JPH0955313A - Production of superconducting coil - Google Patents

Production of superconducting coil

Info

Publication number
JPH0955313A
JPH0955313A JP22720895A JP22720895A JPH0955313A JP H0955313 A JPH0955313 A JP H0955313A JP 22720895 A JP22720895 A JP 22720895A JP 22720895 A JP22720895 A JP 22720895A JP H0955313 A JPH0955313 A JP H0955313A
Authority
JP
Japan
Prior art keywords
coil
superconducting
wire
quench
superconducting coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22720895A
Other languages
Japanese (ja)
Inventor
Toru Ozawa
徹 小澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP22720895A priority Critical patent/JPH0955313A/en
Publication of JPH0955313A publication Critical patent/JPH0955313A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a method for producing a highly reliable superconducting coil having rigid structure inexpensively in which the number of times of quench training is decreased while shortening the cooling time and the quantity of liquid helium to be used is reduced. SOLUTION: A wire 1 is wound around a coil bobbin 2 and applied with a coil case 3 and then quench training is repeated under superconducting state thus arranging the wires 1. Subsequently, it is determined that an intended field is established and the wires 1 are impregnated with an epoxy resin.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、高エネルギー物理
研究用機器や医療用MRI(magnetic resonanceimagin
g)装置等に使用される超電導コイルの製造方法に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to high energy physics research equipment and medical MRI (magnetic resonance imagination).
g) The present invention relates to a method for manufacturing a superconducting coil used in devices and the like.

【0002】[0002]

【従来の技術】超電導線材を巻回し形成した超電導コイ
ルを使用したマグネットは、優れた磁場発生能力と磁場
の高均一性等の利点を生かし、種々の分野で使用されて
いる。その中でも高エネルギー物理研究用マグネット装
置や医療用MRI装置では、広範囲にわたって強い磁場
分布が要求される。そのため、長尺のソレノイド型の超
電導コイルが使用されることが多い。長尺のソレノイド
では、高い電流密度を得るために、超電導線材を数千タ
ーンから数万ターン程巻回してコイルを形成し、巻線後
にコイルをエポキシ樹脂で含浸して線材を固定してい
た。
2. Description of the Related Art A magnet using a superconducting coil formed by winding a superconducting wire is used in various fields by taking advantage of its excellent magnetic field generating ability and high homogeneity of the magnetic field. Among them, the magnetic device for high energy physics research and the medical MRI device require a strong magnetic field distribution over a wide range. Therefore, a long solenoid type superconducting coil is often used. In long solenoids, in order to obtain a high current density, a superconducting wire is wound around several thousand to tens of thousands of turns to form a coil, and after winding, the coil is impregnated with epoxy resin to fix the wire. .

【0003】しかし、励磁時に、コイルが作る磁界と超
電導線材に流れる電流との相互作用による電磁力が線材
に働き、それが樹脂との接着強度を上回るために、線材
が動く、いわゆるワイヤームーブメントが生じて摩擦熱
が発生するため、超電導状態から常電導状態に転位する
クエンチが発生し、設計した磁場が最初の励磁から得ら
れないという問題が生じていた。
However, at the time of excitation, an electromagnetic force due to the interaction between the magnetic field created by the coil and the current flowing through the superconducting wire acts on the wire, which exceeds the adhesive strength with the resin, causing the wire to move, a so-called wire movement. As a result, frictional heat is generated, which causes a quench that causes a transition from the superconducting state to the normal conducting state, resulting in a problem that the designed magnetic field cannot be obtained from the initial excitation.

【0004】又、このクエンチ現象は、含浸したエポキ
シ樹脂に励磁中のワイヤームーブメントによってクラッ
クが生じた時、その歪解放エネルギーによる発熱によっ
ても発生する。
The quench phenomenon also occurs due to the heat generated by the strain releasing energy when a crack is generated in the impregnated epoxy resin by the wire movement during excitation.

