JPH0953195A - Production of hydroiodic acid - Google Patents

Production of hydroiodic acid

Info

Publication number
JPH0953195A
JPH0953195A JP7210509A JP21050995A JPH0953195A JP H0953195 A JPH0953195 A JP H0953195A JP 7210509 A JP7210509 A JP 7210509A JP 21050995 A JP21050995 A JP 21050995A JP H0953195 A JPH0953195 A JP H0953195A
Authority
JP
Japan
Prior art keywords
iodine
hydroiodic acid
anode
exchange membrane
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7210509A
Other languages
Japanese (ja)
Other versions
JP3521163B2 (en
Inventor
Yoshinori Nishiki
善則 錦
Shuhei Wakita
修平 脇田
Riyuuji Hayashi
隆児 林
Yasuo Nakajima
保夫 中島
Takayuki Shimamune
孝之 島宗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippoh Chemicals Co Ltd
De Nora Permelec Ltd
Original Assignee
Permelec Electrode Ltd
Nippoh Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Permelec Electrode Ltd, Nippoh Chemicals Co Ltd filed Critical Permelec Electrode Ltd
Priority to JP21050995A priority Critical patent/JP3521163B2/en
Publication of JPH0953195A publication Critical patent/JPH0953195A/en
Application granted granted Critical
Publication of JP3521163B2 publication Critical patent/JP3521163B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce a high purity of hydroiodic acid. SOLUTION: A hydroiodic acid-containing aq. solution is produced in a cathode chamber 7 by supplying an aq. solution, in which iodine is dissolved, to the cathode chamber 7 of an electrolytic cell 4 divided by a cation exchange film 5, supplying water in an anode chamber 6 and executing electrolysis wlile bringing at least an anode into close contact with the cation exchange film 5. As a result, the high purity hydroiodic acid is obtained without using a separating and refining means.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ヨウ化水素酸の製造方
法に関するものであり、とくに電気分解によってヨウ素
を原料に高純度のヨウ化水素酸を製造する方法に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing hydroiodic acid, and more particularly to a method for producing high-purity hydroiodic acid from iodine as a raw material by electrolysis.

【0002】[0002]

【従来の技術】ヨウ化水素酸は、有機化学物質の製造に
おいて重要な物質であり、とくに医薬の製造において広
く利用されている物質である。従来、ヨウ化水素酸は、
以下のように、水にヨウ素を懸濁させ冷却しながら赤リ
ンを加えて還元し、 2P+5I2 +8H2O →10HI+2H3PO4 副生したリン酸との混合液を蒸留してヨウ化水素を分離
し、水に吸収させることによってヨウ化水素酸を得てい
た。
Hydroiodic acid is an important substance in the production of organic chemical substances, and is a widely used substance in the production of pharmaceuticals. Conventionally, hydroiodic acid is
As shown below, suspension of iodine in water and addition of red phosphorus while cooling were performed for reduction, and a mixture of 2P + 5I 2 + 8H 2 O → 10HI + 2H 3 PO 4 by-produced phosphoric acid was distilled to remove hydrogen iodide. It was separated and absorbed in water to obtain hydroiodic acid.

【0003】原料のヨウ素は天然ガス採取の際に得られ
るヨウ素含有かん水を吸着剤、イオン交換樹脂によって
処理したり、あるいは酸を加えて酸性に調整し、塩素を
注入し下記の反応によって、ヨウ素を遊離させている。 2NaI+Cl2 →2NaCl+I2 かん水からのヨウ素の採取では、高純度のものが得られ
るものの、赤リンを用いたヨウ化水素酸の製造は、副生
物の分離を蒸留によって行う必要があり、また原料とし
て用いる赤リンから不純物としてヒ素、鉄等が混入する
可能性がある。これらの中で、特にヒ素は多くの用途に
おいて妨害物質としての作用をするのでヨウ化水素酸へ
の混入を避けなければならない不純物である。
The raw material iodine is obtained by treating the iodine-containing brackish water obtained at the time of collecting natural gas with an adsorbent or an ion-exchange resin, or by adding acid to adjust the acidity, and injecting chlorine to produce iodine. Is released. Although high-purity iodine can be obtained from 2NaI + Cl 2 → 2NaCl + I 2 brine, the production of hydriodic acid using red phosphorus requires the separation of by-products by distillation, and also as a raw material. Arsenic, iron, etc. may be mixed as impurities from the red phosphorus used. Of these, arsenic, in particular, acts as an interfering substance in many applications and is therefore an impurity which must be prevented from being incorporated into hydroiodic acid.

