JPH0953406A - Impingement cooling device and gas turbine blade - Google Patents

Impingement cooling device and gas turbine blade

Info

Publication number
JPH0953406A
JPH0953406A JP20698595A JP20698595A JPH0953406A JP H0953406 A JPH0953406 A JP H0953406A JP 20698595 A JP20698595 A JP 20698595A JP 20698595 A JP20698595 A JP 20698595A JP H0953406 A JPH0953406 A JP H0953406A
Authority
JP
Japan
Prior art keywords
cooling
blade
gas turbine
impingement
gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20698595A
Other languages
Japanese (ja)
Inventor
Masanori Yuri
雅則 由里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP20698595A priority Critical patent/JPH0953406A/en
Publication of JPH0953406A publication Critical patent/JPH0953406A/en
Pending legal-status Critical Current

Links

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PROBLEM TO BE SOLVED: To increase the impingement cooling efficiency by setting the flow velocity of the cooling air current flowing in the gap between a porous plate insert and the inner face of a cooled object in an impingement cooling device such as a gas turbine cooling blade. SOLUTION: The gap 15 between a porous plate insert 12 fed with cooling air into an inner hollow section and the inner face of a cooled object (blade 11) is made larger toward the downstream of a cooling air current, and the flow velocity of the cooling air current is made constant from the upstream to the downstream. The reduction of the impingement cooling efficiency in the downstream is prevented. This impingement cooling device is applied to the hollow cooling portion of a gas turbine blade.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、インピンジメント
冷却装置及びこの冷却装置を用いたガスタービン翼に関
する。
TECHNICAL FIELD The present invention relates to an impingement cooling device and a gas turbine blade using this cooling device.

【0002】[0002]

【従来の技術】ガスタービン冷却翼は、圧縮空気の一部
を用いて冷却されている。ガスタービン冷却翼では、翼
入口ガス温度に応じて、一般に対流冷却、インピンジメ
ント冷却、フィルム冷却といった冷却が単独又は組合せ
て用いられている。
2. Description of the Related Art Gas turbine cooling blades are cooled by using a part of compressed air. In a gas turbine cooling blade, cooling such as convection cooling, impingement cooling, and film cooling is generally used alone or in combination depending on the blade inlet gas temperature.

【0003】その内の一であるインピンジメント冷却
は、翼の流通面に冷却空気を吹き出して翼面を覆うこと
によって冷却効率を向上させるもので、高温ガスタービ
ン空冷静翼においては欠かすことのできない技術であ
る。
Impingement cooling, which is one of them, improves cooling efficiency by blowing cooling air to the flow surface of the blade to cover the blade surface, and is essential for high temperature gas turbine air-cooled stationary blades. It is a technology.

【0004】図3はインピンジメント冷却を施した従来
のガスタービン冷却翼の断面図である。翼11の内部
に、内部が中空部12aとなっている多孔板のインサー
ト12を挿入し、翼内部に鋳出しされているシールダム
13にインサート12を密着させて固定している。な
お、12bは前記多孔板のインサート12に設けられた
孔である。
FIG. 3 is a cross-sectional view of a conventional gas turbine cooling blade that has been impingement cooled. An insert 12 of a perforated plate having a hollow portion 12a inside is inserted into the blade 11, and the insert 12 is fixed in close contact with a seal dam 13 cast inside the blade. In addition, 12b is a hole provided in the insert 12 of the perforated plate.

【0005】冷却空気は、インサート12の内部の中空
部12aから多孔板の孔12bを通ってインサート12
と翼内面とで形成される隙間15内に流出し、翼11に
設けられたフィルム冷却穴14を通って翼冷却面に均一
かつ効果的に吹き出される。
The cooling air passes from the hollow portion 12a inside the insert 12 through the holes 12b of the perforated plate to the insert 12.
It flows out into a gap 15 formed by the inner surface of the blade and the inner surface of the blade, and is uniformly and effectively blown out to the blade cooling surface through the film cooling hole 14 provided in the blade 11.

【0006】図2は、従来のインピンジメント冷却翼の
部分斜視図であり、インサート12と翼内面11とで形
成される隙間15は、隙間内を流れる冷却空気流れの上
流側と下流側とも同じ大きさZ3 になっている。
FIG. 2 is a partial perspective view of a conventional impingement cooling blade, and the gap 15 formed between the insert 12 and the blade inner surface 11 is the same on the upstream side and the downstream side of the cooling air flow flowing in the gap. The size is Z 3 .

