JPH0955215A - Solid electrolytic fuel cell - Google Patents

Solid electrolytic fuel cell

Info

Publication number
JPH0955215A
JPH0955215A JP7204205A JP20420595A JPH0955215A JP H0955215 A JPH0955215 A JP H0955215A JP 7204205 A JP7204205 A JP 7204205A JP 20420595 A JP20420595 A JP 20420595A JP H0955215 A JPH0955215 A JP H0955215A
Authority
JP
Japan
Prior art keywords
solid electrolyte
fuel cell
electrode
fuel
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7204205A
Other languages
Japanese (ja)
Other versions
JP3323038B2 (en
Inventor
Takashi Shigehisa
高志 重久
Shoji Yamashita
祥二 山下
Masahide Akiyama
雅英 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP20420595A priority Critical patent/JP3323038B2/en
Publication of JPH0955215A publication Critical patent/JPH0955215A/en
Application granted granted Critical
Publication of JP3323038B2 publication Critical patent/JP3323038B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce polarization resistance and contact resistance and enhance power generating efficiency by limiting the surface roughness of a solid electrolyte and a current collector to the specified value. SOLUTION: A cell of a solid electrolyte fuel cell is formed by arranging a current collector 11 electrically connected to an air electrode 9 or a fuel electrode 10 on the outer surface of a fuel cell main body 12 in which the air electrode 9 is formed on one side of a solid electrolyte 8 and the fuel electrode 10 on the other side. The surface roughness Ra of at least one of the solid electrolyte 8 and the current collector 11 is made 3-200μm. Preferably, recesses 13 are periodically formed on their surfaces.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、固体電解質と、こ
の固体電解質の一側面に形成された空気極と、他側面に
形成された燃料極と、集電するためのインタ−コネクタ
あるいはセパレ−タの集電体とを備えた固体電解質型燃
料電池セルに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid electrolyte, an air electrode formed on one side of the solid electrolyte, a fuel electrode formed on the other side, and an interconnector or separator for collecting current. The present invention relates to a solid oxide fuel cell having a current collector.

【0002】[0002]

【従来の技術】近年、固体電解質型燃料電池において
は、円筒型と平板型の2種類の燃料電池について研究開
発が行われている。平板型燃料電池セルは、発電の単位
体積当りの出力密度が高いという特長を有するが、実用
化に関してはガスシ−ル不完全性やセル内の温度分布の
不均一性などの問題がある。それに対して、円筒型燃料
電池セルでは、出力密度は低いもののセルの機械的強度
が高く、またセル内の温度の均一性が保てるという特長
がある。両形状の固体電解質型燃料電池セルとも、それ
ぞれの特長を生かして積極的に研究開発が進められてい
る。
2. Description of the Related Art In recent years, in solid oxide fuel cells, research and development have been conducted on two types of fuel cells, a cylindrical type and a flat type. The flat plate type fuel cell has a feature that the power density per unit volume of power generation is high, but when it is put into practical use, there are problems such as incomplete gas seal and uneven temperature distribution in the cell. On the other hand, the cylindrical fuel cell has features that the output density is low, but the mechanical strength of the cell is high, and the temperature uniformity in the cell can be maintained. Both types of solid oxide fuel cells are being actively researched and developed by taking advantage of their respective characteristics.

【0003】円筒型燃料電池の単セルは、図2に示した
ように開気孔率40%程度のCaO安定化ZrO2 を支
持管1とし、その上にスラリ−ディップ法により多孔性
の空気極2としてLaMnO3 系材料を塗布し、その表
面に気相合成法(EVD)や、あるいは溶射法により固
体電解質3であるY2 3 安定化ZrO2 膜を被覆し、
さらにこの表面に多孔性のNi−ジルコニアの燃料極4
を設けて構成されている。燃料電池のモジュ−ルにおい
ては、各単セルは、LaCrO3 系のインタ−コネクタ
5を介して接続される。集電はこのインタ−コネクタに
NiフェルトあるいはNi板を接触させて行われる。ま
た、発電は支持管内部6に空気(酸素)を、外部7に燃
料(水素)を流し、1000〜1050℃の温度で行わ
れる。近年、このセル作製の工程においてプロセスを単
純化するため、空気極材料であるLaMnO3 系材料を
直接多孔性の支持管として使用する試みがなされてい
る。
As shown in FIG. 2, a single cell of a cylindrical fuel cell has a support tube 1 made of CaO-stabilized ZrO 2 having an open porosity of about 40%, and a porous air electrode formed on the support tube 1 by a slurry-dip method. 2, a LaMnO 3 based material is applied, and the surface thereof is coated with a Y 2 O 3 stabilized ZrO 2 film which is a solid electrolyte 3 by a vapor phase synthesis method (EVD) or a thermal spraying method,
Furthermore, a porous Ni-zirconia fuel electrode 4 is formed on this surface.
Is provided. In the fuel cell module, each unit cell is connected via an LaCrO 3 -based interconnector 5. The current collection is performed by contacting the Ni connector or the Ni plate with the interconnector. Power generation is performed at a temperature of 1000 to 1050 ° C. by flowing air (oxygen) inside the support tube 6 and fuel (hydrogen) outside the support tube 7. In recent years, in order to simplify the process in the process of producing the cell, an attempt has been made to directly use the LaMnO 3 material, which is an air electrode material, as a porous support tube.

【0004】空気極としての機能を合せ持つ支持管材料
としては、Laを10〜20原子%のCaあるいはSr
で置換したLaMnO3 固溶体材料が用いられている。
As a supporting tube material which also has a function as an air electrode, La is 10 to 20 atomic% of Ca or Sr.
The LaMnO 3 solid solution material substituted with is used.