【0005】そのため、超電導マグネットにおいては、
巻線し、含浸した後に、意図的にワイヤームーブメント
を発生させ、クエンチさせるというクエンチトレーニン
グという工程を数十回繰り返して、これ以上ワイヤーム
ーブメントを起こさないという位置に線材を均一な状態
にして設計した磁場を得るという方法をとらなければな
らず、クエンチトレーニングを数十回経て設計した磁場
に近づけるため、高価な液体ヘリウムを使用しなければ
ならず、又、コイルの冷却に長時間かかっているという
欠点があった。又、通常の樹脂による含浸では、接着力
が弱いという欠点があった。
Therefore, in the superconducting magnet,
After winding and impregnating, the process of quench training of intentionally generating a wire movement and quenching was repeated several tens of times, and the wire rod was designed in a uniform state at a position where no further wire movement occurred. It has to use a method of obtaining a magnetic field, requires expensive liquid helium to approach the designed magnetic field after dozens of quench training, and it takes a long time to cool the coil. There was a flaw. Further, the conventional resin impregnation has a drawback that the adhesive force is weak.

【0006】[0006]

【発明が解決しようとする課題】従って、本発明の課題
は、クエンチトレーニングの回数が減少し、冷却時間及
び液体ヘリウムの注入時間が短縮し、液体ヘリウムの使
用量が減少した、安価で、構造が強固な、高い信頼性を
有する超電導コイルの製造方法を提供することにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to reduce the number of quench trainings, shorten the cooling time and the injection time of liquid helium, and reduce the usage amount of liquid helium. The object of the present invention is to provide a method for manufacturing a superconducting coil which is strong and has high reliability.

【0007】[0007]

【課題を解決するための手段】本発明は、巻線後に、そ
の外側にコイルの径方向電磁力に十分耐えられる円筒状
のコイルケースをかぶせて、極低温冷却し、励磁を行っ
てクエンチトレーニングを数回実行し、ワイヤームーブ
メントを起こし、線材をソレノイドの中心に集めて、設
計磁場が得られることを確認した後に、エポキシ樹脂で
含浸を行う方法で製造した超電導コイルである。
According to the present invention, after the winding, a quenching is performed by covering the outside with a cylindrical coil case that can sufficiently withstand the electromagnetic force in the radial direction of the coil, performing cryogenic cooling, and performing excitation. Is carried out several times, the wire movement is caused to occur, the wire is gathered at the center of the solenoid, and after confirming that the designed magnetic field is obtained, the superconducting coil is manufactured by a method of impregnating with an epoxy resin.

【0008】即ち、本発明は、超電導線材をコイルボビ
ンに巻線後、樹脂で含浸し、クエンチトレーニングを行
う超電導コイルの製造方法において、巻線後、超電導状
態で励磁を行い、クエンチトレーニングを繰り返し、前
記超電導線材を整列させ、目標の磁場が得られたことを
確認した後で樹脂で含浸を行うことを特徴とする超電導
コイルの製造方法である。
That is, the present invention is a method of manufacturing a superconducting coil in which a coil bobbin is wound with a superconducting wire, impregnated with resin, and quench training is performed. In the superconducting coil manufacturing method, after the winding, excitation is performed in a superconducting state, and quench training is repeated. A method for manufacturing a superconducting coil, which comprises arranging the superconducting wires and performing impregnation with a resin after confirming that a target magnetic field has been obtained.

【0009】又、本発明は、上記超電導コイルの製造方
法において、巻線の際、前記超電導線材の層間にプリプ
レグシートを巻くことを特徴とする超電導コイルの製造
方法である。
Further, the present invention is the method for manufacturing a superconducting coil, wherein a prepreg sheet is wound between the layers of the superconducting wire during winding.

【0010】ところで、超電導コイルの巻線は、超電導
線材に張力をかけ、各層の巻始めの方向に線材を押し付
けながら行う。よって図1のようにコイルの各層は1層
ごとに押し付けられる方向が違う構造になっている。
The winding of the superconducting coil is carried out by applying tension to the superconducting wire and pressing the wire in the winding start direction of each layer. Therefore, as shown in FIG. 1, each layer of the coil has a structure in which the pressing direction is different for each layer.

【0011】本発明では、この各層の偏り、並びに不均
一さをなくすために巻線後、コイルに円筒状のコイルケ
ースをかぶせて極低温冷却し励磁を行う。
In the present invention, in order to eliminate the unevenness and non-uniformity of each layer, after winding, the coil is covered with a cylindrical coil case to perform cryogenic cooling for excitation.

【0012】コイルは含浸されていないので、電磁力で
ワイヤームーブメントが生じやすく、簡単にクエンチを
起こす。クエンチトレーニングを経ることで、同時に発
生する電磁力のうち、軸方向圧縮成分により、線材は、
図2のように、ソレノイドの中心に向かって集まり、線
材の間の空間は徐々になくなり、ワイヤームーブメント
は生じなくなる。
Since the coil is not impregnated, a wire movement is likely to occur due to electromagnetic force, and quenching is easily caused. After quenching training, the wire rod is generated by the axial compression component of the electromagnetic force generated at the same time.
As shown in FIG. 2, the solenoids gather toward the center of the solenoid, the space between the wire rods gradually disappears, and the wire movement does not occur.