【0004】ヨウ化水素酸の蒸留による分離時には、ヨ
ウ素が遊離することもあり、蒸留によらないで高純度の
ヨウ化水素酸を製造することが望まれていた。たとえ
ば、特開昭53−54197号公報には、電気分解によ
るヨウ化水素の製造方法が開示されているが、隔膜法で
区画された陽極室には、電気分解のために硫酸等の電解
液が必要となり、陰極で生成するヨウ化水素が汚染され
やすいという問題点があった。
Since iodine may be liberated during the separation of hydroiodic acid by distillation, it has been desired to produce highly pure hydroiodic acid without distillation. For example, Japanese Unexamined Patent Publication No. 53-54197 discloses a method for producing hydrogen iodide by electrolysis. In an anode chamber partitioned by the diaphragm method, an electrolytic solution such as sulfuric acid is used for electrolysis. However, there is a problem that hydrogen iodide generated at the cathode is easily contaminated.

【0005】[0005]

【発明が解決しようとする課題】本発明は、ヨウ化水素
酸を蒸留操作等のヨウ素の発生等を伴う分離操作を行う
ことなく、また不純物の混入のない効率的なヨウ化水素
酸の製造方法を提供することを課題とするものである。
DISCLOSURE OF THE INVENTION The present invention is directed to the efficient production of hydroiodic acid without performing a separation operation such as a distillation operation involving the generation of iodine, etc., and free of impurities from the hydroiodic acid. The challenge is to provide a method.

【0006】[0006]

【課題を解決するための手段】本発明は、ヨウ化水素酸
の製造方法において、ヨウ素を溶解した水溶液を陽イオ
ン交換膜で区画した電解槽の陰極室に供給し、陽極室に
は水を供給し、少なくとも陽極は陽イオン交換膜と密着
して電気分解を行い、陰極室からヨウ化水素酸含有水溶
液を得るヨウ化水素酸の製造方法である。すなわち、本
発明の方法では、気液透過性を有する陽極および陰極を
イオン交換膜に密着させ、あるいは陽極のみを陽イオン
交換膜に密着し、陽イオン交換膜を固体高分子電解質と
して作用させ、陽極室には通常の電気分解に必要な電解
液を用いることなく、純粋な水を陽極室に加えながら電
気分解を行い、陰極室において電気化学的にヨウ素を還
元し、直接にヨウ化水素酸を得る方法である。
According to the present invention, in a method for producing hydroiodic acid, an aqueous solution in which iodine is dissolved is supplied to a cathode chamber of an electrolytic cell partitioned by a cation exchange membrane, and water is supplied to the anode chamber. It is a method for producing hydriodic acid in which at least the anode is supplied, and at least the anode is brought into close contact with the cation exchange membrane for electrolysis to obtain an aqueous solution containing hydriodic acid from the cathode chamber. That is, in the method of the present invention, an anode and a cathode having gas-liquid permeability are brought into close contact with an ion exchange membrane, or only the anode is brought into close contact with a cation exchange membrane, and the cation exchange membrane is allowed to act as a solid polymer electrolyte, Instead of using the electrolytic solution required for ordinary electrolysis in the anode chamber, electrolysis is performed while adding pure water to the anode chamber, and iodine is electrochemically reduced in the cathode chamber to directly add hydriodic acid. Is a way to get.