【0005】また、平板型燃料電池の単セルは、円筒型
と同じ材料系を用いて、図3に示したように固体電解質
8の上面に多孔性の空気極9を、下面に多孔性の燃料極
10を設けて構成されている。単セル間の接続には、セ
パレ−タ11と呼ばれるMgOやCaOを添加した緻密
質のLaCrO3 固溶体材料が用いられる。発電はセル
の空気極側に空気(酸素)、燃料極側に燃料(水素)を
供給して1000〜1050℃の温度で行われる。
Further, the unit cell of the flat plate type fuel cell uses the same material system as that of the cylindrical type, and as shown in FIG. 3, a porous air electrode 9 is provided on the upper surface of the solid electrolyte 8 and a porous air electrode 9 is provided on the lower surface thereof. The fuel electrode 10 is provided. For the connection between the single cells, a dense LaCrO 3 solid solution material containing MgO or CaO called a separator 11 is used. Power generation is performed at a temperature of 1000 to 1050 ° C. by supplying air (oxygen) to the air electrode side of the cell and fuel (hydrogen) to the fuel electrode side.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記従
来の円筒型燃料電池セルおよび平板型燃料電池セルと
も、固体電解質と空気極または燃料極との界面における
分極抵抗が大きいため、燃料電池セルにおける電圧低下
が大きく、発電効率が低いという問題があった。
However, in both the above-mentioned conventional cylindrical fuel cell and flat plate fuel cell, since the polarization resistance at the interface between the solid electrolyte and the air electrode or the fuel electrode is large, the voltage at the fuel cell is low. There was a problem that the decrease was large and the power generation efficiency was low.

【0007】また、円筒型燃料電池セルにおいてはイン
タ−コネクタとNiフェルト(あるいはNi板)との間
の接触抵抗が、平板型燃料電池セルにおいてはセパレ−
タと空気極または燃料極との界面における接触抵抗が大
きいため、燃料電池セルにおける電圧低下が大きく、発
電効率が低いという問題があった。
Further, the contact resistance between the interconnector and the Ni felt (or Ni plate) in the cylindrical fuel cell is different from that in the flat fuel cell.
Since the contact resistance at the interface between the electrode and the air electrode or the fuel electrode is large, there is a problem that the voltage drop in the fuel cell is large and the power generation efficiency is low.

【0008】このような問題から従来の固体電解質型燃
料電池セルにおいては、本来の性能を十分に発揮できな
いという問題があった。
Due to these problems, the conventional solid oxide fuel cell unit has a problem in that the original performance cannot be sufficiently exhibited.

【0009】[0009]

【課題を解決するための手段】本発明者等は上記問題に
対し検討を重ねた結果、固体電解質と空気極または燃料
極との接触界面、およびインタ−コネクタとNiフェル
ト(Ni板)あるいはセパレ−タと空気極または燃料極
との接触界面の面積を増大させることにより、上記分極
抵抗および接触抵抗を低減させることができることを見
出し、本発明に至った。
Means for Solving the Problems As a result of repeated studies on the above problems, the present inventors have found that the contact interface between the solid electrolyte and the air electrode or the fuel electrode, and the interconnector and the Ni felt (Ni plate) or the separator. The present inventors have found that the polarization resistance and the contact resistance can be reduced by increasing the area of the contact interface between the electrode and the air electrode or the fuel electrode.

【0010】即ち、本発明の固体電解質型燃料電池セル
は、固体電解質の片面に空気極が、他面に燃料極が形成
された燃料電池セル本体の外面に、前記空気極または前
記燃料極と電気的に接続する集電体を設けてなる固体電
解質型燃料電池セルにおいて、前記固体電解質の少なく
とも一方の表面の表面粗さRaが3〜200μmを満足
するものである。固体電解質の少なくとも一方の表面に
は周期的に凹部が形成されていることが望ましい。
That is, in the solid oxide fuel cell of the present invention, the air electrode or the fuel electrode is formed on the outer surface of the fuel cell main body having the air electrode formed on one surface and the fuel electrode formed on the other surface of the solid electrolyte. In a solid oxide fuel cell having an electrically connected current collector, at least one surface of the solid electrolyte has a surface roughness Ra of 3 to 200 μm. It is desirable that concave portions are periodically formed on at least one surface of the solid electrolyte.

【0011】また、本発明の固体電解質型燃料電池セル
は、固体電解質の片面に空気極が、他面に燃料極が形成
された燃料電池セル本体の外面に、前記空気極または前
記燃料極と電気的に接続する集電体を設けてなる固体電
解質型燃料電池セルにおいて、前記集電体の少なくとも
一方の表面の表面粗さRaが3〜200μmを満足する
ものである。集電体の少なくとも一方の表面には周期的
に凹部が形成されていることが望ましい。
In the solid oxide fuel cell of the present invention, the air electrode or the fuel electrode is formed on the outer surface of the fuel cell main body in which the air electrode is formed on one surface of the solid electrolyte and the fuel electrode is formed on the other surface. In a solid oxide fuel cell having a current collector electrically connected thereto, at least one surface of the current collector has a surface roughness Ra of 3 to 200 μm. It is desirable that concave portions are periodically formed on at least one surface of the current collector.

【0012】本発明においては固体電解質の表面の表面
粗さRaを3〜200μmとした理由は、Raが3μm
より小さいと、固体電解質と空気極または燃料極との界
面において分極抵抗の低減という効果が小さいからであ
る。また、Raが200μmより大きいと固体電解質中
の酸素イオンの拡散断面積が小さくなり、電気伝導度が
低下して、その結果発電出力が悪くなるためである。特
に、固体電解質の表面の表面粗さRaは、分極抵抗と酸
素イオンの拡散断面積の観点から50〜100μmが望
ましい。
In the present invention, the reason why the surface roughness Ra of the surface of the solid electrolyte is 3 to 200 μm is that Ra is 3 μm.
If it is smaller, the effect of reducing the polarization resistance at the interface between the solid electrolyte and the air electrode or the fuel electrode is small. On the other hand, when Ra is larger than 200 μm, the diffusion cross-sectional area of oxygen ions in the solid electrolyte becomes small, the electric conductivity decreases, and as a result, the power generation output deteriorates. In particular, the surface roughness Ra of the surface of the solid electrolyte is preferably 50 to 100 μm from the viewpoint of polarization resistance and oxygen ion diffusion cross section.

【0013】また、インタ−コネクタあるいはセパレ−
タなどの集電体の少なくとも一方の表面の表面粗さRa
を3〜200μmとしたのは、表面粗さRaが3μmよ
りも小さい場合にはインタ−コネクタとNiフェルト
(Ni板)あるいはセパレ−タと空気極または燃料極と
の界面における接触抵抗の低減という効果が小さいから
である。また、Raが200μmを越えると、逆にイン
ターコネクタとNiフェルト(Ni板)あるいはセパレ
−タと空気極および燃料極との接触面積が低下して、集
電が悪くなる。特に、集電体の少なくとも一方の表面の
表面粗さRaは、接触面積の観点から20〜100μm
が望ましい。
Also, an interconnector or a separator
Surface roughness Ra of at least one surface of a current collector such as a battery
3 to 200 μm means that when the surface roughness Ra is smaller than 3 μm, the contact resistance at the interface between the interconnector and the Ni felt (Ni plate) or the separator and the air electrode or the fuel electrode is reduced. This is because the effect is small. On the other hand, when Ra exceeds 200 μm, the contact area between the interconnector and the Ni felt (Ni plate) or the separator and the air electrode and the fuel electrode is reduced, and the current collection is deteriorated. In particular, the surface roughness Ra of at least one surface of the current collector is 20 to 100 μm from the viewpoint of the contact area.
Is desirable.

