JPH0953918A - Method for monitoring filled particles - Google Patents

Method for monitoring filled particles

Info

Publication number
JPH0953918A
JPH0953918A JP8106443A JP10644396A JPH0953918A JP H0953918 A JPH0953918 A JP H0953918A JP 8106443 A JP8106443 A JP 8106443A JP 10644396 A JP10644396 A JP 10644396A JP H0953918 A JPH0953918 A JP H0953918A
Authority
JP
Japan
Prior art keywords
laser
particles
deposition surface
image
scanning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8106443A
Other languages
Japanese (ja)
Other versions
JP2939179B2 (en
Inventor
Kazunari Naya
一成 納屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Japan Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Energy Corp filed Critical Japan Energy Corp
Priority to JP10644396A priority Critical patent/JP2939179B2/en
Publication of JPH0953918A publication Critical patent/JPH0953918A/en
Application granted granted Critical
Publication of JP2939179B2 publication Critical patent/JP2939179B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/0015Feeding of the particles in the reactor; Evacuation of the particles out of the reactor
    • B01J8/002Feeding of the particles in the reactor; Evacuation of the particles out of the reactor with a moving instrument
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/0015Feeding of the particles in the reactor; Evacuation of the particles out of the reactor
    • B01J8/003Feeding of the particles in the reactor; Evacuation of the particles out of the reactor in a downward flow

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To process a large quantity of data with accuracy in a short time so as to accurately recognize filled particles by performing picture processing at the time of measuring the height of the deposited particles by scanning the surface of the deposited particles with a laser beam and detecting the reflected light of the laser beam. SOLUTION: The scanning extent of the surface S of piled up particles is divided into (m×n) matrices and the surface S is scanned with a laser beam 6 by successively projecting the beam 6 upon the points in the materices. The image of the beam 6 is picked up by several frames from each point with a camera. The several frames of pictures are integrated and the integrated picture which is most closely resemble to a preregistered picture of laser spot is selected. Then, the position of the gravity center of the picture is found and used as a laser spot. Thereafter, the pilled up particles are recognized with accuracy by picture processing, but, in order to shorten the picture processing time, the picture processing is only performed on a fixed range from the point which is estimated to be irradiated with the laser spot. When the picture processing is performed on the area of the surface S which is larger than the half of the maximum height of the surface S, namely, the square area having sides longer than the maximum height of the surface S, the piled up particles can be recognized with accuracy.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、容器内への粒子充
填の監視方法に関するものであり、各種材料の合成・分
解のための容器内への触媒その他の粒子充填の監視方法
に関するものである。特には、石油精製のための反応容
器内に散布された触媒の堆積面の凹凸状態をリアルタイ
ムで監視するべくレーザ光を使用しての三角法による触
媒充填監視の画像処理方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for monitoring particle packing in a container, and more particularly to a method for monitoring particle packing of catalysts and other particles in a container for synthesizing and decomposing various materials. . In particular, the present invention relates to an image processing method of catalyst filling monitoring by a trigonometric method using laser light in order to monitor in real time the uneven state of the deposition surface of the catalyst scattered in the reaction vessel for petroleum refining.

【0002】[0002]

【従来の技術】容器内への粒子の充填状態を監視する必
要があることが多い。例えば、各種材料の合成・分解の
ために触媒が使用される。石油工業においては、触媒を
使用して重質軽油を原料としオクタン価の高いガソリン
にする方法や多量の水素の存在下で触媒を使用して脱硫
と分解とを同時に行わせる方法等触媒を使用することが
多い。触媒としては、接触分解法では、例えば固体の酸
性シリカ、アルミナ粒子、ゼオライト粒子等が使用され
る。一般的には、これら触媒は、巾:0.5〜3mmそ
して長さ:3〜10mmの粒子である。こうした場合、
反応容器に触媒粒子が充填されるが、触媒粒子の充填状
態が操業の効率を左右するので、均一な充填を達成する
目的で反応容器中央上方部に充填装置を設置し、充填装
置から触媒粒子を円錐状に落下せしめる散布充填が行わ
れている。
BACKGROUND OF THE INVENTION It is often necessary to monitor the loading of particles in a container. For example, catalysts are used for the synthesis and decomposition of various materials. In the petroleum industry, catalysts such as a method of using a heavy diesel fuel as a raw material to make gasoline with a high octane number and a method of simultaneously performing desulfurization and decomposition using a catalyst in the presence of a large amount of hydrogen are used in the petroleum industry. Often. In the catalytic cracking method, for example, solid acidic silica, alumina particles, zeolite particles and the like are used as the catalyst. Generally, these catalysts are particles with a width of 0.5-3 mm and a length of 3-10 mm. In these cases,
Although the reaction vessel is filled with catalyst particles, the loading state of the catalyst particles influences the operation efficiency, so a loading device is installed above the center of the reaction vessel for the purpose of achieving uniform filling, and the catalyst particles are loaded from the loading device. Scatter filling is performed to make the cone fall in a conical shape.

【0003】しかし、散布充填を行っても、触媒粒子堆
積面は凹凸状に波打ち、平坦な堆積面は得られない。凹
凸状態が規定の水準を超えると、操業効率が低下するの
で充填装置に備えられた散布パラメータを制御するなど
して凹凸を修正するようにしなければならない。従来、
散布された粒子の堆積面の凹凸状態の測定は、反応容器
が深いため容易ではなく、充填装置設置面より巻き尺で
適宜の測定点を選んで実測により測定していた。測定は
例えば間隔30分に1回そして測定点数12点として実
施された。そのため、測定に時間を取りしかも大まか
で、更には測定精度は悪く、±50mmとなりまた堆積
面分布は最大400mmにもなった。充填操作を測定の
たびに操作を停止せねばならず、充填操作効率が悪かっ
た。
However, even if spray filling is performed, the catalyst particle deposition surface is corrugated in an uneven shape, and a flat deposition surface cannot be obtained. When the unevenness exceeds a prescribed level, the operating efficiency is reduced, so it is necessary to correct the unevenness by controlling the spraying parameters provided in the filling device. Conventionally,
It is not easy to measure the unevenness of the deposited surface of the scattered particles because the reaction vessel is deep, and the measurement was performed by actually selecting an appropriate measurement point with a tape measure from the installation surface of the filling device. The measurement was carried out, for example, once every 30 minutes and with 12 measurement points. Therefore, it took a long time to perform the measurement, and the measurement was rough, and the measurement accuracy was poor, and the deposition surface distribution was ± 50 mm, and the maximum deposition surface distribution was 400 mm. Since the filling operation had to be stopped every time the measurement was performed, the filling operation efficiency was poor.