【0007】[0007]

【発明が解決しようとする課題】インピンジメント冷却
においては、インサートと翼内面とで形成される隙間を
流れる冷却空気流れ(クロスフロー)の上流側から下流
に向うに従って図2に示されるように流量Wc が増加す
るため、下流側では冷却空気流れの流速が大きくなる。
In the impingement cooling, as shown in FIG. 2, the cooling air flow (cross flow) flowing through the gap formed between the insert and the blade inner surface flows from the upstream side to the downstream side as shown in FIG. Since W c increases, the flow velocity of the cooling air flow increases on the downstream side.

【0008】本発明者の研究の結果、インサートと翼内
面の隙間の大きさがある一定範囲以内であれば、インピ
ンジメント冷却は冷却空気流れの流速に大きく影響さ
れ、冷却空気流れの流速が大きいときにはインピンジメ
ント冷却の効率が低下することが判明した。
As a result of the research by the present inventor, if the size of the gap between the insert and the inner surface of the blade is within a certain range, impingement cooling is greatly affected by the flow velocity of the cooling air flow, and the flow velocity of the cooling air flow is large. It has been found that the efficiency of impingement cooling is sometimes reduced.

【0009】従って、インサートと翼内面で形成される
隙間を流れる冷却空気流れの流速が下流に向うに従って
大きくなる前記の従来のガスタービン冷却翼では、冷却
空気流れの下流側でインピンジメント冷却を効率よく行
うことができないという問題点がある。
Therefore, in the conventional gas turbine cooling blade described above, in which the flow velocity of the cooling air flow flowing through the gap formed between the insert and the blade inner surface increases toward the downstream side, the impingement cooling is efficiently performed on the downstream side of the cooling air flow. There is a problem that it cannot be done well.

【0010】本発明は、以上の問題点を解決するために
なされたものである。
The present invention has been made to solve the above problems.

【0011】[0011]

【課題を解決するための手段】[Means for Solving the Problems]

(1)本発明のインピンジメント冷却装置は、冷却空気
が内部の中空部に供給される多孔板のインサートと被冷
却物内面との隙間を冷却空気流れ下流側に向うにしたが
って大きくなるように形成したことを特徴とする。
(1) In the impingement cooling device of the present invention, the gap between the insert of the perforated plate and the inner surface of the object to be cooled, in which cooling air is supplied to the hollow portion inside, is formed so as to increase toward the downstream side of the cooling air flow. It is characterized by having done.

【0012】(2)また本発明のガスタービン翼は、前
記本発明(1)のインピンジメント冷却装置をガスター
ビン翼の中空冷却部分に適用したことを特徴とする。
(2) A gas turbine blade of the present invention is characterized in that the impingement cooling device of the present invention (1) is applied to a hollow cooling portion of the gas turbine blade.

【0013】本発明では、インサートとガスタービン翼
等の被冷却物内面とで形成される隙間を、同隙間内を流
れる冷却空気流れの下流側に向うにしたがって大きくし
たことによって、下流側において冷却空気流れの流路面
積が大きくなる。従って、冷却空気流れの流量が下流側
で増加しても流速は上流側と同様に保たれる。それによ
って下流側でもインピンジメント冷却の効果が低減する
ことはない。
According to the present invention, the gap formed between the insert and the inner surface of the object to be cooled such as the gas turbine blade is enlarged toward the downstream side of the cooling air flow flowing in the gap, so that cooling is performed on the downstream side. The flow path area of the air flow is increased. Therefore, even if the flow rate of the cooling air flow increases on the downstream side, the flow velocity is maintained similar to that on the upstream side. This does not reduce the effect of impingement cooling even on the downstream side.

【0014】[0014]

【発明の実施の形態】本発明の実施の一形態を、図1に
よって説明する。図1はインピンジメント冷却を施した
ガスタービン冷却翼の部分斜視図である。本実施の形態
は、図3に示されるインピンジメント冷却を施したガス
タービン冷却翼の翼の内面と多孔板のインサートで形成
される隙間を次のように構成したものである。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of the present invention will be described with reference to FIG. FIG. 1 is a partial perspective view of a gas turbine cooling blade subjected to impingement cooling. In this embodiment, the gap formed by the inner surface of the impingement-cooled gas turbine cooling blade shown in FIG. 3 and the insert of the perforated plate is configured as follows.