【0007】[0007]

【発明の実施の形態】本発明のヨウ素の還元によるヨウ
化水素酸の製造方法を、図を参照して説明する。図1
は、本発明のヨウ化水素酸の製造方法を説明する図であ
る。ヨウ素製造工程1において製造されたヨウ素2は、
ヨウ素溶解槽3でヨウ化水素酸中に溶解される。ヨウ素
溶解槽へは水も加えられ、濃度の調整が行われる。ヨウ
素を溶解したヨウ化水素酸は、陽イオン交換膜5で陽極
室6と陰極室7に区画した電解槽4の陰極室7に導入す
る。陽極8および陰極9はイオン交換膜5と密着してお
り、陽極室には水を導入して電気分解をする。陰極液の
気液分離装置10において水素を分離し、ヨウ化水素酸
をヨウ化水素酸貯槽11に貯蔵した。得られたヨウ化水
素酸の一部はヨウ素溶解槽に供給し、ヨウ素を溶解する
とともに水を加えて濃度の調整を行い電解に使用した。
一方、陽極液は、陽極液の気液分離装置12において酸
素を分離し、希薄なヨウ素含有水13はヨウ素製造工程
1においてヨウ素として回収した。
BEST MODE FOR CARRYING OUT THE INVENTION The method for producing hydroiodic acid by reducing iodine according to the present invention will be described with reference to the drawings. FIG.
FIG. 3 is a diagram illustrating a method for producing hydroiodic acid according to the present invention. Iodine 2 produced in the iodine production step 1 is
It is dissolved in hydroiodic acid in the iodine dissolution tank 3. Water is also added to the iodine dissolution tank to adjust the concentration. Hydroiodic acid in which iodine is dissolved is introduced into the cathode chamber 7 of the electrolytic cell 4 which is divided into the anode chamber 6 and the cathode chamber 7 by the cation exchange membrane 5. The anode 8 and the cathode 9 are in close contact with the ion exchange membrane 5, and water is introduced into the anode chamber for electrolysis. Hydrogen was separated in the catholyte gas-liquid separator 10 and hydroiodic acid was stored in the hydroiodic acid storage tank 11. A part of the obtained hydroiodic acid was supplied to an iodine dissolution tank to dissolve iodine and add water to adjust the concentration, and used for electrolysis.
On the other hand, the anolyte was separated into oxygen in the anolyte gas-liquid separator 12, and the dilute iodine-containing water 13 was recovered as iodine in the iodine production step 1.

【0008】本発明のヨウ化水素酸の製造方法に用いる
電解槽には、ヨウ素による腐食を生じにくい電極、イオ
ン交換膜等の構成材料を用いることが必要である。陽極
基体には、ヨウ素あるいはヨウ素イオンに対して耐性の
あるニオブ、タンタル、炭素等の材料が好ましく、とく
にこれらの多孔性材料が好ましい。また、電極触媒とし
ては、白金、イリジウム等の貴金属、あるいはそれらの
酸化物、又はそれらとチタン、タンタル等の薄膜形成性
金属との複合酸化物が耐食性の面から好ましい。これら
の触媒は粉末としてフッ素樹脂等の結着剤樹脂を用いて
基体上に固着したり、あるいは電析、共電着、めっき、
蒸着、熱分解被覆等により基体上に形成させても良い。
In the electrolytic cell used in the method for producing hydroiodic acid of the present invention, it is necessary to use constituent materials such as an electrode and an ion exchange membrane, which are less likely to be corroded by iodine. For the anode substrate, materials such as niobium, tantalum, and carbon that are resistant to iodine or iodine ions are preferable, and porous materials thereof are particularly preferable. Further, as the electrode catalyst, noble metals such as platinum and iridium, or oxides thereof, or composite oxides of these and a thin film-forming metal such as titanium or tantalum are preferable from the viewpoint of corrosion resistance. These catalysts are fixed on a substrate by using a binder resin such as a fluororesin as powder, or electrodeposition, co-deposition, plating,
It may be formed on the substrate by vapor deposition, thermal decomposition coating, or the like.