【0014】固体電解質, インタ−コネクタあるいはセ
パレ−タの表面の表面粗さRaを3〜200μmとする
には、例えば、ドクタ−ブレ−ド法により作製した固体
電解質, インタ−コネクタあるいはセパレ−タ用のグリ
−ンシ−ト表面に金属メッシュを押し当てる方法、また
グリ−ンシ−トを表面に凹凸がある金属等の表面に押し
当てる方法により形成し、これを所定の温度で焼成して
作製することができる。グリ−ンシ−ト表面に金属メッ
シュを押し当てる方法、またグリ−ンシ−トを表面に凹
凸がある金属等の表面に押し当てる方法により形成する
と、固体電解質,集電体の表面に周期的に凹部が形成さ
れることになり、固体電解質,集電体の表面の全体に亘
って均一な発電が得られる。
In order to set the surface roughness Ra of the surface of the solid electrolyte, the interconnector or the separator to 3 to 200 μm, for example, the solid electrolyte, the interconnector or the separator produced by the doctor blade method is used. It is formed by a method of pressing a metal mesh on the surface of a green sheet for use, or a method of pressing a green sheet on the surface of a metal or the like having irregularities on the surface, and firing it at a predetermined temperature. can do. When a metal mesh is pressed against the surface of the green sheet, or a green sheet is pressed against the surface of a metal or the like having irregularities, the surface of the solid electrolyte or current collector is cyclically formed. Since the concave portion is formed, uniform power generation can be obtained over the entire surface of the solid electrolyte and the current collector.

【0015】尚、グリ−ンシ−トを所定の方法により焼
結した後、サンドブラスト機によりブラストして表面処
理しても良い。この場合、周期的に孔が形成された型を
用い、この型の上からサンドブラストすることにより、
周期的に凹部を形成することができる。
The green sheet may be sintered by a predetermined method and then surface-treated by blasting with a sandblasting machine. In this case, using a mold in which holes are periodically formed, and by sandblasting from above the mold,
The recesses can be formed periodically.

【0016】[0016]

【作用】平板型燃料電池セルを例に説明すると、発電は
セルの空気極側に空気(酸素)、燃料極側に燃料(水
素)を供給して1000〜1050℃の温度で行われる
が、この発電においてセルの電圧低下の原因としては、
セルの抵抗、燃料極および空気極と固体電解質界面にお
ける分極抵抗、燃料極および空気極とセパレ−タ界面に
おける接触抵抗がある。形状によりいくらかの違いはあ
るものの、上述の抵抗の電圧低下への寄与はそれぞれ1
/3程度づつである。円筒型燃料電池セルの場合につい
ても同様である。
The flat type fuel cell will be described as an example. Power generation is performed at a temperature of 1000 to 1050 ° C. by supplying air (oxygen) to the air electrode side of the cell and fuel (hydrogen) to the fuel electrode side. The cause of the cell voltage drop in this power generation is
There are cell resistance, polarization resistance at the interface between the fuel electrode and the air electrode and the solid electrolyte, and contact resistance at the interface between the fuel electrode and the air electrode and the separator. Although there are some differences depending on the shape, each of the above-mentioned resistance contributions to the voltage drop is 1
It is about / 3. The same applies to the case of a cylindrical fuel cell.

【0017】本発明においては、固体電解質の少なくと
も一方の表面の表面粗さRaを3〜200μmとしたの
で、固体電解質と空気極または燃料極との界面において
分極抵抗を小さくすることができ、セルの電圧低下を抑
制して発電効率を向上することができる。
In the present invention, since the surface roughness Ra of at least one surface of the solid electrolyte is set to 3 to 200 μm, the polarization resistance can be made small at the interface between the solid electrolyte and the air electrode or the fuel electrode, and the cell The power generation efficiency can be improved by suppressing the voltage drop.

【0018】また、本発明では、インタ−コネクタある
いはセパレ−タ等の集電体の少なくとも一方の表面の表
面粗さRaを3〜200μmとし、インタ−コネクタと
Niフェルト(Ni板)との接触面積あるいはセパレ−
タと燃料極または空気極との接触面積を増大させた結
果、界面における接触抵抗を小さくすることができ、セ
ルの電圧低下を抑制して発電効率を向上することができ
る。
Further, in the present invention, the surface roughness Ra of at least one surface of the current collector such as the interconnector or the separator is set to 3 to 200 μm, and the contact between the interconnector and the Ni felt (Ni plate). Area or separation
As a result of increasing the contact area between the electrode and the fuel electrode or the air electrode, it is possible to reduce the contact resistance at the interface, suppress the voltage drop of the cell, and improve the power generation efficiency.

【0019】即ち、本発明では、固体電解質の少なくと
も一方の表面、集電体の少なくとも一方の表面に凹凸を
形成することにより各界面の面積を増大させ、発電出力
を向上することができるのである。
That is, in the present invention, the surface area of each interface can be increased by forming irregularities on at least one surface of the solid electrolyte and at least one surface of the current collector, and the power generation output can be improved. .

【0020】さらに、本発明では、固体電解質および/
または集電体の少なくとも一方の表面に、周期的に凹部
を形成し、表面粗さRaを3〜200μmとすることに
より、燃料電池セル全体に亘って均一な発電が得られ
る。
Further, according to the present invention, the solid electrolyte and / or
Alternatively, by forming concave portions periodically on at least one surface of the current collector and setting the surface roughness Ra to 3 to 200 μm, uniform power generation can be obtained over the entire fuel cell unit.