【0015】即ち、翼11の内面と多孔板のインサート
12とで形成される隙間15を、隙間15を流れる冷却
空気流れ(クロスフロー)の上流側と下流側とで異なら
せていて、下流側の隙間の大きさZ2 を上流側の隙間の
大きさZ1 より大きくしている。
That is, the gap 15 formed by the inner surface of the blade 11 and the insert 12 of the perforated plate is different between the upstream side and the downstream side of the cooling air flow (cross flow) flowing through the gap 15, and the downstream side. The size Z 2 of the gap is larger than the size Z 1 of the gap on the upstream side.

【0016】隙間15を流れる冷却空気流れの流量Wc
は下流に向うに従って増加するが、下流側の方が隙間1
5が大きく流路面積が大きいため、流速Vc は上流側と
同じに保たれる。これによって、下流側においてインピ
ンジメント冷却の効果が低減することを防止することが
できる。
Flow rate W c of the cooling air flowing through the gap 15
Increases as it goes downstream, but the gap 1 is on the downstream side.
Since 5 is large and the flow passage area is large, the flow velocity V c is kept the same as that on the upstream side. This can prevent the effect of impingement cooling on the downstream side from decreasing.

【0017】なお、前記本発明の実施の一形態は、イン
ピンジメント冷却を施したガスタービン冷却翼に係るも
のであるが、本発明は、ガスタービン翼のシュラウド等
の高温な被冷却物のインピンジメント冷却装置に広く適
用することができる。
The embodiment of the present invention relates to a gas turbine cooling blade that is impingement-cooled, but the present invention is to impinge a high temperature object to be cooled, such as a shroud of a gas turbine blade. It can be widely applied to the ment cooling device.

【0018】[0018]

【発明の効果】本発明のインピンジメント冷却装置及び
同インピンジメント冷却装置を中空冷却部分に適用した
ガスタービン翼によれば、多孔板のインサートと被冷却
物の内面とで形成される隙間を冷却空気流れの下流側で
大きくし、その流速を上流側と下流側とも同様に保つこ
とができる。従って、流速の変化に伴う下流側における
インピンジメント冷却効率の低下を防止することができ
る。
According to the impingement cooling device of the present invention and the gas turbine blade in which the impingement cooling device is applied to the hollow cooling portion, the gap formed between the insert of the perforated plate and the inner surface of the object to be cooled is cooled. It is possible to increase the flow rate on the downstream side of the air flow and maintain the same flow rate on the upstream side and the downstream side. Therefore, it is possible to prevent the impingement cooling efficiency on the downstream side from being lowered due to the change of the flow velocity.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の一形態に係るガスタービン冷却
翼のインピンジメント冷却装置の部分斜視図である。
FIG. 1 is a partial perspective view of an impingement cooling device for a gas turbine cooling blade according to an embodiment of the present invention.

【図2】従来のインピンジメント冷却を施したガスター
ビン冷却翼の部分斜視図である。
FIG. 2 is a partial perspective view of a conventional gas turbine cooling blade subjected to impingement cooling.

【図3】従来のインピンジメント冷却を施したガスター
ビン冷却翼の断面図である。
FIG. 3 is a cross-sectional view of a gas turbine cooling blade that has been subjected to conventional impingement cooling.

【符号の説明】[Explanation of symbols]

11 翼 12 インサート 12a 中空部 12b 孔 15 隙間 11 blade 12 insert 12a hollow part 12b hole 15 gap

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 冷却空気が内部の中空部に供給される多
孔板のインサートと被冷却物内面との間の隙間を冷却空
気流れ下流側に向うにしたがって大きくなるように形成
したことを特徴とするインピンジメント冷却装置。
1. A gap between an insert of a perforated plate, into which cooling air is supplied to a hollow portion inside, and an inner surface of an object to be cooled is formed so as to become larger toward a downstream side of the cooling air flow. Impingement cooling system.
【請求項2】 請求項1のインピンジメント冷却装置を
ガスタービン翼の中空冷却部分に適用したことを特徴と
するガスタービン翼。
2. A gas turbine blade, wherein the impingement cooling device according to claim 1 is applied to a hollow cooling portion of a gas turbine blade.
JP20698595A 1995-08-14 1995-08-14 Impingement cooling device and gas turbine blade Pending JPH0953406A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20698595A JPH0953406A (en) 1995-08-14 1995-08-14 Impingement cooling device and gas turbine blade