【0004】従って、容器内に散布される粒子の堆積面
を均一にするために、それに先立って堆積面の凹凸状態
をリアルタイムで一層精確に監視・測定する技術の開発
が要望されている。例えば、触媒の充填では堆積面凹凸
状態の±20mmの測定精度が要求される。
Therefore, in order to make the deposition surface of the particles dispersed in the container uniform, it is required to develop a technique for more accurately monitoring and measuring the unevenness of the deposition surface in real time prior to that. For example, in the case of filling the catalyst, a measurement accuracy of ± 20 mm on the uneven surface of the deposition surface is required.

【0005】こうした要望にこたえて、本件出願人は先
に、容器内に粒子を充填する際レーザ光で堆積面を走査
し、反射光を検知しそして測定時の特定の走査点の位
置、レーザ光出射位置及びレーザ光検知位置から三角法
により堆積高さを測定し、その際レーザ光のビーム径を
粒子の断面積以上で且つ目標精度に応じて選択すること
を特徴とする粒子充填監視方法並びに粒子を充填する容
器に粒子充填高さより上方の水準に取付けられる、レー
ザ光で粒子堆積面を走査するため粒子の断面積以上で且
つ目標精度に応じて選択されるレーザ光ビーム径を有す
るレーザ光の発生及び走査装置及び走査点からのレーザ
反射光を検出する撮像装置と、測定時の特定の前記走査
点の位置、前記レーザ光発生及び走査装置の位置及び前
記撮像装置の位置から三角法により走査点の深さを計算
する計算装置と、堆積面深さ分布を含むデータを表示す
る表示装置とを備える粒子充填監視装置を開発した。こ
れらは、レーザ光を用いて、容器への粒子の充填に際し
てレーザ光で粒子堆積面を走査し、反射光を検知し、所
定の測定間隔で所要の測定点数において各走査点の堆積
深さを三角法で測定し、堆積面の高さ分布、中心を通る
任意の断面トレンド等を含む堆積面情報をリアルタイム
で表示することを基本とするものである。
In response to these demands, the applicant of the present invention firstly scans the deposition surface with a laser beam when the particles are filled in the container, detects the reflected light, and detects the position of a specific scanning point at the time of measurement and the laser. A particle filling monitoring method characterized in that the deposition height is measured from the light emission position and the laser light detection position by trigonometry, and the beam diameter of the laser light is selected at this time to be larger than the cross-sectional area of the particle and according to the target accuracy. And a laser having a laser beam diameter larger than the cross-sectional area of the particle for scanning the particle deposition surface with the laser beam and attached to the container for filling the particle at a level higher than the particle filling height and selected according to the target accuracy. An image pickup device that detects the laser reflection light from the light generation and scanning device and the scanning point, and the position of the specific scanning point at the time of measurement, the position of the laser light generation and scanning device, and the position of the imaging device. Developed a calculating device for calculating the depth of the scanning point, the particle packing monitoring device and a display device for displaying data including the deposition surface depth distribution by trigonometry. These use a laser beam to scan the particle deposition surface with a laser beam when filling the container with particles, detect reflected light, and measure the deposition depth at each scanning point at the required number of measurement points at a predetermined measurement interval. Basically, it is measured by the trigonometric method, and the deposition surface information including the height distribution of the deposition surface and an arbitrary cross-sectional trend passing through the center is displayed in real time.

【0006】図1(a)は、反応容器1において上方部
中央に設置された充填装置3から触媒粒子Cを円錐状に
散布充填している様相と、形成された凹凸状に波打った
触媒粒子の堆積面Sの状態を図示すると共に、充填装置
とほぼ同じ高さ水準で反応容器壁に取付けられた粒子充
填監視装置としてのレーザ発生及び走査装置5と撮像装
置9とを示す。レーザ発生及び走査装置5は走査レーザ
ビーム6を発生する。撮像装置9は所定視野内でレーザ
反射光を検知する。更に、測定時の特定の走査点の位
置、レーザ光発生及び走査装置の位置及び撮像装置の位
置から三角法により走査点における堆積面の深さを計算
する計算装置としてのコンピュータ11及び堆積面深さ
分布を含むデータを表示する装置としてのCRT13
が、反応容器外部の適宜の位置の監視室内に設置され、
レーザ発生及び走査装置と撮像装置とに信号線15で接
続されている。図1(b)は、充填装置3、レーザ発生
及び走査装置5及び撮像装置9の水準から下方に堆積面
Sを見た断面図であり、走査レーザビーム6による堆積
面Sの走査の様相を示す。走査レーザビーム6により堆
積面を一端から他端まで左右に走査しながら、一定間隔
で走査点の反射光を検出することにより堆積面の監視が
行われる。
FIG. 1 (a) shows a state in which catalyst particles C are scattered and packed in a conical shape from a packing device 3 installed at the center of the upper part of a reaction vessel 1, and the formed uneven corrugated catalyst. A state of the particle deposition surface S is shown, and a laser generation / scanning device 5 and an imaging device 9 as a particle filling monitoring device attached to the wall of the reaction vessel at substantially the same level as the filling device are shown. The laser generating and scanning device 5 generates a scanning laser beam 6. The image pickup device 9 detects the laser reflected light within a predetermined visual field. Furthermore, the computer 11 and the deposition surface depth as a calculation device for calculating the depth of the deposition surface at the scanning point by trigonometry from the position of a specific scanning point at the time of measurement, the position of the laser light generation / scanning device, and the position of the imaging device. CRT 13 as a device for displaying data including depth distribution
Is installed in the monitoring room at an appropriate position outside the reaction vessel,
A signal line 15 connects the laser generating and scanning device and the image pickup device. FIG. 1B is a cross-sectional view of the deposition surface S seen downward from the level of the filling device 3, the laser generation / scanning device 5, and the imaging device 9, showing the scanning aspect of the deposition surface S by the scanning laser beam 6. Show. The deposition surface is monitored by detecting the reflected light at the scanning points at regular intervals while scanning the deposition surface from the one end to the other end by the scanning laser beam 6 from side to side.