【0009】陽極には、板状、多孔板状のものを用いる
ことができる。また、陽極として水素拡散電極を用いる
ことによって陰極室で生成した水素を導入することによ
り電解電圧を減少させることができるが、水素拡散電極
を用いる場合には、イオン交換膜あるいは電極には、ヨ
ウ素が析出し反応を阻害することがないように、電解液
が充分に流れるように、親水性の通路と気体透過性の通
路の両方の通路を有している構造とすることが好まし
い。また、水素拡散電極を用いるならば、酸素発生下で
生じやすいヨウ素の酸化副生成物の生成を防止すること
ができる。
A plate-shaped or perforated plate-shaped one can be used as the anode. Further, by using a hydrogen diffusion electrode as the anode, it is possible to reduce the electrolysis voltage by introducing hydrogen generated in the cathode chamber. However, in the case of using the hydrogen diffusion electrode, the ion exchange membrane or the electrode should have iodine. It is preferable to have a structure having both a hydrophilic passage and a gas permeable passage so that the electrolytic solution can sufficiently flow so as not to deposit and inhibit the reaction. Further, if a hydrogen diffusion electrode is used, it is possible to prevent the formation of an oxidation by-product of iodine which is likely to occur when oxygen is generated.

【0010】また、陰極基体にはヨウ化水素酸溶液中で
安定な、ジルコニウム、タングステン、炭素等を用いる
ことができ、白金、パラジウム等の電極触媒の被覆を形
成することが好ましい。陰極室は、陽極室と異なり導電
率の大きなヨウ化水素の溶液を含んでいるので、陰極を
イオン交換膜と密着する必要はない。したがって、陰極
は以下に述べるイオン交換膜と接して配置しても良い
が、反応生成物の流通を促進するために、イオン交換膜
と陰極の間に絶縁性の開口部を有するスペーサ(厚さ
0.1〜2mm程度)を挿入するか、単に0.1〜2m
m程度離して配置しても良い。スペーサはテフロン樹脂
製多孔板が好ましい。
For the cathode substrate, zirconium, tungsten, carbon or the like which is stable in a hydroiodic acid solution can be used, and it is preferable to form a coating of an electrode catalyst such as platinum or palladium. Unlike the anode chamber, the cathode chamber contains a solution of hydrogen iodide, which has a large conductivity, so that the cathode need not be in close contact with the ion exchange membrane. Therefore, the cathode may be arranged in contact with the ion exchange membrane described below, but in order to facilitate the flow of the reaction product, a spacer (thickness having an insulating opening between the ion exchange membrane and the cathode (thickness 0.1 to 2 mm) or just 0.1 to 2 m
They may be arranged at a distance of about m. The spacer is preferably a Teflon resin porous plate.

【0011】イオン交換膜には、ヨウ化水素酸やヨウ素
に対して化学的安定性が要求されるため、フッ素樹脂系
陽イオン交換膜が好ましく、パーフルオロスルホン酸系
の陽イオン交換膜であるナフィオン117、350(デ
ュポン社製)が選択透過性が大きく水素イオンの輸率が
大きい炭化水素系の陽イオン交換膜も使用可能である。
また、陽極とイオン交換膜は水圧差或いは外部からの締
付圧力により接触させるか、前もってホットプレス等に
より接合させる。電解槽材料には、チタン等の金属基体
上にガラスライニング材料を被覆することが好ましい。
また耐食性が大きなフッ素樹脂を用いても良い。
Since the ion exchange membrane is required to have chemical stability against hydroiodic acid and iodine, a fluororesin type cation exchange membrane is preferable, and a perfluorosulfonic acid type cation exchange membrane. Nafion 117 and 350 (manufactured by DuPont) can also be used as a hydrocarbon cation exchange membrane having a high selective permeability and a high hydrogen ion transport number.
Further, the anode and the ion exchange membrane are brought into contact with each other by a water pressure difference or a tightening pressure from the outside, or they are previously joined by hot pressing or the like. For the electrolytic cell material, it is preferable to coat a glass lining material on a metal substrate such as titanium.
Alternatively, a fluororesin having a high corrosion resistance may be used.

