cylinder whose lower end does not reach the bottom of the tank, and an agitator for causing the liquid in the inner cylinder to flow downward, and an aqueous solution containing magnesium sulfate or magnesium sulfate and sulfuric acid that has undergone the oxidation step and a basic calcium solution, It is charged into the upper part of the inner cylinder and reacts while stirring to form a slurry of magnesium hydroxide and gypsum dihydrate, and the reaction slurry rises above the annular portion between the inner and outer cylinders from the lower part of the inner cylinder, and the stirring reaction tank a ' Slurry rich in gypsum dihydrate (A ') from the bottom of
Is extracted and transferred to the gypsum separating step, and a slurry (C ') rich in magnesium hydroxide is introduced from the upper part of the annular portion.
Is transferred to the adjusting tank c ′, and in the adjusting tank c ′, the slurry is further separated, and the magnesium hydroxide-rich liquid (B ′) is extracted from the upper part of the tank and returned to the desulfurization step to obtain gypsum dihydrate. The rich adjustment liquid is withdrawn from the lower part of the tank and charged into the upper part of the inner cylinder of the stirring reaction tank a ', and the slurry in the stirring reaction tank is changed by changing the liquid volume ratio of (A') and (C '). A multi-decomposition apparatus characterized in that the separation time of magnesium hydroxide and gypsum dihydrate can be adjusted in the multi-decomposition process by adjusting the residence time of.
JP21153395A 1995-08-21 1995-08-21 Double decomposition equipment Expired - Lifetime JP3505287B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP21153395A JP3505287B2 (en) 1995-08-21 1995-08-21 Double decomposition equipment
TW84114111A TW301615B (en) 1995-08-21 1995-12-29
IN237CA1996 IN186107B (en) 1995-08-21 1996-02-09

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21153395A JP3505287B2 (en) 1995-08-21 1995-08-21 Double decomposition equipment

Publications (2)

Publication Number Publication Date
JPH0957051A true JPH0957051A (en) 1997-03-04
JP3505287B2 JP3505287B2 (en) 2004-03-08

Family

ID=16607452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21153395A Expired - Lifetime JP3505287B2 (en) 1995-08-21 1995-08-21 Double decomposition equipment

Country Status (3)

Country Link
JP (1) JP3505287B2 (en)
IN (1) IN186107B (en)
TW (1) TW301615B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001347134A (en) * 2000-06-09 2001-12-18 Ishikawajima Harima Heavy Ind Co Ltd Wet process flue gas desulfurizing equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001347134A (en) * 2000-06-09 2001-12-18 Ishikawajima Harima Heavy Ind Co Ltd Wet process flue gas desulfurizing equipment

Also Published As

Publication number Publication date
IN186107B (en) 2001-06-23
JP3505287B2 (en) 2004-03-08
TW301615B (en) 1997-04-01

Similar Documents

Publication Publication Date Title
US5676915A (en) Method for desulfurizing exhaust gas
US7419643B1 (en) Methods and apparatus for recovering gypsum and magnesium hydroxide products
US6041272A (en) Desulfurization process for flue gases
JP3751340B2 (en) Exhaust gas desulfurization method
CN102284238A (en) Bialkali-method flue-gas desulphurization process
EP0356501B1 (en) Process and apparatus for desulfurization
US3409545A (en) Waste treatment process and process and apparatus for recovering lime
CN101531384A (en) Technique for preparing electronic grade magnesium hydrate and ammonium sulphate by cycle serum featuring in flue gas desulfurization by method of magnesium oxidization
US4462969A (en) Regeneration of sulfur dioxide scrubber liquor
JP3505287B2 (en) Double decomposition equipment
CA1119779A (en) Flue gas scrubbing system
JP3504427B2 (en) Exhaust gas desulfurization method
JP3532028B2 (en) Exhaust gas desulfurization method
JPS62193629A (en) Method for removing sulfur oxide contained in exhaust gas
JP3645675B2 (en) Exhaust gas desulfurization method
JP2719322B2 (en) Exhaust gas desulfurization method
JP3902861B2 (en) Exhaust gas desulfurization method
JP3751475B2 (en) Double decomposition method
JP3728000B2 (en) Exhaust gas desulfurization method
JPH057045B2 (en)
CA2336436C (en) Process for producing gypsum from a calcium sulfite gas desulfurization slurry
JPH08206451A (en) Production of magnesium hydroxide and desulfurization method
JPS62278119A (en) Production of magnesium hydroxide for exhaust gas desulfurization
JPH11575A (en) Classification device of submerged particles
JPH09276645A (en) Desulfurization of exhaust gas

Legal Events

Date Code Title Description
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031215

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071219

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081219

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081219

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091219

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101219

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101219

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121219

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131219

Year of fee payment: 10

EXPY Cancellation because of completion of term