【0007】図2は、レーザ発生及び走査装置5及び撮
像装置7の容器壁への取付け様相を示す。レーザ発生及
び走査装置5は、例えばHe−Neレーザ、半導体レー
ザのような適宜のレーザ源7とレーザ光を堆積面を走査
するように左右前後に走査するレーザスキャナ8とから
構成される。プリズムのような光学的手段の傾きを順次
変更することによりレーザビームの出射方向を変更する
ことができる。レーザ源7及びレーザスキャナ8は触媒
粒子充填中触媒のダストが発生するため防塵対策として
エアーライン16に接続される防塵カバー17内部及び
その直下にそれぞれ配置されそして防塵用エアーがエア
ーライン16から防塵カバー17を通して常時吹き出さ
れる。防塵カバー17は適宜の固定金具18により反応
容器壁に取付けられる。撮像装置9は代表的にはCCD
カメラ10であり、同じくエアーライン16に接続され
る防塵カバー19内部に配置され、固定金具20により
反応容器壁に取付けられる。これらは中央に充填装置
(図示省略)を支持するトレイ上に支持される。
FIG. 2 shows how the laser generating and scanning device 5 and the image pickup device 7 are mounted on the container wall. The laser generation / scanning device 5 is composed of an appropriate laser source 7 such as a He—Ne laser or a semiconductor laser, and a laser scanner 8 which scans the laser beam left and right and back and forth so as to scan the deposition surface. The emission direction of the laser beam can be changed by sequentially changing the inclination of optical means such as a prism. The laser source 7 and the laser scanner 8 are disposed inside the dust-proof cover 17 connected to the air line 16 and immediately below the dust-proof cover 17 as dust-proof measures because catalyst dust is generated during the catalyst particle filling, and the dust-proof air is dust-proof from the air line 16. It is constantly blown out through the cover 17. The dust-proof cover 17 is attached to the wall of the reaction vessel by an appropriate fixing metal fitting 18. The image pickup device 9 is typically a CCD
The camera 10 is arranged inside the dustproof cover 19 which is also connected to the air line 16, and is attached to the wall of the reaction vessel by the fixing metal fitting 20. These are supported on a tray that centrally supports a filling device (not shown).

【0008】カメラの視野は、反応容器の内径、CCD
の撮像面の寸法、カメラの焦点距離、堆積面までの距離
に依存し、例えば反応容器の内径が4mで、CCD撮像
面の寸法が1/2インチ型で、焦点距離f=12mm撮
像レンズの場合、回収画像縦方向の視野は、堆積面距
離:−10mでは3mとなりそして堆積面距離:−5m
では1.5mとなり、全時間域で反応容器内部全景が監
視できない状況が存在しうる。そうした場合には、複数
のカメラ、場合によっては複数のレーザ発生及び走査装
置が使用されうる。例えば、焦点距離9mm撮像レンズ
を使用する場合、4カメラ×2レーザ方式、3カメラ×
1レーザ方式等が考慮されうる。図3は4カメラ×2レ
ーザ方式を示したものである。−5mの視野及び−10
mの視野が点線で示されている。4カメラ×2レーザ方
式の方が3カメラ×1レーザ方式よりもカメラ〜レーザ
間隔を広くとれ、広範囲、高精度の測定が可能となる。
The field of view of the camera is the inner diameter of the reaction vessel, the CCD
Depending on the size of the image pickup surface, the focal length of the camera, and the distance to the deposition surface. For example, the inner diameter of the reaction vessel is 4 m, the CCD image pickup surface is 1/2 inch type, and the focal length f is 12 mm. In this case, the vertical field of view of the collected image is 3 m at a deposition surface distance of -10 m and a deposition surface distance of -5 m.
Since it is 1.5 m, there may be a situation where the entire view inside the reaction vessel cannot be monitored in the entire time range. In such a case, multiple cameras and possibly multiple laser generation and scanning devices may be used. For example, when using an imaging lens with a focal length of 9 mm, 4 cameras x 2 laser systems, 3 cameras x
A one-laser system or the like may be considered. FIG. 3 shows a 4 camera × 2 laser system. -5 m field of view and -10
The field of view of m is indicated by the dotted line. The 4-camera × 2-laser system allows a wider camera-laser interval than the 3-camera × 1 laser system, and enables wide-range and highly accurate measurement.

【0009】レーザビームの走査による堆積面の測定に
おいては、レーザビームが容器底部の堆積面に確実に届
く必要がある。即ち、容器空間を落下する触媒粒子によ
ってレーザビームが遮断されることのないようにしなけ
ればならない。レーザビーム径を触媒粒子の断面積以
上、好ましくは10倍以上とすることによりレーザビー
ムの走査による堆積面の測定が可能であることが確認さ
れた。レーザビームの上限は、必要とする測定精度(数
cm以下)とレーザ走査点スポットの輝度から決定され
るべきであり、本発明目的には通常の反応容器で2〜3
cmが上限である。例えば精度5cmの達成にはレーザ
ビームの直径の上限は3cmである。ここで、触媒粒子
の断面積は、粒子の最大投影面積(粒子に平行光を照射
した時にできる影の面積の最大値)である。
In the measurement of the deposition surface by scanning the laser beam, it is necessary that the laser beam surely reach the deposition surface at the bottom of the container. That is, it is necessary to prevent the laser beam from being blocked by the catalyst particles falling in the container space. It has been confirmed that the deposition surface can be measured by scanning the laser beam by setting the laser beam diameter to be equal to or larger than the cross-sectional area of the catalyst particles, preferably 10 times or more. The upper limit of the laser beam should be determined from the required measurement accuracy (several cm or less) and the brightness of the laser scanning point spot.
cm is the upper limit. For example, in order to achieve an accuracy of 5 cm, the upper limit of the diameter of the laser beam is 3 cm. Here, the cross-sectional area of the catalyst particle is the maximum projected area of the particle (the maximum value of the area of the shadow formed when the particle is irradiated with parallel light).

【0010】レーザスキャナの制御及び撮像装置からの
画像処理及び三角測量計算は専用のコンピュータにより
処理を行う。処理データは、磁気ディスク、光磁気ディ
スク等のストレージマシンに保存すると共に、CRT画
面上にリアルタイム表示される。CRT画面には様々の
充填情報が表示されうる。図4は、一例としての堆積面
モニタの基本画面構成図である。堆積面の分布状態、選
択された特定の断面の堆積面表示等がリアルタイム表示
される。
Control of the laser scanner, image processing from the image pickup device, and triangulation calculation are performed by a dedicated computer. The processed data is stored in a storage machine such as a magnetic disk or a magneto-optical disk and is displayed in real time on a CRT screen. Various filling information may be displayed on the CRT screen. FIG. 4 is a basic screen configuration diagram of a deposition surface monitor as an example. The distribution state of the deposition surface, the display of the deposition surface of the selected specific section, etc. are displayed in real time.