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20698595A JPH0953406A (en) 1995-08-14 1995-08-14 Impingement cooling device and gas turbine blade

Publications (1)

Publication Number Publication Date
JPH0953406A true JPH0953406A (en) 1997-02-25

Family

ID=16532275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20698595A Pending JPH0953406A (en) 1995-08-14 1995-08-14 Impingement cooling device and gas turbine blade

Country Status (1)

Country Link
JP (1) JPH0953406A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008111441A (en) * 2006-10-30 2008-05-15 Snecma Turbomachine turbine shroud sector
JP2010038141A (en) * 2008-08-08 2010-02-18 Mitsubishi Heavy Ind Ltd Device for cooling high temperature part of gas turbine
US11220916B2 (en) 2020-01-22 2022-01-11 General Electric Company Turbine rotor blade with platform with non-linear cooling passages by additive manufacture
US11242760B2 (en) 2020-01-22 2022-02-08 General Electric Company Turbine rotor blade with integral impingement sleeve by additive manufacture
US11248471B2 (en) 2020-01-22 2022-02-15 General Electric Company Turbine rotor blade with angel wing with coolant transfer passage between adjacent wheel space portions by additive manufacture
US11492908B2 (en) 2020-01-22 2022-11-08 General Electric Company Turbine rotor blade root with hollow mount with lattice support structure by additive manufacture

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008111441A (en) * 2006-10-30 2008-05-15 Snecma Turbomachine turbine shroud sector
JP2010038141A (en) * 2008-08-08 2010-02-18 Mitsubishi Heavy Ind Ltd Device for cooling high temperature part of gas turbine
US11220916B2 (en) 2020-01-22 2022-01-11 General Electric Company Turbine rotor blade with platform with non-linear cooling passages by additive manufacture
US11242760B2 (en) 2020-01-22 2022-02-08 General Electric Company Turbine rotor blade with integral impingement sleeve by additive manufacture
US11248471B2 (en) 2020-01-22 2022-02-15 General Electric Company Turbine rotor blade with angel wing with coolant transfer passage between adjacent wheel space portions by additive manufacture
US11492908B2 (en) 2020-01-22 2022-11-08 General Electric Company Turbine rotor blade root with hollow mount with lattice support structure by additive manufacture

Similar Documents

Publication Publication Date Title
JP3808211B2 (en) Equipment for ventilation of turbine stator rings
JP4513002B2 (en) Cooling system for platform edge of nozzle segment
US3807892A (en) Cooled guide blade for a gas turbine
US5480281A (en) Impingement cooling apparatus for turbine shrouds having ducts of increasing cross-sectional area in the direction of post-impingement cooling flow
US6435813B1 (en) Impigement cooled airfoil
EP3124745B1 (en) Turbo-engine component with film cooled wall
US7334992B2 (en) Turbine blade cooling system
JPH01232102A (en) Air-cooling gas turbine blade
JP2001317302A (en) Film cooling for closed loop cooled airfoil
JPH10220203A (en) Stationary blade for gas turbine
JPH1089005A (en) High temperature member cooling device
JPH11148303A (en) Segment unit for platform
KR20010109466A (en) Steam exit flow design for aft cavities of an airfoil
JPH09189203A (en) Gas turbine stator
JPH11257003A (en) Impingement cooling device
JP4112942B2 (en) Turbine shroud cooling hole diffuser and associated method
US6328532B1 (en) Blade cooling
JPH0953406A (en) Impingement cooling device and gas turbine blade
JPH0777061A (en) Method and equipment for cooling structural section
JP2003129803A (en) Gas turbine
JPS62153504A (en) Shrouding segment
JPH0463901A (en) Gas turbine cooling blade
JPS61142399A (en) Method of preventing adhesion of dust to static blade
JP4416387B2 (en) Methods for improving component life in gas flow
JP3615907B2 (en) Gas turbine cooling blade

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20000919