【0012】本発明の電解槽は、固体高分子電解質の面
上に電極を直接に形成したものではなく、高分子固体電
解質と電極とを別個に作製し、両者を密着させる構造と
したので、電極の面積が大きくなっても特性の優れた電
解槽を得ることが可能となる。 また、電解液温度は2
0℃〜60℃が好ましく、高温では使用材料の劣化が生
じ易く、1A/dm2〜50A/dm2の電流密度で運転
することが好ましい。電解液中のヨウ素の濃度が低いと
水素発生の割合が増加するので、濃度の低いヨウ素の溶
液を原料とする場合には、多段に電解槽を設けて低濃度
の電解槽における分解率を低くし、効率良く反応を進行
させ、最終的な分解率を高めることにより、ヨウ素の残
留量を少なくすることができる。また、電解槽には、電
解液を循環しても、あるいはバッチ式のいずれによって
運転しても良い。生成するヨウ化水素酸の濃度は、水と
の共沸混合物である57重量%とすることが好ましい。
In the electrolytic cell of the present invention, the electrode is not directly formed on the surface of the solid polymer electrolyte, but the solid polymer electrolyte and the electrode are separately produced and the both are adhered. It is possible to obtain an electrolytic cell having excellent characteristics even if the area of the electrode is large. The electrolyte temperature is 2
The temperature is preferably 0 ° C. to 60 ° C., and the material used is easily deteriorated at high temperatures, and it is preferable to operate at a current density of 1 A / dm 2 to 50 A / dm 2 . When the concentration of iodine in the electrolytic solution is low, the rate of hydrogen generation increases, so when using a solution of low-concentration iodine as the raw material, a multi-stage electrolytic cell is provided to reduce the decomposition rate in the electrolytic cell of low concentration. However, the residual amount of iodine can be reduced by efficiently advancing the reaction and increasing the final decomposition rate. Further, the electrolytic cell may be circulated with an electrolytic solution or may be operated by a batch system. The concentration of hydroiodic acid formed is preferably 57% by weight, which is an azeotropic mixture with water.

【0013】また、使用する陽イオン交換膜の種類によ
っては、陽極側へのヨウ素イオンの拡散、移動が5〜1
0%と無視できない量となる。陽極室のヨウ素イオン濃
度が大きくなると電解電圧が増加するので、ヨウ素イオ
ン濃度は5g/l以下となるように純水を供給し、陽極
液中のヨウ素イオン濃度を一定の濃度以下に保持するこ
とが必要である。
Further, depending on the type of cation exchange membrane used, the diffusion and movement of iodine ions to the anode side may be 5 to 1
The amount is 0% and cannot be ignored. Since the electrolysis voltage increases when the iodine ion concentration in the anode chamber increases, it is necessary to supply pure water so that the iodine ion concentration will be 5 g / l or less and keep the iodine ion concentration in the anolyte solution below a certain concentration. is necessary.

【0014】[0014]