【0011】こうして得られた堆積面分布情報により、
堆積面の分布が一定となるように充填装置からの散布状
態が修正される。図5は充填装置3の例を示し、(a)
はその側面図そして(b)は底面スリットを示す。装置
の側面には4か所の側面スリット21が設けられており
そして底面22には(b)に示す下部スリット23が設
けられている。底面には回転円盤24が取付けられてい
る。側面スリットには調整可能な開閉扉が設けられる。
また、下部スリット23も調整可能である。得られた堆
積面情報に基づいて、側面及び下部スリットの開度及び
回転円盤の回転数を調整することにより散布状態を制御
することができる。
From the thus obtained information on the distribution of the deposition surface,
The state of spraying from the filling device is corrected so that the distribution of the deposition surface becomes constant. FIG. 5 shows an example of the filling device 3, (a)
Shows its side view and (b) shows the bottom slit. The side surface of the device is provided with four side surface slits 21 and the bottom surface 22 is provided with a lower slit 23 shown in (b). A rotating disk 24 is attached to the bottom surface. An adjustable door is provided in the side slit.
The lower slit 23 can also be adjusted. The spraying state can be controlled by adjusting the openings of the side and lower slits and the rotation speed of the rotary disk based on the obtained deposition surface information.

【0012】[0012]

【発明が解決しようとする課題】このレーザ光走査によ
る粒子充填監視方法は、粒子堆積面の凹凸状態をリアル
タイムで従来より一層精確に監視・測定することを可能
としたが、実際の観測に当って、大量のデータを精度を
維持したまま短時間に処理することや堆積した粒子と散
布中の粒子とを区別することの点で改善の余地を残して
いる。本発明の課題はこれらを画像処理により行う処理
手順を確立することである。
This method for monitoring particle filling by laser light scanning makes it possible to monitor and measure the unevenness of the particle deposition surface in real time more accurately than before, but in actual observation. Therefore, there is room for improvement in terms of processing a large amount of data in a short time while maintaining accuracy and distinguishing accumulated particles from particles in spraying. An object of the present invention is to establish a processing procedure for performing these by image processing.

【0013】[0013]

【課題を解決するための手段】レーザ光で粒子堆積面を
走査する場合、堆積面をm×nのマトリックスに分割
し、各マトリックス上の点へレーザを順番に照射する
が、例えば10×10=100点を短時間で走査せねば
ならない。従って、カメラでレーザの画像を採取するに
当たり、画像処理に要する時間を考慮すると通常は数フ
レームしか採取できない。問題は、堆積面のマトリック
ス上の点に向けて照射されるレーザ光路に散布落下中の
粒子が横切り、堆積面に当っているレーザスポットの判
別を困難ならしめることである。1フレーム中には通常
多数のレーザ光路を横切る粒子が光って見える。数フレ
ームの画像を積分することで、光路中の散布粒子による
輝点は連続した線となる。ここで、予め登録してあるレ
ーザスポットの画像に最も近い画像を選択することで、
堆積面に当っているレーザスポットと光路中の散布粒子
による輝点とを区別することが可能となる。その上で、
予め選択した画像の重心位置を求め、レーザスポットの
座標とする。画像処理に要する時間を短縮するために、
レーザースポットが当ると予測される点から一定の範囲
内のみを画像処理する。その点から堆積面の凹凸の最大
値(深さ方向)/2以上の範囲即ち一辺が堆積面の凹凸
の最大値(深さ方向)以上の四角形範囲を画像処理すれ
ばよい。
When a particle deposition surface is scanned with a laser beam, the deposition surface is divided into m × n matrices, and the laser is sequentially irradiated to points on each matrix. For example, 10 × 10 = 100 points must be scanned in a short time. Therefore, when the image of the laser is taken by the camera, only a few frames can be usually taken in consideration of the time required for the image processing. The problem is that the falling particles traverse the laser path that is directed towards the points on the matrix of the deposition surface, making it difficult to identify the laser spot hitting the deposition surface. In one frame, particles that normally traverse many laser optical paths appear to shine. By integrating the images of several frames, the bright spots due to the scattered particles in the optical path become continuous lines. Here, by selecting the image closest to the image of the laser spot registered in advance,
It is possible to distinguish between the laser spot hitting the deposition surface and the bright spot due to the scattered particles in the optical path. Moreover,
The barycentric position of the preselected image is obtained and used as the coordinates of the laser spot. To reduce the time required for image processing,
The image is processed only within a certain range from the point where the laser spot is predicted to hit. From this point, image processing may be performed on a range of the maximum value of the unevenness of the deposition surface (depth direction) / 2 or more, that is, a rectangular range in which one side is the maximum value of the unevenness of the deposition surface (depth direction) or more.

【0014】かくして、本発明は、容器内に粒子を充填
する際レーザ光で堆積面を走査し、反射光を検知しそし
て測定時の特定の走査点の位置、レーザ光出射位置及び
レーザ光検知位置から三角法により堆積高さを測定する
粒子充填監視方法において、堆積面をm×nのマトリッ
クスに分割し、マトリックス上の点へレーザを順番に照
射して走査を行い、各点で採取された数フレームの画像
を積分して予め登録してあるレーザスポットの画像に最
も近い画像を選択して、その画像の重心位置を求めレー
ザスポットとする画像処理を行い、レーザースポットが
当ると予測される点から堆積面の凹凸の最大値(深さ方
向)/2以上の所定の範囲内のみを画像処理することを
特徴とする粒子充填監視方法を提供する。
Thus, according to the present invention, when the container is filled with particles, the deposition surface is scanned with laser light, reflected light is detected, and the position of a specific scanning point at the time of measurement, the laser light emission position and the laser light detection. In the particle filling monitoring method that measures the deposition height from the position by trigonometry, the deposition surface is divided into an m × n matrix, and the points on the matrix are sequentially irradiated with a laser beam for scanning, and collected at each point. The image of several frames is integrated and the image closest to the laser spot image registered in advance is selected, the center of gravity position of the image is calculated, and image processing is performed as the laser spot. From the point of view of the above, there is provided a particle filling monitoring method characterized by performing image processing only within a predetermined range of the maximum value (depth direction) / 2 of the unevenness of the deposition surface.