【0021】本発明では、固体電解質および集電体の表
面粗さRaを3〜200μmとすることにより、燃料極
および空気極と固体電解質界面における分極抵抗、およ
び平板型燃料電池セルの場合には燃料極および空気極と
セパレータ界面における接触抵抗を低減することがで
き、セルの電圧低下を抑制して発電効率をさらに向上す
ることができる。
In the present invention, by setting the surface roughness Ra of the solid electrolyte and the current collector to 3 to 200 μm, the polarization resistance at the interface between the fuel electrode and the air electrode and the solid electrolyte, and in the case of the flat plate type fuel cell, The contact resistance at the interface between the fuel electrode and the air electrode and the separator can be reduced, the voltage drop of the cell can be suppressed, and the power generation efficiency can be further improved.

【0022】[0022]

【発明の実施の形態】本発明の固体電解質型燃料電池セ
ルを図面を用いて詳細に説明する。本発明の典型的な燃
料電池セルの構造で平板型燃料電池セルと呼ばれるもの
は、図3に示したようにY2 3 やYb2 3 を3〜1
5モル%添加した部分安定化ZrO2 および安定化Zr
2 、あるいはY2 3 ,Yb2 3 ,Sm2 3、G
2 3 を添加したCeO2 固溶体よりなる板状の固体
電解質8の上面には、(La,Sr)MnO3 や(L
a,Ca)MnO3 などからなる多孔性の空気極9を、
下面の面にNiとZrO2 (Y2 3 安定化)のサ−メ
ットなどからなる多孔性の燃料極10が形成され、燃料
電池セル本体12が構成されている。そして、これを単
セルとしてセル間を接続する部材として、セパレータ1
1が一方のセルの空気極と隣接する他方のセルの燃料極
とを接続する位置、即ち、燃料電池セル本体12に配置
されている。このセパレータ11は、MgやCaをド−
プした緻密質のLaCrO3 固溶体から構成されてい
る。
BEST MODE FOR CARRYING OUT THE INVENTION The solid oxide fuel cell of the present invention will be described in detail with reference to the drawings. In the typical fuel cell structure of the present invention, which is called a flat plate type fuel cell, Y 2 O 3 or Yb 2 O 3 is added in an amount of 3 to 1 as shown in FIG.
Partially stabilized ZrO 2 and stabilized Zr added with 5 mol%
O 2 , or Y 2 O 3 , Yb 2 O 3 , Sm 2 O 3 , G
On the upper surface of the plate-shaped solid electrolyte 8 made of a CeO 2 solid solution to which d 2 O 3 is added, (La, Sr) MnO 3 or (L
a, Ca) a porous air electrode 9 made of MnO 3 or the like,
A porous fuel electrode 10 composed of a cermet of Ni and ZrO 2 (Y 2 O 3 stabilized) or the like is formed on the lower surface, and a fuel cell body 12 is formed. The separator 1 is used as a member for connecting the cells to each other as a single cell.
1 is arranged at the position where the air electrode of one cell is connected to the fuel electrode of the other adjacent cell, that is, the fuel cell main body 12. The separator 11 does not contain Mg or Ca.
It is composed of a dense LaCrO 3 solid solution.

【0023】そして、本発明は、固体電解質の燃料極側
の面には、その表面積を大きくするため、図1に示すよ
うに、周期的な凹部13、例えば大きなうねりまたは細
穴が設けられており、表面粗さRaが3〜200μmと
されている。そして、この面に、多孔質からなる空気極
あるいは燃料極が接している。この空気極あるいは燃料
極は、ガス透化性をよくするため、開気孔率として10
〜70%程度にする必要がある。また、燃料極は、固体
電解質表面に固体電解質材料(例えばZrO2)からな
る骨格を形成し、該骨格中にNiを充填するとさらに効
果的である。
In the present invention, in order to increase the surface area of the surface of the solid electrolyte on the fuel electrode side, as shown in FIG. 1, periodic concave portions 13, for example, large undulations or narrow holes are provided. And the surface roughness Ra is set to 3 to 200 μm. A porous air electrode or fuel electrode is in contact with this surface. The air electrode or the fuel electrode has an open porosity of 10 to improve gas permeability.
It should be about 70%. Further, it is more effective for the fuel electrode to form a skeleton made of a solid electrolyte material (for example, ZrO 2 ) on the surface of the solid electrolyte and fill the skeleton with Ni.

【0024】このような表面構造を有する固体電解質は
ドクタ−ブレ−ド法により作製したグリ−ンシ−ト表面
に金属メッシュを押し当てる方法、またグリ−ンシ−ト
を表面に凹凸がある金属等の表面に押し当てる方法によ
り形成し、これを所定の温度で焼成して作製することが
できる。あるいはグリ−ンシ−トを所定の方法により焼
結した後、サンドブラスト機を用いて、ブラストして表
面構造を形成してもよい。また、セパレ−タにおいても
同様な方法により表面粗さを3〜200μmとすること
ができる。また、図2に示した円筒型燃料電池セルの固
体電解質およびインタ−コネクタについても、同様な方
法により表面粗さを3〜200μmとすることができ
る。
For the solid electrolyte having such a surface structure, a metal mesh is pressed against the surface of the green sheet prepared by the doctor blade method, or the surface of the green sheet is uneven. It can be formed by a method of pressing it on the surface of and is fired at a predetermined temperature. Alternatively, the green sheet may be sintered by a predetermined method and then blasted using a sandblasting machine to form a surface structure. Further, also in the separator, the surface roughness can be adjusted to 3 to 200 μm by the same method. Further, the solid electrolyte and the interconnector of the cylindrical fuel cell shown in FIG. 2 can have a surface roughness of 3 to 200 μm by the same method.

【0025】[0025]