【0013】そして、その後に、エポキシ樹脂で含浸を
行うことにより、超電導線材はソレノイドの中心に集ま
った状態で接着固定される。従って、励磁時にワイヤー
ムーブメントは生じにくいので、クエンチ現象も発生し
にくくなる。又、層間にエポキシのプリプレグシートを
設けることで、エポキシ樹脂で含浸後、それらが一体化
するため、接着力が増加し、強固な構造となる。
After that, by impregnating with an epoxy resin, the superconducting wire is bonded and fixed in a state where it is gathered at the center of the solenoid. Therefore, since the wire movement is less likely to occur during excitation, the quench phenomenon is less likely to occur. In addition, by providing an epoxy prepreg sheet between the layers, they are integrated after being impregnated with the epoxy resin, so that the adhesive force is increased and a strong structure is obtained.

【0014】[0014]

【発明の実施の形態】以下に、本発明による超電導コイ
ルの一実施例を説明する。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of the superconducting coil according to the present invention will be described below.

【0015】(実施例1)本実施例で製造した超電導コ
イルは、ソレノイド型で、目標特性は電流値180A
で、磁場強度7Tと設計した。巻線としての超電導線材
には、Cuマトリクス型NbTi極細多心平角線0.7
×1.4mm(Rが0.3mm)を用いた。
(Embodiment 1) The superconducting coil manufactured in this embodiment is of a solenoid type and its target characteristic is a current value of 180 A.
The magnetic field strength was designed to be 7T. For the superconducting wire as the winding, Cu matrix type NbTi ultrafine multi-core rectangular wire 0.7
× 1.4 mm (R is 0.3 mm) was used.

【0016】図1に示すように、外径140mmのSU
S316L製のコイルボビン2に、絶縁シートとしてカ
プトンシート(厚さ0.13mm)を巻き、その上から
内径140mm、外径210mm、長さ840mmにわ
たり、超電導線材1を30000回巻回し、ソレノイド
型コイルを製作した。この際、線材1に10kgfの張
力をかけ、層の巻始めの方向に線材1を押し付けなが
ら、50層巻回した。
As shown in FIG. 1, the SU having an outer diameter of 140 mm
A Kapton sheet (thickness: 0.13 mm) was wound as an insulating sheet on a coil bobbin 2 made of S316L, and the superconducting wire 1 was wound 30,000 times over the inner diameter of 140 mm, the outer diameter of 210 mm, and the length of 840 mm to form a solenoid coil. I made it. At this time, a tension of 10 kgf was applied to the wire rod 1, and the wire rod 1 was wound in 50 layers while pressing the wire rod 1 in the winding start direction of the layer.

【0017】次に、外側にSUS316L製のコイルケ
ース3をかぶせた。その後、液体ヘリウムにより極低温
冷却し、励磁を行うと、初回クエンチが電流値60Aで
発生した。更に、4回程クエンチを繰り返すと、図3に
示すように、設計値180Aにまで通電できるようにな
った。
Next, the coil case 3 made of SUS316L was covered on the outside. After that, when cryogenic cooling was performed with liquid helium and excitation was performed, the first quench occurred at a current value of 60A. Further, when the quench was repeated about four times, as shown in FIG. 3, it became possible to energize up to the design value of 180A.

【0018】次に、図2に示すように、このソレノイド
型コイルを自然昇温させ、エポキシ樹脂4で含浸を行
い、硬化させて、再び極低温冷却し励磁を行うと、クエ
ンチせずに設計値180Aまで通電でき、7.0Tの磁
場が発生した。又、10回のクエンチで使用した液体ヘ
リウムの量は1900lであった。
Next, as shown in FIG. 2, the solenoid coil is naturally heated, impregnated with the epoxy resin 4, cured, and cooled again at an extremely low temperature to be excited and designed without quenching. A current of up to 180 A could be applied and a 7.0 T magnetic field was generated. Also, the amount of liquid helium used in 10 quenches was 1900 liters.