【実施例】【Example】

実施例1 陽極として、面積0.2dm2の炭素繊維布(日本カー
ボン製 グラファイトクロス(PF−20))上に、フ
ッ素樹脂(三井デュポンフロロケミカル製30J)の
0.2gを結合剤として、白金粉末(田中貴金属工業製
200メッシュアンダー)の0.6gを混練したもの
を塗布し、350℃で30分間焼成した白金担持炭素電
極を使用した。陰極には陽極と同じ面積のジルコニウム
多孔体(開孔率40%、厚さ0.5mmのエキスパンデ
ッドメタルを2枚積層したもの)上に白金をめっきした
電極を用い、それぞれの電極を陽イオン交換膜(デュポ
ン社製 ナフィオン117)から2mmの位置に取り付
け、陰極室を陽極室に対し0.5kg/cm2 高圧に保
持して、陽イオン交換膜を陽極に密着させて電気分解を
行った。陽極室には水を供給し、陰極室には、濃度が5
7重量%のヨウ化水素酸64mlに水36mlを加えた
溶解液に固体状のヨウ素8gを溶解して調整した陰極液
を供給した。電流密度は10A/dm2 とし、40分間
電解を行った。このときの電解電圧は3Vから5Vに変
化し、ヨウ素濃度は初期濃度が80g/lであったもの
が電解後には0.2g/lにまで低下し、640g/l
のヨウ化水素酸が生成した。
Example 1 As an anode, platinum was used on a carbon fiber cloth (graphite cloth (PF-20) manufactured by Nippon Carbon Co., Ltd.) having an area of 0.2 dm 2 with 0.2 g of a fluororesin (30J manufactured by Mitsui DuPont Fluorochemicals) as a binder. A platinum-supporting carbon electrode was used in which 0.6 g of powder (200 mesh under, manufactured by Tanaka Kikinzoku Kogyo Co., Ltd.) was kneaded and applied, and the mixture was baked at 350 ° C. for 30 minutes. For the cathode, an electrode plated with platinum on a zirconium porous body (having a porosity of 40% and a thickness of 0.5 mm and having two stacked layers of 0.5 mm) having the same area as the anode was used. It was attached at a position of 2 mm from the ion exchange membrane (Nafion 117 manufactured by DuPont), the cathode chamber was kept at a high pressure of 0.5 kg / cm 2 with respect to the anode chamber, and the cation exchange membrane was brought into close contact with the anode to perform electrolysis. It was Water is supplied to the anode chamber, and the concentration is 5 in the cathode chamber.
A catholyte prepared by dissolving 8 g of solid iodine in a solution obtained by adding 36 ml of water to 64 ml of 7 wt% hydroiodic acid was supplied. The current density was 10 A / dm 2 and electrolysis was performed for 40 minutes. At this time, the electrolysis voltage changed from 3 V to 5 V, and the iodine concentration, which had an initial concentration of 80 g / l, decreased to 0.2 g / l after electrolysis, and 640 g / l
Hydroiodic acid was produced.

【0015】実施例2 電流密度を20A/dm2 に変えた点を除き実施例1と
同様に20分間電解を行ったところ、電解電圧は5Vか
ら8Vに変化し、ヨウ素濃度は初期80g/lであった
ものが電解後0.1g/lにまで低下し、約7gのヨウ
化水素酸が生成した。
Example 2 When electrolysis was performed for 20 minutes in the same manner as in Example 1 except that the current density was changed to 20 A / dm 2 , the electrolysis voltage changed from 5 V to 8 V, and the iodine concentration was initially 80 g / l. After electrolysis, the amount was 0.1 g / l, and about 7 g of hydroiodic acid was produced.

【0016】比較例 実施例の電解槽において陽イオン交換膜を使用せずに電
解を行ったところ、ヨウ化水素酸は陽極で酸化されヨウ
素が生じるのみであり、ヨウ化水素酸の濃度は増加しな
かった。
Comparative Example When electrolysis was performed in the electrolytic cell of the Example without using a cation exchange membrane, hydroiodic acid was oxidized at the anode to produce iodine, and the concentration of hydroiodic acid increased. I didn't.

【0017】[0017]

【発明の効果】ヨウ素含有溶液から分離精製手段等を設
けることなく不純物の混入がない高純度のヨウ化水素酸
を得ることができ、効率的な製造を行うことができる。
EFFECTS OF THE INVENTION It is possible to obtain high-purity hydroiodic acid free from impurities without providing a separation / purification means or the like from an iodine-containing solution, and efficient production can be performed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のヨウ化水素酸の製造方法を説明する図
である。
FIG. 1 is a diagram illustrating a method for producing hydroiodic acid according to the present invention.

【符号の説明】[Explanation of symbols]

1…ヨウ素製造工程、2…ヨウ素、3…ヨウ素溶解槽、
4…電解槽、5…陽イオン交換膜、6…陽極室、7…陰
極室、8…陽極、9…陰極、10…陰極液の気液分離装
置、11…ヨウ化水素酸貯槽、12…陽極液の気液分離
装置、13…ヨウ素含有水
1 ... iodine production process, 2 ... iodine, 3 ... iodine dissolution tank,
4 ... Electrolyte tank, 5 ... Cation exchange membrane, 6 ... Anode chamber, 7 ... Cathode chamber, 8 ... Anode, 9 ... Cathode, 10 ... Catholyte gas-liquid separator, 11 ... Hydroiodic acid storage tank, 12 ... Anolyte gas-liquid separator, 13 ... Iodine-containing water

───────────────────────────────────────────────────── フロントページの続き (72)発明者 林 隆児 神奈川県座間市入谷2−877−5 (72)発明者 中島 保夫 東京都杉並区南荻窪4−26−1−401 (72)発明者 島宗 孝之 東京都町田市本町田3006−30 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takako Hayashi 2-877-5 Iriya, Zama City, Kanagawa Prefecture (72) Inventor Yasuo Nakajima 4-26-1-401 (72) Inventor Shimamune, Suginami-ku, Tokyo Takayuki 3006-30 Hommachida, Machida, Tokyo

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ヨウ化水素酸の製造方法において、ヨウ
素を溶解した水溶液を陽イオン交換膜で区画した電解槽
の陰極室に供給し、陽極室には水を供給し、少なくとも
陽極を陽イオン交換膜と密着して電気分解を行い陰極室
からヨウ化水素酸含有水溶液を得ることを特徴とするヨ
ウ化水素酸の製造方法。
1. In a method for producing hydroiodic acid, an aqueous solution in which iodine is dissolved is supplied to a cathode chamber of an electrolytic cell partitioned by a cation exchange membrane, water is supplied to an anode chamber, and at least an anode is a cation. A method for producing hydriodic acid, which is characterized in that an aqueous solution containing hydriodic acid is obtained from a cathode chamber by closely adhering to an exchange membrane and performing electrolysis.
【請求項2】 陽極室に水素を供給して、陽極反応とし
て水素イオンを生成することを特徴とする請求項1記載
のヨウ化水素酸の製造方法。
2. The method for producing hydroiodic acid according to claim 1, wherein hydrogen is supplied to the anode chamber to generate hydrogen ions as an anode reaction.
JP21050995A 1995-08-18 1995-08-18 Method for producing hydroiodic acid Expired - Lifetime JP3521163B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21050995A JP3521163B2 (en) 1995-08-18 1995-08-18 Method for producing hydroiodic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21050995A JP3521163B2 (en) 1995-08-18 1995-08-18 Method for producing hydroiodic acid

Publications (2)

Publication Number Publication Date
JPH0953195A true JPH0953195A (en) 1997-02-25
JP3521163B2 JP3521163B2 (en) 2004-04-19

Family

ID=16590554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21050995A Expired - Lifetime JP3521163B2 (en) 1995-08-18 1995-08-18 Method for producing hydroiodic acid

Country Status (1)

Country Link
JP (1) JP3521163B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005058896A (en) * 2003-08-11 2005-03-10 Toho Earthtech Inc Selective separation method of hydriodic acid, method for removing sulfuric acid and sulfate in hydriodic acid, method for purifying hydriodic acid and manufacturing method of hydriodic acid and manufacturing method of alkali iodide
JP2006240961A (en) * 2005-03-07 2006-09-14 Toho Earthtech Inc Method of manufacturing hydroiodic acid
CN110344074A (en) * 2019-08-28 2019-10-18 淄博格瑞水处理工程有限公司 Acid iodide and hydroiodic acid prepare integrative machine
CN110344075A (en) * 2019-08-28 2019-10-18 淄博格瑞水处理工程有限公司 Hydroiodic acid preparation facilities
CN110724968A (en) * 2018-07-16 2020-01-24 泰安汉威集团有限公司 Industrial production method of hydroiodic acid