【実施例】【Example】

実施例1 ドクタ−ブレ−ド法により粒子径0.6μmのZrO2
(8モル%Y2 3 含有)を含有する400μmのグリ
−ンシ−トを作製し、焼結体の寸法が5cm×5cmに
なるようにシ−トを切り出し、1500℃で4時間焼成
して理論密度比が98%の平板状の固体電解質を作製し
た。得られた平板状の固体電解質表面の表面粗さ(中心
線平均粗さ)Raを表面粗計で測定した。この固体電解
質の一方の面に、粒子径が1μmの市販のLa0.9 Sr
0.1 MnO3 を含有する空気極用のスラリーを50μm
の厚みにスクリーン印刷により塗布し、固体電解質の他
方の面には70重量%NiOを含むZrO2 (8モル%
2 3 含有)を含有する燃料極用のスラリーを50μ
mの厚みにスクリーン印刷により塗布し、これを大気中
1200℃で一時間焼鈍して、固体電解質の一方の面に
空気極、他方の面に燃料極を形成し、セル本体を作製し
た。このセル本体を、厚み350μmのLa0.8 Ca
0.22CrO3 焼結体からなるセパレータで挟持して、平
板型燃料電池セルを作製し、これを試料No.1とした。
Example 1 ZrO 2 having a particle size of 0.6 μm by the doctor blade method
(8 mol% Y 2 O 3 content) of 400μm containing glycidyl - Nshi - to prepare the door, sheet as the dimensions of the sintered body is 5 cm × 5 cm - cut the door, and fired 4 hours at 1500 ° C. As a result, a flat solid electrolyte having a theoretical density ratio of 98% was produced. The surface roughness (center line average roughness) Ra of the obtained flat plate-shaped solid electrolyte surface was measured by a surface roughness meter. On one surface of this solid electrolyte, a commercially available La 0.9 Sr having a particle size of 1 μm was used.
50 μm of slurry for air electrode containing 0.1 MnO 3
Of was applied by screen printing to a thickness, ZrO 2 (8 mol% on the other surface of the solid electrolyte containing 70 wt% NiO
50 μm of the slurry for the fuel electrode containing Y 2 O 3 ( containing Y 2 O 3 )
It was applied by screen printing to a thickness of m and annealed at 1200 ° C. in the atmosphere for 1 hour to form an air electrode on one surface of the solid electrolyte and a fuel electrode on the other surface to prepare a cell body. This cell body is made of La 0.8 Ca with a thickness of 350 μm.
It was sandwiched between separators made of 0.22 CrO 3 sintered body to prepare a flat plate type fuel battery cell, which was designated as sample No.1.

【0026】また、上記固体電解質用のグリーンシート
と同様のグリーンシートを用いて、該シートの一面ある
いは両面に40〜330メッシュのステンレスメッシュ
を押し当ててグリ−ンシ−トに周期的に凹凸を作製した
後、1500℃で4時間焼成して理論密度比が99.6
%の平板状の固体電解質を作製した。得られた平板状の
固体電解質表面の表面粗さRaを表面粗計で測定した。
平板状の固体電解質への燃料極および空気極の形成は上
記と同様な方法により作製し、セル本体を作製した。こ
のセル本体を、厚み350μmのLa0.8 Ca0.22Cr
3 焼結体からなるセパレータで挟持して、平板型燃料
電池セルを作製した。
Further, a green sheet similar to the above-mentioned solid electrolyte green sheet is used, and a stainless mesh of 40 to 330 mesh is pressed against one or both sides of the sheet to form irregularities on the green sheet periodically. After manufacturing, it is fired at 1500 ° C. for 4 hours to give a theoretical density ratio of 99.6.
% Flat plate-shaped solid electrolyte was prepared. The surface roughness Ra of the obtained flat plate-shaped solid electrolyte surface was measured with a surface roughness meter.
The fuel electrode and the air electrode were formed on the flat plate-shaped solid electrolyte by the same method as described above to prepare a cell body. This cell body is made of La 0.8 Ca 0.22 Cr with a thickness of 350 μm.
It was sandwiched between separators made of O 3 sinter to prepare a flat plate type fuel cell.

【0027】そして、空気極側に酸素を燃料極側に水素
を供給して1000℃で1000時間連続発電し、発電
時の出力密度を測定した。その結果を表1に示す。
Then, oxygen was supplied to the air electrode side and hydrogen was supplied to the fuel electrode side to continuously generate power at 1000 ° C. for 1000 hours, and the output density during power generation was measured. Table 1 shows the results.

【0028】[0028]

【表1】 [Table 1]

【0029】表1より、固体電解質の表面粗さRaが試
料No.1のように3μmより小さいと効果がなく、ま
た試料No.7,10のように200μmを越えると出
力密度が低下することが分かる。この表面構造の改善に
関しては、空気極側を表面処理した場合も燃料極側を表
面処理した場合と同様に性能の向上をもたらすことが分
かる。また、試料No.11,12より空気極および燃
料極に接する両面について表面処理を行うとより発電性
能が向上することが分かる。
From Table 1, the surface roughness Ra of the solid electrolyte is shown in Sample No. No. 1 having a thickness of less than 3 μm has no effect, and the sample No. It can be seen that the output density decreases when the thickness exceeds 200 μm as in Nos. 7 and 10. Regarding the improvement of the surface structure, it can be seen that the surface treatment on the air electrode side brings about an improvement in the performance as well as the surface treatment on the fuel electrode side. In addition, the sample No. It can be seen from Nos. 11 and 12 that the power generation performance is further improved by performing the surface treatment on both surfaces in contact with the air electrode and the fuel electrode.

【0030】さらに、周期的に凹凸を形成しない例とし
て、固体電解質の焼結体表面に直接サンドブラストで表
面処理し、その表面粗さRaを測定した。そして、固体
電解質に燃料極および空気極を上記と同様な方法により
作製し、セル本体を作製した。このセル本体を上記と同
様なセパレータで挟持して燃料電池セルを作製し、上記
と同様にして発電し、発電時の出力密度を測定した。そ
の結果、固体電解質の表面粗さRaが25μmおよび6
3μmであり、初期性能として出力密度はそれぞれ0.
29W/cm2 および0.30W/cm2 であり、優れ
た性能を示した。しかしながら、発電開始後30時間後
と22時間後にセルが破壊した。これは、セル内の出力
密度のバラツキに伴いセル内に温度分布が形成され、そ
の結果熱応力によりセルが破壊したものと考えられる。
一方、固体電解質の表面に上記した周期的な凹凸を作製
した場合には、1000時間の発明においても破壊は見
られなかった。
Further, as an example in which irregularities are not formed periodically, the surface of the sintered body of the solid electrolyte was directly surface-treated by sandblasting, and the surface roughness Ra was measured. Then, a fuel electrode and an air electrode were prepared in the solid electrolyte by the same method as described above to prepare a cell body. This cell body was sandwiched between the same separators as described above to produce a fuel cell, and power was generated in the same manner as above, and the output density during power generation was measured. As a result, the surface roughness Ra of the solid electrolyte was 25 μm and 6 μm.
3 μm, and the power density is 0.
A 29W / cm 2 and 0.30 W / cm 2, it showed excellent performance. However, the cells broke 30 hours and 22 hours after the start of power generation. It is considered that this is because a temperature distribution was formed in the cell due to variations in the power density in the cell, and as a result, the cell was destroyed by thermal stress.
On the other hand, when the above-mentioned periodic unevenness was formed on the surface of the solid electrolyte, no breakage was observed even after 1000 hours of the invention.