【0015】こうして、本発明においては、堆積面の走
査範囲をm×nのマトリックスに分割し、マトリックス
上の点へレーザを順番に照射することによりレーザ光で
粒子堆積面を走査する。カメラでレーザの画像を1点当
り数フレーム採取する。数フレームの画像を積分し、予
め登録してあるレーザスポットの画像に最も近い画像を
選択して、その画像の重心位置を求め、レーザスポット
とする。堆積した粒子の精度の良い認識を画像処理で行
うが、画像処理に要する時間を短縮するために、レーザ
ースポットが当ると予測される点から一定の範囲内のみ
を画像処理する。その点から堆積面の凹凸の最大値(深
さ方向)/2以上の範囲即ち一辺が堆積面の凹凸の最大
値(深さ方向)以上の四角形範囲を画像処理すれば堆積
した粒子の精度の良い認識を行うことができる。
Thus, in the present invention, the scanning range of the deposition surface is divided into an m × n matrix, and the particles on the matrix are sequentially irradiated with laser to scan the particle deposition surface. The camera captures several frames of the laser image. The image of several frames is integrated, the image closest to the image of the laser spot registered in advance is selected, and the position of the center of gravity of the image is determined and used as the laser spot. Accurate recognition of the deposited particles is performed by image processing, but in order to reduce the time required for image processing, image processing is performed only within a certain range from the point where the laser spot is predicted to hit. From that point, if the range of the maximum value of the unevenness of the deposition surface (in the depth direction) / 2 or more, that is, the square range in which one side is the maximum value of the unevenness of the deposition surface (in the depth direction) or more is image-processed, the accuracy of the deposited particles will be improved. You can make a good recognition.

【0016】[0016]

【発明の実施の形態】すでに図1において説明したよう
に、本発明方法は、反応容器1において上方部中央に設
置された充填装置3から粒子Cを円錐状に散布充填する
に際して、充填装置とほぼ同じ高さ水準で反応容器壁に
取付けられた粒子充填監視装置としてのレーザ発生及び
走査装置5と撮像装置(カメラ)9とによって、形成さ
れつつある凹凸状に波打った触媒粒子の堆積面Sの状態
を監視しながら充填を行う。レーザ発生及び走査装置5
は走査レーザビーム6を発生する。撮像装置9は所定視
野内で画像を採取してレーザ反射光を検知する。走査レ
ーザビーム6により堆積面を一端から他端まで左右に走
査しながら、一定間隔で走査点の反射光を検出すること
により堆積面の監視が行われる。更に、測定時の特定の
走査点の位置、レーザ光発生及び走査装置の位置及び撮
像装置の位置から三角法により走査点における堆積面の
深さを計算する計算装置・画像処理装置としてのコンピ
ュータ11及び堆積面深さ分布を含むデータを表示する
CRT13が、反応容器外部の適宜の位置の監視室内に
設置されている。カメラの視野は、反応容器の内径、C
CDの撮像面の寸法、カメラの焦点距離、堆積面までの
距離に依存し、全時間域で反応容器内部全景が監視でき
るように、複数のカメラと複数のレーザ発生及び走査装
置が使用されうる。例えば、焦点距離9mm撮像レンズ
を使用する場合、4カメラ×2レーザ方式、3カメラ×
1レーザ方式等が考慮されうる。
BEST MODE FOR CARRYING OUT THE INVENTION As described above with reference to FIG. 1, the method of the present invention uses a filling device for conical spraying of particles C from a filling device 3 installed in the upper center of the reaction vessel 1. A deposition surface of the corrugated catalyst particles which is being formed by the laser generation / scanning device 5 and the imaging device (camera) 9 as a particle filling monitoring device attached to the wall of the reaction vessel at almost the same height level. Filling is performed while monitoring the state of S. Laser generation and scanning device 5
Produces a scanning laser beam 6. The imaging device 9 collects an image within a predetermined visual field and detects laser reflected light. The deposition surface is monitored by detecting the reflected light at the scanning points at regular intervals while scanning the deposition surface from the one end to the other end by the scanning laser beam 6 from side to side. Further, a computer 11 as a calculation device / image processing device for calculating the depth of the deposition surface at the scanning point by trigonometry from the position of a specific scanning point at the time of measurement, the position of the laser beam generating / scanning device and the position of the image pickup device. A CRT 13 that displays data including the depth distribution of the deposition surface is installed in a monitoring room at an appropriate position outside the reaction container. The field of view of the camera is the inner diameter of the reaction vessel, C
Depending on the size of the imaging surface of the CD, the focal length of the camera, and the distance to the deposition surface, a plurality of cameras and a plurality of laser generation / scanning devices may be used so that the entire internal view of the reaction vessel can be monitored in all time zones. . For example, when using an imaging lens with a focal length of 9 mm, 4 cameras x 2 laser systems, 3 cameras x
A one-laser system or the like may be considered.

【0017】粒子充填監視の処理手順としては、図6に
示すように、まず初期化としてカメラ10、レーザの位
置の絶対座標系、カメラ10の撮像角、レーザスキャナ
8の振り角及び3点のマーカーMの絶対座標系を入力す
る。その後、マーカーにレーザスポットを合わせ画像処
理装置でマーカーの位置を測定して、レーザスキャナの
取付け方向及びカメラの配向を補正する。絶対座標系で
のデータから底面(堆積面)での走査範囲を計算する。
As a processing procedure of the particle filling monitoring, as shown in FIG. 6, first, as initialization, the absolute coordinate system of the camera 10, the position of the laser, the imaging angle of the camera 10, the swing angle of the laser scanner 8 and three points are set. Input the absolute coordinate system of the marker M. After that, the laser spot is aligned with the marker, the position of the marker is measured by the image processing device, and the mounting direction of the laser scanner and the orientation of the camera are corrected. The scanning range on the bottom surface (deposition surface) is calculated from the data in the absolute coordinate system.

【0018】走査範囲をm×n、例えば10×10のマ
トリックスに分割し、各マトリックス上の点へレーザを
順番に照射することによりレーザ光で粒子堆積面を走査
する。予め、どの点にどのレーザを照射するか、どのカ
メラでどのレーザ画像を採取するかをテーブルとして決
定しておく。粒子充填が進行するにつれて堆積面が次第
に高くなり、カメラとレーザとの視野範囲が変わってく
るからカメラ・レーザの組合せテーブルを充填面の高さ
毎に変更することができる。例えば、高さ1cm単位で
20個の組合せテーブルを持つことができ、粒子充填高
さが進行するにつれ組合せテーブルを変更していく。
The scanning range is divided into a matrix of m × n, for example, 10 × 10, and the points on each matrix are sequentially irradiated with a laser to scan the particle deposition surface with laser light. In advance, a table is used to determine which laser is applied to which point and which laser image is to be collected by which camera. As the particle filling progresses, the deposition surface gradually becomes higher, and the visual field range between the camera and the laser changes. Therefore, the combination table of the camera and the laser can be changed for each height of the filling surface. For example, it is possible to have 20 combination tables with a height of 1 cm, and the combination table is changed as the particle packing height progresses.

【0019】各マトリックス上の点へのレーザ画像をカ
メラで採取するが、走査を短時間で行わねばならないた
めに、例えば10×10=100点を30秒以内で走査
しなければならないために、1点当り最大で数十フレー
ム、画像処理に要する時間を考慮すると通常は数フレー
ムしか採取できない。精度の問題から3フレーム以上そ
して処理時間の問題から10フレーム以下とすることが
推奨される。
A laser image to a point on each matrix is taken by a camera, but since scanning must be performed in a short time, for example, 10 × 10 = 100 points must be scanned within 30 seconds, Considering the time required for image processing at the maximum of several tens of frames per point, normally only several frames can be sampled. It is recommended that the number of frames be 3 or more because of accuracy and 10 or less because of processing time.

【0020】容器内に散布されそして堆積される粒子
は、散布量、粒子の大きさと落下速度、容器の大きさ等
に応じて或る平均空間密度で容器内を落下していく。画
像1フレーム当りの露光時間は、マトリックス数、走査
時間、画像処理時間等に応じて定められるが、通常数十
分の1秒の短時間である。しかし、1フレーム中にレー
ザ光路を横切る粒子はかなりの数に及び、それらが光っ
て見えることになる。
The particles scattered and accumulated in the container fall in the container at a certain average spatial density according to the amount of dispersion, the size and falling speed of the particles, the size of the container and the like. The exposure time per one frame of an image is determined according to the number of matrices, the scanning time, the image processing time, etc., but is usually a short time of several tens of seconds. However, there are a significant number of particles that traverse the laser light path during one frame, which makes them appear to shine.

【0021】カメラと関連するフレームメモリーは縦横
に群列をなすピクセルから構成されるが、レーザ光路を
横切る粒子により例えば数ピクセル毎に輝点が生じてい
ることになる。従って、数〜10フレーム分の画像を積
分すれば図7に示すようにレーザ光路を横切る散布粒子
による輝点は連続した線となる。図8に示すような予め
登録してあるレーザスポットの画像に最も近い画像を選
択して、その画像の重心位置を求め、レーザスポットの
座標とする。画像処理に要する時間を短縮するために、
レーザースポットが当ると計算から予測される点から一
定の範囲内のみを画像処理する。その点から堆積面の凹
凸の最大値(深さ方向)/2以上の範囲即ち一辺が堆積
面の凹凸の最大値(深さ方向)以上の四角形範囲を画像
処理すればよい。堆積面の凹凸の最大値は、m×nのマ
トリックスの測定毎に更新される。なお、散布の初期状
態(粒子が、散布において要求される堆積面の凹凸の最
大(目標)値の高さまで堆積するまで)までは、堆積面
の凹凸の最大値は散布において要求される堆積面の凹凸
の最大(目標)値で代用することができる。また、散布
の初期だけでなく、散布の終了まで、画像処理に堆積面
の凹凸の最大値を用いず、この値で一定として画像処理
を行っても構わない。例えばレーザースポットが当ると
予測される点の周囲40cm〜1m分の範囲のみを画像
処理する。
The frame memory associated with the camera is made up of vertical and horizontal groups of pixels, which means that particles that cross the laser beam path produce bright spots, for example, every few pixels. Therefore, when the images for several to ten frames are integrated, the bright spots due to the scattered particles that cross the laser optical path become a continuous line as shown in FIG. The image closest to the image of the laser spot registered in advance as shown in FIG. 8 is selected, and the position of the center of gravity of the image is determined and used as the coordinates of the laser spot. To reduce the time required for image processing,
The image is processed only within a certain range from the point predicted from the calculation that the laser spot hits. From this point, image processing may be performed on a range of the maximum value of the unevenness of the deposition surface (depth direction) / 2 or more, that is, a rectangular range in which one side is the maximum value of the unevenness of the deposition surface (depth direction) or more. The maximum value of the unevenness of the deposition surface is updated every measurement of the m × n matrix. In addition, until the initial state of spraying (until particles are deposited up to the maximum (target) value of the unevenness of the deposition surface required for spraying), the maximum value of the unevenness of the deposition surface is the deposition surface required for spraying. The maximum (target) value of the unevenness of can be substituted. Further, not only at the initial stage of the spraying but also until the end of the spraying, the maximum value of the unevenness of the deposition surface is not used for the image processing, and the image processing may be performed with this value being constant. For example, image processing is performed only in the range of 40 cm to 1 m around the point predicted to hit the laser spot.

【0022】こうした画像処理の後、レーザ及びカメラ
の絶対座標系とレーザの振り角及びレーザスポットの座
標からレーザの当っている点の距離を求める。この走査
をすべてのマトリックスにおける点において繰り返す。
すべての点における測定を終えると、測定された距離の
平均値を計算し、次のレーザ測定の基準値とし、レーザ
照射位置を再計算する。この後、グラフィック出力す
る。こうした画像処理流れのフローチャートを図9に示
す。
After such image processing, the distance between the point where the laser hits is obtained from the absolute coordinate system of the laser and the camera, the swing angle of the laser, and the coordinates of the laser spot. This scan is repeated for points in all matrices.
When the measurement at all points is completed, the average value of the measured distances is calculated and used as the reference value for the next laser measurement, and the laser irradiation position is recalculated. After this, graphic output is performed. A flowchart of such an image processing flow is shown in FIG.