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005058896A (en) * 2003-08-11 2005-03-10 Toho Earthtech Inc Selective separation method of hydriodic acid, method for removing sulfuric acid and sulfate in hydriodic acid, method for purifying hydriodic acid and manufacturing method of hydriodic acid and manufacturing method of alkali iodide
JP4497512B2 (en) * 2003-08-11 2010-07-07 株式会社 東邦アーステック Method for selective separation of hydroiodic acid, method for producing hydroiodic acid, and method for producing alkali iodine salts
JP2006240961A (en) * 2005-03-07 2006-09-14 Toho Earthtech Inc Method of manufacturing hydroiodic acid
CN110724968A (en) * 2018-07-16 2020-01-24 泰安汉威集团有限公司 Industrial production method of hydroiodic acid
CN110344074A (en) * 2019-08-28 2019-10-18 淄博格瑞水处理工程有限公司 Acid iodide and hydroiodic acid prepare integrative machine
CN110344075A (en) * 2019-08-28 2019-10-18 淄博格瑞水处理工程有限公司 Hydroiodic acid preparation facilities

Also Published As

Publication number Publication date
JP3521163B2 (en) 2004-04-19

Similar Documents

Publication Publication Date Title
EP0507862B1 (en) Electrochemical chlorine dioxide generator
US5084149A (en) Electrolytic process for producing chlorine dioxide
US5246551A (en) Electrochemical methods for production of alkali metal hydroxides without the co-production of chlorine
US5160416A (en) Process for the production of perchloric acid
US5230779A (en) Electrochemical production of sodium hydroxide and sulfuric acid from acidified sodium sulfate solutions
US3291708A (en) Electrolytic process for producing a halogen from its respective acid and the apparatus therefor
US6024855A (en) Electrosynthesis of hydroxylammonium salts and hydroxylamine using a mediator
CZ289193A3 (en) Process of electrochemical decomposition of salt solutions and electrolytic cell for making the same
US5158658A (en) Electrochemical chlorine dioxide generator
US5520793A (en) Methods of producing hydrogen iodide electrochemically
US5108560A (en) Electrochemical process for production of chloric acid from hypochlorous acid
US6790339B2 (en) Process for the electrochemical preparation of chlorine from aqueous solutions of hydrogen chloride
US5089095A (en) Electrochemical process for producing chlorine dioxide from chloric acid
JP3421021B2 (en) Electrolysis method of alkali chloride
JP3521163B2 (en) Method for producing hydroiodic acid
US5131989A (en) Process for producing perchloric acid and ammonium perchlorate
US5423960A (en) Method and apparatus for manufacturing iodine-free iodides
WO2021152054A1 (en) Electrochemical production of formate
US6165341A (en) Catalytic film, methods of making the catalytic films, and electrosynthesis of compounds using the catalytic film
US4609443A (en) Procedure for the cathodic electrowinning of metals, with the corresponding acid generation, from its salt solution
WO2024059990A1 (en) Methods and apparatus for indirect production of hydrogen peroxide using amyl-anthraquinone for hydrogen transport
CA2301035C (en) Electrosynthesis of hydroxylammonium salts and hydroxylamine using a mediator, a catalytic film, methods of making the catalytic film, and electrosynthesis of compounds using the catalytic film
JP3539701B2 (en) Method for producing hydrohalic acid
US20060000713A1 (en) Methods and apparatus for electrodialysis salt splitting
US11761105B2 (en) Methods and apparatus for producing hydrogen peroxide

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040119

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040202

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080213

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090213

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100213

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100213

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110213

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120213

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120213

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130213

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140213

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term