【0031】実施例2 実施例1と同様な方法により厚みは約250μmと20
〜200μmの固体電解質用のグリ−ンシ−トを作製し
た。この20〜200μmのグリ−ンシ−トをマルチパ
ンチングシステム(MPS)を用いて直径30〜50μ
mの穴を30〜100μm間隔で開け、これを250μ
mのシ−ト表面に張り合わせてグリ−ンシ−ト表面に凹
凸を形成した後、1500℃で4時間大気中で焼成して
理論密度比が98%の平板状の固体電解質を作製した。
この固体電解質の表面粗さRaを上記実施例1と同様に
して測定するとともに、その後実施例1と同様な方法に
より空気極および燃料極を形成して発電を行ない、発電
時の出力密度を測定した。
Example 2 By the same method as in Example 1, the thickness was about 250 μm and 20 μm.
A green sheet for a solid electrolyte having a thickness of 200 μm was prepared. This green sheet having a diameter of 20 to 200 μm is used to have a diameter of 30 to 50 μm by using a multi-punching system (MPS).
m holes are made at intervals of 30 to 100 μm, and this is 250 μm.
Then, the surface of the green sheet was bonded to the surface of the green sheet to form irregularities, and then baked at 1500 ° C. for 4 hours in the air to prepare a flat solid electrolyte having a theoretical density ratio of 98%.
The surface roughness Ra of this solid electrolyte is measured in the same manner as in Example 1 above, and thereafter, the air electrode and the fuel electrode are formed by the same method as in Example 1 to generate power, and the power density during power generation is measured. did.

【0032】その結果を表2に示した。The results are shown in Table 2.

【0033】[0033]

【表2】 [Table 2]

【0034】この表2より、いずれの試料とも表1の表
面処理をしていない試料No.1より大きな出力密度を
示した。
From this Table 2, it can be seen from all the samples that the sample No. A power density greater than 1 was exhibited.

【0035】実施例3 ドクタ−ブレ−ド法により粒子径1μmのLa0.8 Ca
0.22CrO3 を含有する400μmのグリ−ンシ−トを
作製し、焼結体の寸法が5cm×5cmになるようにシ
−トを切り出し、1500℃で8時間大気中で焼成して
理論密度比が98%以上の平板状のセパレ−タを作製し
た。
Example 3 La 0.8 Ca having a particle size of 1 μm was obtained by the doctor blade method.
Of 400μm containing 0.22 CrO 3 glyceraldehyde - Nshi - to prepare the door, sheet as the dimensions of the sintered body is 5 cm × 5 cm - cut the door, the theoretical density ratio was calcined for 8 hours in air at 1500 ° C. Of 98% or more was produced as a flat plate-shaped separator.

【0036】また、上記セパレータ用のグリーンシート
と同様のグリーンシートを用いて、該シートの一面ある
いは両面に40〜330メッシュのステンレスメッシュ
を押し当ててグリ−ンシ−トに凹凸を作製した後、15
00℃で4時間大気中で焼成して理論密度比が98%以
上の平板状のセパレ−タを作製した。得られた平板状の
セパレ−タの表面粗さRaを表面粗計で測定し、その結
果を表3に示した。
Also, after using a green sheet similar to the separator green sheet, a stainless mesh of 40 to 330 mesh is pressed against one surface or both surfaces of the sheet to form irregularities in the green sheet, 15
Firing was performed in the atmosphere at 00 ° C. for 4 hours to prepare a flat plate-shaped separator having a theoretical density ratio of 98% or more. The surface roughness Ra of the obtained plate-shaped separator was measured by a surface roughness meter, and the results are shown in Table 3.

【0037】そして、このセパレータにより、実施例1
の表1における試料No.1とNo.3のセル本体を挟持
し、空気極側に酸素を燃料極側に水素を供給して100
0℃で1000時間連続発電し、集電を上記セパレ−タ
を介して行い、発電時の出力密度を測定した。その結果
を表3に示した。
Then, with this separator, Example 1
The cell bodies of Sample No. 1 and No. 3 in Table 1 are sandwiched, and oxygen is supplied to the air electrode side and hydrogen to the fuel electrode side to supply 100
Power was continuously generated at 0 ° C. for 1000 hours, current was collected through the separator, and the output density during power generation was measured. Table 3 shows the results.

【0038】[0038]

【表3】 [Table 3]

【0039】この表3より、燃料極と接する表面に表面
処理を行ったセパレ−タの表面粗さが小さな試料No.
19は表面処理をしなった試料No.18と同程度で出
力密度が小さかった。また、セパレ−タ表面の表面粗さ
が200μmよりも大きな試料No.24においても発
電性能が低下した。空気極と接する表面に表面処理を行
ったセパレ−タも同様に性能の向上が認められる。試料
No.25〜No.28については固体電解質およびセパレ
ータの両方を表面処理した場合である。
From Table 3, it can be seen from Sample No. 3 that the surface in contact with the fuel electrode is surface-treated and the surface roughness of the separator is small.
No. 19 is sample No. which is not surface-treated. The output density was about the same as 18, and the output density was small. In addition, the sample No. 1 whose surface roughness of the separator surface is larger than 200 μm. Also in No. 24, the power generation performance deteriorated. A separator whose surface is in contact with the air electrode is surface-treated, and the performance is similarly improved. Samples No. 25 to No. 28 are the cases where both the solid electrolyte and the separator were surface-treated.

【0040】[0040]

【発明の効果】本発明の固体電解質型燃料電池セルで
は、固体電解質の少なくとも一方の表面の表面粗さRa
を3〜200μmとすることにより、固体電解質と空気
極または燃料極との界面において分極抵抗を小さくする
ことができ、セルの電圧低下を抑制して発電効率を向上
することができる。また、インタ−コネクタあるいはセ
パレ−タ等の集電体の少なくとも一方の表面の表面粗さ
Raを3〜200μmとすることにより、インタ−コネ
クタとNiフェルト(Ni板)またはセパレ−タと燃料
極あるいは空気極との接触面積を増大させた結果、それ
ぞれの界面における接触抵抗を小さくすることができ、
セルの電圧低下を抑制して発電効率を向上することがで
きる。
According to the solid oxide fuel cell of the present invention, the surface roughness Ra of at least one surface of the solid electrolyte is Ra.
Is 3 to 200 μm, the polarization resistance can be reduced at the interface between the solid electrolyte and the air electrode or the fuel electrode, and the voltage drop of the cell can be suppressed to improve the power generation efficiency. Further, by setting the surface roughness Ra of at least one surface of the current collector such as the interconnector or the separator to 3 to 200 μm, the interconnector and the Ni felt (Ni plate) or the separator and the fuel electrode. Alternatively, as a result of increasing the contact area with the air electrode, the contact resistance at each interface can be reduced,
It is possible to suppress the cell voltage drop and improve the power generation efficiency.