【0023】[0023]

【実施例】直径約3mそして高さ約18mの鋼製円筒容
器に容器上端より約5mに充填装置を固定し、直径0.
5〜1.5mmそして長さ3〜5mmの円筒状セラミッ
クス触媒粒子(断面積:0.0152cm2 〜0.07
83cm2 )を堆積速度約1m/時間で空間的に散布
し、堆積面をレーザビームにより走査しそして堆積面の
凹凸状態を測定した。マトリックス測定点数は10×1
0の100点とし、測定間隔は約30秒に1回とした。
各点あたり5フレームの画像を採取した。測定は、半導
体レーザビームスキャンとCCDカメラによる堆積面の
三角測量によった。レーザビームは30mWの半導体レ
ーザを使用した。レーザビーム径は10mmであった。
カメラは、焦点距離8mmの1/2インチ38万画素モ
ノクロCCDカメラを使用した(最低被写体照度:0.
2Lux)。512×512ピクセル画像処理装置を使
用した(尚、認識精度としては、0.1ピクセル単位で
レーザスポットの座標を求めた。)。カメラの露光時間
は1フレーム当り1/60秒であった。レーザースポッ
トが当ると計算された点の周囲40cm〜1m分の範囲
のみを画像処理した。堆積面までの距離10mにおいて
±17mmの測定精度が得られそして堆積面までの距離
5mにおいて±10mmの測定精度が得られた。
EXAMPLE A filling device was fixed to a steel cylindrical container having a diameter of about 3 m and a height of about 18 m at a distance of about 5 m from the upper end of the container, and a diameter of 0.
Cylindrical ceramic catalyst particles having a diameter of 5 to 1.5 mm and a length of 3 to 5 mm (cross-sectional area: 0.0152 cm 2 to 0.07
83 cm 2 ) was spatially sprinkled at a deposition rate of about 1 m / hour, the deposition surface was scanned with a laser beam, and the unevenness of the deposition surface was measured. The number of matrix measurement points is 10 x 1
0 was set as 100 points, and the measurement interval was set to approximately once every 30 seconds.
Images of 5 frames were collected for each point. The measurement was performed by semiconductor laser beam scanning and triangulation of the deposition surface with a CCD camera. As the laser beam, a 30 mW semiconductor laser was used. The laser beam diameter was 10 mm.
A 1/2 inch 380,000 pixel monochrome CCD camera with a focal length of 8 mm was used as the camera (minimum subject illuminance: 0.
2 Lux). A 512 × 512 pixel image processing device was used (the recognition accuracy was determined as the coordinates of the laser spot in 0.1 pixel units). The exposure time of the camera was 1/60 seconds per frame. Only the range of 40 cm to 1 m around the point calculated to hit the laser spot was image-processed. A measurement accuracy of ± 17 mm was obtained at a distance of 10 m to the deposition surface and a measurement accuracy of ± 10 mm at a distance of 5 m to the deposition surface.

【0024】以上、反応容器への触媒粒子の充填監視に
ついて特に説明したが、本発明は、上記実施例に限られ
るものではなく、貯蔵サイロへの穀粒の充填監視などの
その他の粒子の容器への充填監視に広く応用できる。ま
た、粒子については、特に限定されないが、粒子の充填
制御が難しく充填監視の必要性の高い、等方性でない粒
子、例えばアスペクト比(長径/短径)が2以上の粒子
が好ましい対象とされる。
Although the monitoring of the filling of the catalyst particles into the reaction vessel has been particularly described above, the present invention is not limited to the above-mentioned embodiment, and the container of other particles such as the monitoring of the filling of the storage silo with the grains. It can be widely applied to filling monitoring. The particles are not particularly limited, but non-isotropic particles for which filling control of particles is difficult and there is a high need for filling monitoring, for example, particles having an aspect ratio (major axis / minor axis) of 2 or more are preferable targets. It

【0025】[0025]

【発明の効果】レーザ光で容器内の粒子堆積面を走査
し、反射光を検知して三角法により堆積高さを測定する
に当り、画像処理により、大量のデータを精度を維持し
たまま短時間に処理すること、堆積した粒子と散布中の
粒子とを区別すること、そして堆積した粒子の精度の良
い認識を行うことを可能とした。
As described above, when the particle deposition surface in the container is scanned with the laser beam and the reflected light is detected to measure the deposition height by the trigonometric method, a large amount of data can be shortened while maintaining the accuracy by image processing. It was possible to process in time, to distinguish between deposited particles and particles in spraying, and to perform accurate recognition of deposited particles.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1(a)は、反応容器において充填装置から
粒子を散布充填し、堆積面の状態を測定し、それを表示
する装置の配置状態を示し、そして図1(b)は走査レ
ーザビームによる堆積面の走査の様相を示す説明図であ
る。
FIG. 1 (a) shows the arrangement of devices for spraying and filling particles from a filling device in a reaction vessel, measuring the state of a deposition surface, and displaying it, and FIG. 1 (b) shows scanning. It is explanatory drawing which shows the aspect of the scanning of the deposition surface by a laser beam.

【図2】レーザ発生及び走査装置並びに撮像装置の容器
壁への取付け様相を示す説明図である。
FIG. 2 is an explanatory diagram showing a manner in which a laser generation / scanning device and an imaging device are attached to a container wall.

【図3】4カメラ×2レーザ方式のレーザ及びカメラ配
置例を示し、−5mの視野及び−10mの視野を点線で
示す。
FIG. 3 shows a laser and camera arrangement example of a 4-camera × 2-laser system, and a -5 m field of view and a -10 m field of view are shown by dotted lines.

【図4】堆積面モニタの基本画面構成図である。FIG. 4 is a basic screen configuration diagram of a deposition surface monitor.

【図5】充填装置例を示し、(a)は側面図そして
(b)は底面スリットを示す。
FIG. 5 shows an example of a filling device, (a) a side view and (b) a bottom slit.

【図6】カメラの撮像角、レーザスキャナの振り角及び
3点のマーカーの絶対座標系とマトリックスを示す説明
図である。
FIG. 6 is an explanatory diagram showing an imaging angle of a camera, a swing angle of a laser scanner, and an absolute coordinate system and a matrix of three markers.

【図7】フレーム分の画像の積分の結果としてレーザ光
路を横切る散布粒子による輝点が連続した線となること
を示す説明図である。
FIG. 7 is an explanatory diagram showing that bright points formed by scattered particles traversing a laser optical path become a continuous line as a result of integration of images for frames.

【図8】予め登録してあるレーザスポットの画像例を示
す。
FIG. 8 shows an example of a laser spot image registered in advance.

【図9】画像処理流れのフローチャートである。FIG. 9 is a flowchart of an image processing flow.