【0019】(実施例2)実施例1と同様の形状、寸法
の線材、コイルボビン、コイルケースを使用し、実施例
1と同様な手順でソレノイド型コイルを製作した。この
際、コイルの各層間にエポキシプリプレグガラスシート
(厚さ0.13mm)を巻き込んだ。更に、実施例1と
同様に、励磁を行ったところ、図3に示すように、初回
クエンチは電流値81Aで発生し、その後、3回の励磁
により設計値180Aまで通電できるようになった。そ
の後、エポキシ樹脂含浸を行い、再び励磁を行うと、1
95A以上での励磁が可能となった。
(Example 2) A solenoid coil was manufactured in the same procedure as in Example 1, using a wire rod, a coil bobbin, and a coil case having the same shape and dimensions as in Example 1. At this time, an epoxy prepreg glass sheet (thickness 0.13 mm) was wound between the layers of the coil. Further, when excitation was performed in the same manner as in Example 1, as shown in FIG. 3, the first quench occurred at a current value of 81 A, and after that, three times of excitation enabled energization up to the design value of 180 A. After that, when epoxy resin impregnation is performed and excitation is performed again, 1
Excitation at 95 A or higher is possible.

【0020】(比較例)実施例1と同様の形状、寸法の
線材、コイルボビン、コイルケースを使用し、従来の製
造方法によって、ソレノイドを巻線後、すぐにエポキシ
樹脂で含浸を行い、硬化させて、実施例1と同様に、励
磁を行うと、初回クエンチが電流値90Aで発生した。
更に、図3に示すように、16回のクエンチトレーニン
グを経て設計値180Aにまで通電できるようになっ
た。20回のクエンチで使用した液体ヘリウムの量は3
500lと、実施例1による超電導コイルより1.8倍
も多くなった。なお、接着強度は、比較例より実施例2
において、大幅に改善された。
Comparative Example Using a wire rod, a coil bobbin, and a coil case having the same shape and dimensions as those of Example 1, a solenoid was wound immediately after winding the solenoid wire by a conventional manufacturing method, and then impregnated with an epoxy resin and cured. Then, when excitation was performed in the same manner as in Example 1, the first quench occurred at a current value of 90A.
Furthermore, as shown in FIG. 3, after conducting quench training 16 times, it became possible to energize up to the design value 180A. The amount of liquid helium used in 20 quenches was 3
It was 500 liters, which was 1.8 times more than that of the superconducting coil of Example 1. It should be noted that the adhesive strength is from Example 2 to Example 2
Has been greatly improved.

【0021】[0021]

【発明の効果】以上、述べたごとく、本発明によれば、
従来の超電導コイルにおいて必要であった数十回にわた
るクエンチトレーニングの回数を減少することができ、
それによる高価な液体ヘリウムの使用量を減少すること
ができ、又、それに伴う液体ヘリウムの注入時間、そし
て超電導コイルの冷却時間も短縮することが可能となる
等の経済的にも優れた、安価な超電導コイルの製造方法
の提供が可能となった。又、本発明によれば、接着力を
高めることができ、構造が強固で、高い信頼性を有する
超電導コイルの製造方法を提供できた。
As described above, according to the present invention,
It is possible to reduce the number of dozens of quench trainings required in the conventional superconducting coil,
Therefore, the amount of expensive liquid helium used can be reduced, and the time required for injecting liquid helium and the cooling time for the superconducting coil can be shortened, which is economically superior and inexpensive. It has become possible to provide a method for manufacturing a superconducting coil. Further, according to the present invention, it is possible to provide a method of manufacturing a superconducting coil which can increase the adhesive force, has a strong structure, and has high reliability.

【図面の簡単な説明】[Brief description of drawings]

【図1】巻線後の線材が不均一な状態の超電導コイルの
断面図。
FIG. 1 is a cross-sectional view of a superconducting coil in which a wire material after winding is uneven.

【図2】巻線後、クエンチトレーニングを行って線材が
均一な状態の超電導コイルの断面図。
FIG. 2 is a cross-sectional view of the superconducting coil in which quenching is performed after winding and the wire is uniform.

【図3】本発明及び従来の製造方法による超電導コイル
のクエンチ回数とクエンチ電流の関係を示す特性図。
FIG. 3 is a characteristic diagram showing the relationship between the quenching frequency and the quenching current of the superconducting coil according to the present invention and the conventional manufacturing method.