【0041】さらに、本発明では、固体電解質および/
または集電体の少なくとも一方の表面に、周期的に凹部
を形成し、表面粗さRaを3〜200μmとすることに
より、燃料電池セル全体に亘って均一な発電が得られ
る。
Further, in the present invention, the solid electrolyte and / or
Alternatively, by forming concave portions periodically on at least one surface of the current collector and setting the surface roughness Ra to 3 to 200 μm, uniform power generation can be obtained over the entire fuel cell unit.

【0042】よって、本発明の燃料電池セルは円筒型お
よび平板型とも従来のセルに比べて発電性能が飛躍的に
向上し、長期安定性のあるセルを提供できる。
Therefore, the fuel cell of the present invention can provide a cell having a long-term stability, which is dramatically improved in power generation performance as compared with the conventional cell in both the cylindrical type and the flat plate type.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の平板型固体電解質型燃料電池セルの固
体電解質の表面状態を示す縦断面図である。
FIG. 1 is a longitudinal sectional view showing a surface state of a solid electrolyte of a flat plate type solid oxide fuel cell of the present invention.

【図2】従来の円筒型の固体電解質型燃料電池セルを示
す斜視図である。
FIG. 2 is a perspective view showing a conventional cylindrical solid oxide fuel cell unit.

【図3】平板型の固体電解質型燃料電池セルを示す斜視
図である。
FIG. 3 is a perspective view showing a flat plate solid oxide fuel cell unit.

【符号の説明】[Explanation of symbols]

8・・・固体電解質 9・・・空気極 10・・・燃料極 11・・・セパレータ 12・・・燃料電池セル本体 13・・・凹部 8 ... Solid electrolyte 9 ... Air electrode 10 ... Fuel electrode 11 ... Separator 12 ... Fuel cell main body 13 ... Recess

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】固体電解質の片面に空気極が、他面に燃料
極が形成された燃料電池セル本体の外面に、前記空気極
または前記燃料極と電気的に接続する集電体を設けてな
る固体電解質型燃料電池セルにおいて、前記固体電解質
の少なくとも一方の表面の表面粗さRaが3〜200μ
mであることを特徴とする固体電解質型燃料電池セル。
1. A current collector, which is electrically connected to the air electrode or the fuel electrode, is provided on the outer surface of the fuel cell main body in which the air electrode is formed on one surface of the solid electrolyte and the fuel electrode is formed on the other surface. In the solid electrolyte fuel cell, the surface roughness Ra of at least one surface of the solid electrolyte is 3 to 200 μm.
m is a solid oxide fuel cell.
【請求項2】固体電解質の少なくとも一方の表面には周
期的に凹部が形成されている請求項1記載の固体電解質
型燃料電池セル。
2. The solid electrolyte fuel cell according to claim 1, wherein recesses are periodically formed on at least one surface of the solid electrolyte.
【請求項3】固体電解質の片面に空気極が、他面に燃料
極が形成された燃料電池セル本体の外面に、前記空気極
または前記燃料極と電気的に接続する集電体を設けてな
る固体電解質型燃料電池セルにおいて、前記集電体の少
なくとも一方の表面の表面粗さRaが3〜200μmで
あることを特徴とする固体電解質型燃料電池セル。
3. A solid electrolyte having an air electrode formed on one surface and a fuel electrode formed on the other surface, and a current collector electrically connected to the air electrode or the fuel electrode is provided on the outer surface of the fuel cell main body. In the solid electrolyte fuel cell, the surface roughness Ra of at least one surface of the current collector is 3 to 200 μm.
【請求項4】集電体の少なくとも一方の表面には周期的
に凹部が形成されている請求項3記載の固体電解質型燃
料電池セル。
4. The solid oxide fuel cell according to claim 3, wherein concave portions are periodically formed on at least one surface of the current collector.
JP20420595A 1995-08-10 1995-08-10 Solid oxide fuel cell Expired - Fee Related JP3323038B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20420595A JP3323038B2 (en) 1995-08-10 1995-08-10 Solid oxide fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20420595A JP3323038B2 (en) 1995-08-10 1995-08-10 Solid oxide fuel cell

Publications (2)

Publication Number Publication Date
JPH0955215A true JPH0955215A (en) 1997-02-25
JP3323038B2 JP3323038B2 (en) 2002-09-09

Family

ID=16486580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20420595A Expired - Fee Related JP3323038B2 (en) 1995-08-10 1995-08-10 Solid oxide fuel cell

Country Status (1)

Country Link
JP (1) JP3323038B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0949704A1 (en) * 1998-04-10 1999-10-13 Nisshinbo Industries, Inc. Separator for polymer electrolyte fuel cell and process for production thereof
WO2000026981A3 (en) * 1998-10-29 2001-10-25 3M Innovative Properties Co Microstructured flow fields
JP2002042831A (en) * 2000-07-24 2002-02-08 Mitsubishi Polyester Film Copp Mold releasing film
EP1223630A2 (en) * 2001-01-10 2002-07-17 Sgl Carbon Ag Bipolar plates for fuel cell stacks
WO2004034492A1 (en) * 2002-10-11 2004-04-22 Nippon Shokubai Co., Ltd. Electrolyte sheet for solid oxide fuel cell and method for manufacturing same
JP2005149815A (en) * 2003-11-12 2005-06-09 Dainippon Printing Co Ltd Non-diaphragm type solid oxide fuel cell
JP2007313650A (en) * 2006-05-23 2007-12-06 Nippon Shokubai Co Ltd Manufacturing method of surface-roughened ceramic green sheet
JP2008034203A (en) * 2006-07-27 2008-02-14 Kyocera Corp Current collector member for fuel cell, fuel cell stack, and fuel battery
US7422822B2 (en) 2004-05-11 2008-09-09 Toho Gas Co., Ltd. Single cell for a solid oxide fuel cell
JP2009126095A (en) * 2007-11-26 2009-06-11 Nippon Shokubai Co Ltd Manufacturing method of surface-roughened ceramic green sheet
WO2010110395A1 (en) 2009-03-25 2010-09-30 株式会社日本触媒 Electrolyte sheet for solid oxide fuel battery, process for producing same, and cell for solid oxide fuel battery
US7842433B2 (en) 2001-10-25 2010-11-30 Honda Giken Kogyo Kabushiki Kaisha Fuel cell separator plate and method for producing it
US8173319B2 (en) 2005-12-23 2012-05-08 Daimler Ag Fuel cell water management system and method
CN104508882A (en) * 2012-07-27 2015-04-08 日本特殊陶业株式会社 Fuel cell, and fuel cell stack
EP2879217A4 (en) * 2012-07-27 2016-03-23 Ngk Spark Plug Co Fuel cell, and fuel cell stack