【符号の説明】[Explanation of symbols]

C 触媒粒子 S 触媒粒子堆積面 1 反応容器 3 充填装置 5 レーザ発生及び走査装置 6 走査レーザビーム 7 レーザ源 8 レーザスキャナ 9 撮像装置 10 カメラ 11 コンピュータ 13 CRT 15 信号線 16 エアーライン 17、19 防塵カバー 18、20 固定金具 21 側面スリット 22 底面 23 下部スリット 24 回転円盤 M マーカー C catalyst particles S catalyst particle deposition surface 1 reaction vessel 3 filling device 5 laser generation and scanning device 6 scanning laser beam 7 laser source 8 laser scanner 9 imaging device 10 camera 11 computer 13 CRT 15 signal line 16 air line 17, 19 dust cover 18, 20 Fixing bracket 21 Side slit 22 Bottom surface 23 Lower slit 24 Rotating disk M Marker

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 容器内に粒子を充填する際レーザ光で堆
積面を走査し、反射光を検知しそして測定時の特定の走
査点の位置、レーザ光出射位置及びレーザ光検知位置か
ら三角法により堆積高さを測定する粒子充填監視方法に
おいて、堆積面をm×nのマトリックスに分割し、マト
リックス上の点へレーザを順番に照射して走査を行い、
各点で採取された数フレームの画像を積分して予め登録
してあるレーザスポットの画像に最も近い画像を選択し
て、その画像の重心位置を求めレーザスポットとする画
像処理を行い、そしてレーザースポットが当ると予測さ
れる点から堆積面の凹凸の最大値(深さ方向)/2以上
の所定の範囲内のみを画像処理することを特徴とする粒
子充填監視方法。
1. When filling a container with particles, a deposition surface is scanned with a laser beam, reflected light is detected, and a position of a specific scanning point at the time of measurement, a laser beam emitting position, and a laser beam detecting position are triangulated. In the particle filling monitoring method of measuring the deposition height by, the deposition surface is divided into m × n matrix, and laser is sequentially irradiated to points on the matrix to perform scanning,
Image of several frames collected at each point is integrated and the image closest to the image of the laser spot registered in advance is selected, the center of gravity of the image is determined, and image processing is performed to make the laser spot, and the laser A particle filling monitoring method, wherein image processing is performed only within a predetermined range equal to or larger than the maximum value (depth direction) of the unevenness of the deposition surface from the point predicted to hit the spot.
【請求項2】 上記粒子が触媒であることを特徴とする
請求項1の粒子充填監視方法。
2. The particle filling monitoring method according to claim 1, wherein the particles are catalysts.
JP10644396A 1995-06-08 1996-04-04 Particle filling monitoring method Expired - Lifetime JP2939179B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10644396A JP2939179B2 (en) 1995-06-08 1996-04-04 Particle filling monitoring method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7-164549 1995-06-08
JP16454995 1995-06-08
JP10644396A JP2939179B2 (en) 1995-06-08 1996-04-04 Particle filling monitoring method

Publications (2)

Publication Number Publication Date
JPH0953918A true JPH0953918A (en) 1997-02-25
JP2939179B2 JP2939179B2 (en) 1999-08-25

Family

ID=26446552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10644396A Expired - Lifetime JP2939179B2 (en) 1995-06-08 1996-04-04 Particle filling monitoring method

Country Status (1)

Country Link
JP (1) JP2939179B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150079773A (en) * 2012-10-29 2015-07-08 토탈 라피나쥬 쉬미 Management of the charging of a reactor with solid particles
JP2015194381A (en) * 2014-03-31 2015-11-05 三菱マテリアル株式会社 Sampling position display unit and sampling method
KR20190139878A (en) * 2017-04-20 2019-12-18 투베마스터 인코포레이티드 Method for Loading Pellets
CN111289408A (en) * 2020-02-25 2020-06-16 天津大学 Device and method for identifying particle distribution in Hell-Shore sheet by aid of laser
WO2021006142A1 (en) * 2019-07-09 2021-01-14 株式会社日本触媒 Distance-measuring device and distance-measuring method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150079773A (en) * 2012-10-29 2015-07-08 토탈 라피나쥬 쉬미 Management of the charging of a reactor with solid particles
JP2016501708A (en) * 2012-10-29 2016-01-21 トタル ラフィナージュ シミ Control method for filling solid particles into reactor
JP2015194381A (en) * 2014-03-31 2015-11-05 三菱マテリアル株式会社 Sampling position display unit and sampling method
US10330572B2 (en) 2014-03-31 2019-06-25 Mitsubishi Materials Corporation Sampling location displaying apparatus and sampling method
KR20190139878A (en) * 2017-04-20 2019-12-18 투베마스터 인코포레이티드 Method for Loading Pellets
JP2020517422A (en) * 2017-04-20 2020-06-18 チューブマスター・インコーポレイテッド How to load pellets
WO2021006142A1 (en) * 2019-07-09 2021-01-14 株式会社日本触媒 Distance-measuring device and distance-measuring method
JPWO2021006142A1 (en) * 2019-07-09 2021-01-14
CN111289408A (en) * 2020-02-25 2020-06-16 天津大学 Device and method for identifying particle distribution in Hell-Shore sheet by aid of laser

Also Published As

Publication number Publication date
JP2939179B2 (en) 1999-08-25

Similar Documents

Publication Publication Date Title
EP0727250B1 (en) Method of packing particles into vessels
US4650333A (en) System for measuring and detecting printed circuit wiring defects
US8244023B2 (en) Shape measuring device and shape measuring method
JPH08101032A (en) Method and equipment for three-dimensional measurement of surface of large-sized material body
JP2939179B2 (en) Particle filling monitoring method
JP3001791B2 (en) Particle filling monitoring method and device
US4492472A (en) Method and system for determining shape in plane to be determined in atmosphere of scattering materials
US4480919A (en) Method and system for determining shape in plane to be determined in atmosphere of scattering materials
JPS6345542A (en) Testing method of unconformability and occlusion of surface of transparent material element
JP2000146546A (en) Method and apparatus for forming three-dimensional model
JP2003315267A (en) Method for monitoring dust
JPH07128214A (en) Coke grain size measuring method
JPH05272949A (en) Method for evaluating glass plate surface
JP2003315014A (en) Inspection method and inspection device
JP2939178B2 (en) Method for smoothing particle filling surface in particle filling device
EP0071426B1 (en) Method and system for determining shape in plane to be determined in atmosphere of scattering materials
JPH0618223A (en) Optical measuring method of remote object
JPH0763515B2 (en) Fire detection method in waste storage pit
JPH1114331A (en) Measuring method and measuring device of inclination of free surface of powder/grain layer in deposited condition
JP4326664B2 (en) Guided positioning method for roof members, etc.
JPH08278113A (en) Defect inspection method for defect of bottle neck opening top
JPH08323271A (en) Apparatus for judging quality of spraying of coating material
JPH10185515A (en) Coil position detector
JP2767969B2 (en) Inspection device for catching meter pointer
JPS60107510A (en) Measuring method of layer thickness

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990525

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090611

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090611

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100611

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100611

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110611

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110611

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120611

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120611

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 14

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term