【符号の説明】[Explanation of symbols]

1 (超電導)線材 2 コイルボビン 3 コイルケース 4 エポキシ樹脂 A 実施例1 B 実施例2 C 比較例 1 (Superconducting) Wire 2 Coil Bobbin 3 Coil Case 4 Epoxy Resin A Example 1 B Example 2 C Comparative Example

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 超電導線材をコイルボビンに巻線後、樹
脂で含浸し、クエンチトレーニングを行う超電導コイル
の製造方法において、巻線後、超電導状態で励磁を行
い、クエンチトレーニングを繰り返し、前記超電導線材
を整列させ、目標の磁場が得られたことを確認した後で
樹脂で含浸を行うことを特徴とする超電導コイルの製造
方法。
1. A method for manufacturing a superconducting coil, comprising: winding a superconducting wire around a coil bobbin, impregnating the coil bobbin with a resin, and performing quench training. In the method for manufacturing a superconducting coil, after the winding, excitation is performed in a superconducting state, quench training is repeated, A method for producing a superconducting coil, which comprises aligning and confirming that a target magnetic field has been obtained, and then impregnating with a resin.
【請求項2】 請求項1記載の超電導コイルの製造方法
において、巻線の際、前記超電導線材の層間にプリプレ
グシートを巻くことを特徴とする超電導コイルの製造方
法。
2. The method for manufacturing a superconducting coil according to claim 1, wherein a prepreg sheet is wound between layers of the superconducting wire during winding.
JP22720895A 1995-08-10 1995-08-10 Production of superconducting coil Pending JPH0955313A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22720895A JPH0955313A (en) 1995-08-10 1995-08-10 Production of superconducting coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22720895A JPH0955313A (en) 1995-08-10 1995-08-10 Production of superconducting coil

Publications (1)

Publication Number Publication Date
JPH0955313A true JPH0955313A (en) 1997-02-25

Family

ID=16857194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22720895A Pending JPH0955313A (en) 1995-08-10 1995-08-10 Production of superconducting coil

Country Status (1)

Country Link
JP (1) JPH0955313A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001244109A (en) * 2000-02-28 2001-09-07 Toshiba Corp High-temperature superconducting coil device
WO2021100789A1 (en) * 2019-11-18 2021-05-27 古河電気工業株式会社 Superconducting coil, method for producing same, and rectangular superconducting wire material for superconducting coil

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001244109A (en) * 2000-02-28 2001-09-07 Toshiba Corp High-temperature superconducting coil device
WO2021100789A1 (en) * 2019-11-18 2021-05-27 古河電気工業株式会社 Superconducting coil, method for producing same, and rectangular superconducting wire material for superconducting coil

Similar Documents

Publication Publication Date Title
US7489131B2 (en) System and apparatus for direct cooling of gradient coils
JPH0328044B2 (en)
JPS6124209A (en) Correcting coil assembly
Miyazaki et al. Progress in the development of conduction-cooled REBCO magnets for ultrahigh-field MRI systems
US20150377991A1 (en) Superconducting magnet coil arrangement
JPH0787139B2 (en) Epoxy resin impregnated superconducting tape coil
US8305726B2 (en) Method for progressively introducing current into a superconducting coil mounted on a former
US10424428B2 (en) Super-conducting wire, super-conducting coil, and magnetic resonance imaging device
JPH0955313A (en) Production of superconducting coil
Andreev et al. Development and test of single-bore cos-/spl thetav/Nb/sub 3/Sn dipole models with cold iron yoke
JP3060547B2 (en) Superconducting coil manufacturing method
JP2017046987A (en) Superconducting magnet device and magnetic resonance imaging apparatus using the same
JP2829008B2 (en) Superconducting magnet. Semiconductor single crystal pulling equipment. Nuclear magnetic resonance apparatus and method of manufacturing superconducting magnet
US6892440B2 (en) Method for winding an embedded b-zero coil
JP3038446B2 (en) Superconducting coil and method of manufacturing the same
EP3867931B1 (en) Fast quench protection for low copper to superconducting wire coils
JPS63219106A (en) Resin-impregnated superconducting magnet
JPH0240902A (en) Manufacture of superconducting coil
Andreyev et al. Present state of the single and twin aperture short dipole model program for the LHC
Apollinari et al. HINS linac front end focusing system R&D
JPH0447443B2 (en)
Wang et al. Design and construction of test coils for MICE coupling solenoid magnet
JP3542222B2 (en) Superconducting coil
JPH04188707A (en) Superconducting coil
JPH05258952A (en) Superconducting magnet and manufacture thereof