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0949704A1 (en) * 1998-04-10 1999-10-13 Nisshinbo Industries, Inc. Separator for polymer electrolyte fuel cell and process for production thereof
US6348279B1 (en) * 1998-04-10 2002-02-19 Nisshinbo Industries, Inc. Separator for polymeric electrolyte fuel cell having a roughened surface
WO2000026981A3 (en) * 1998-10-29 2001-10-25 3M Innovative Properties Co Microstructured flow fields
US6555261B1 (en) 1998-10-29 2003-04-29 3M Innovative Properties Company Microstructured flow fields
JP2002042831A (en) * 2000-07-24 2002-02-08 Mitsubishi Polyester Film Copp Mold releasing film
EP1223630A2 (en) * 2001-01-10 2002-07-17 Sgl Carbon Ag Bipolar plates for fuel cell stacks
EP1223630A3 (en) * 2001-01-10 2008-11-05 Sgl Carbon Ag Bipolar plates for fuel cell stacks
US7842433B2 (en) 2001-10-25 2010-11-30 Honda Giken Kogyo Kabushiki Kaisha Fuel cell separator plate and method for producing it
WO2004034492A1 (en) * 2002-10-11 2004-04-22 Nippon Shokubai Co., Ltd. Electrolyte sheet for solid oxide fuel cell and method for manufacturing same
CN1297026C (en) * 2002-10-11 2007-01-24 株式会社日本触媒 Electolyte sheets for solid oxide fuel cell and method for manufacturing same
US7781045B2 (en) 2002-10-11 2010-08-24 Nippon Shokubai Co., Ltd. Electrolyte sheets for solid oxide fuel cell and method for manufacturing same
JP2005149815A (en) * 2003-11-12 2005-06-09 Dainippon Printing Co Ltd Non-diaphragm type solid oxide fuel cell
US7422822B2 (en) 2004-05-11 2008-09-09 Toho Gas Co., Ltd. Single cell for a solid oxide fuel cell
US8173319B2 (en) 2005-12-23 2012-05-08 Daimler Ag Fuel cell water management system and method
JP2007313650A (en) * 2006-05-23 2007-12-06 Nippon Shokubai Co Ltd Manufacturing method of surface-roughened ceramic green sheet
JP2008034203A (en) * 2006-07-27 2008-02-14 Kyocera Corp Current collector member for fuel cell, fuel cell stack, and fuel battery
JP2009126095A (en) * 2007-11-26 2009-06-11 Nippon Shokubai Co Ltd Manufacturing method of surface-roughened ceramic green sheet
WO2010110395A1 (en) 2009-03-25 2010-09-30 株式会社日本触媒 Electrolyte sheet for solid oxide fuel battery, process for producing same, and cell for solid oxide fuel battery
US8703346B2 (en) 2009-03-25 2014-04-22 Nippon Shokubai Co., Ltd Electrolyte sheet for solid oxide fuel cell, method for producing the same, and cell for solid oxide fuel cell
CN104508882A (en) * 2012-07-27 2015-04-08 日本特殊陶业株式会社 Fuel cell, and fuel cell stack
JP5696233B2 (en) * 2012-07-27 2015-04-08 日本特殊陶業株式会社 Fuel cell and fuel cell stack
EP2879217A4 (en) * 2012-07-27 2016-03-23 Ngk Spark Plug Co Fuel cell, and fuel cell stack

Also Published As

Publication number Publication date
JP3323038B2 (en) 2002-09-09

Similar Documents

Publication Publication Date Title
JP3976181B2 (en) Solid oxide fuel cell single cell and solid oxide fuel cell using the same
EP0466418A1 (en) Solid oxide fuel cell and porous electrode for use in the same
JPH0748378B2 (en) Air electrode for solid electrolyte fuel cell and solid electrolyte fuel cell having the same
JPH0955215A (en) Solid electrolytic fuel cell
US6534211B1 (en) Fuel cell having an air electrode with decreased shrinkage and increased conductivity
US11152636B2 (en) Electrochemical reaction unit and electrochemical reaction cell stack
JPH0529006A (en) Fuel cell
US11522202B2 (en) Alloy member, cell stack, and cell stack device
JP3347561B2 (en) Solid oxide fuel cell
JP4512911B2 (en) Solid oxide fuel cell
JP6134085B1 (en) Electrochemical cell
JP2622261B2 (en) Method for manufacturing solid electrolyte fuel cell
JP3342610B2 (en) Solid oxide fuel cell
JP2005085522A (en) Supporting membrane type solid oxide fuel cell
KR102109730B1 (en) Method for fabricating solid oxide fuel cell
AU722980B2 (en) High-temperature fuel cell
JP3336171B2 (en) Solid oxide fuel cell
JP3297609B2 (en) Method for manufacturing fuel cell stack
JPH087900A (en) Solid electrolytic fuel cell
JP3934970B2 (en) Fuel cell, cell stack and fuel cell
US11289727B2 (en) Electrochemical reaction unit, electrochemical reaction cell stack, and production method for electrochemical reaction unit
JP7096644B2 (en) Electrochemical reaction unit and electrochemical reaction cell stack
US20200144632A1 (en) Alloy member, cell stack, and cell stack device
JP4427929B2 (en) Solid oxide fuel cell with sealless structure
JP4484481B2 (en) Fuel cell, cell stack and fuel cell

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090628

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090628

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100628

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100628

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110628

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees