JPH095289A - Two-dimensional sensor for measuring activity of nerve cell and measuring device therewith - Google Patents

Two-dimensional sensor for measuring activity of nerve cell and measuring device therewith

Info

Publication number
JPH095289A
JPH095289A JP7153343A JP15334395A JPH095289A JP H095289 A JPH095289 A JP H095289A JP 7153343 A JP7153343 A JP 7153343A JP 15334395 A JP15334395 A JP 15334395A JP H095289 A JPH095289 A JP H095289A
Authority
JP
Japan
Prior art keywords
cell activity
dimensional sensor
measuring device
measuring
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7153343A
Other languages
Japanese (ja)
Other versions
JP2930181B2 (en
Inventor
Hirokazu Sugihara
宏和 杉原
Makoto Takeya
誠 竹谷
Akihito Kamei
明仁 亀井
Yutaka Iwasaki
裕 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP7153343A priority Critical patent/JP2930181B2/en
Priority to TW085107072A priority patent/TW324062B/en
Priority to US08/661,314 priority patent/US6288527B1/en
Priority to CA002179459A priority patent/CA2179459A1/en
Priority to KR1019960022231A priority patent/KR970000190A/en
Priority to CN96108205A priority patent/CN1156825A/en
Priority to DE69618390T priority patent/DE69618390T2/en
Priority to AT96109996T priority patent/ATE211823T1/en
Priority to EP96109996A priority patent/EP0750195B1/en
Publication of JPH095289A publication Critical patent/JPH095289A/en
Application granted granted Critical
Publication of JP2930181B2 publication Critical patent/JP2930181B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • G01N33/48707Physical analysis of biological material of liquid biological material by electrical means
    • G01N33/48728Investigating individual cells, e.g. by patch clamp, voltage clamp
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/305Electrodes, e.g. test electrodes; Half-cells optically transparent or photoresponsive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S436/00Chemistry: analytical and immunological testing
    • Y10S436/806Electrical property or magnetic property

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Biophysics (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Measurement Of Current Or Voltage (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE: To provide a two-dimensional sensor for measuring activity of a nerve cell which is excellent in general usefulness and a measuring device therewith by making the position or dimension of a measuring electrode to be variable. CONSTITUTION: A two-dimensional sensor 1 is provided with a thin film 1a for working electrode which is vapor-deposited to the rear surface of Si side of a sensor board comprised of three layers, Si, SiO2 and Si3 N4 , and an enclosure 1b to house a cell as a sample, a culture solution and a reference electrode on the surface of Si3 N4 side thereof, and it is placed within an incubator 3, then a bias voltage is applied to between the reference electrode and the working electrode. A high-frequency-modulated laser beam is emitted from the rear of the sensor 1, and a signal whose potential is changed by cell activity at the irradiated portion is picked up as an optical AC current, then it is inputted into a computer 10 through an amplifier 9.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、神経細胞等の活動に伴
う電位変化を検出することにより、細胞活動を測定する
ための2次元センサと、これを用いた測定装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a two-dimensional sensor for measuring cell activity by detecting potential changes associated with activity of nerve cells and the like, and a measuring device using the same.

【0002】[0002]

【従来の技術】近年、神経細胞の医学的検討や電気素子
としての応用の可能性の検討などが活発に行われてきて
いる。神経細胞が活動する際には活動電位が発生する。
この活動電位は、神経細胞のイオン透過性の変化に伴っ
て細胞膜内外のイオン濃度が変化し、これに伴って細胞
膜電位が変化することによって生じるものである。そこ
で、試料細胞又は組織の活動状態を観察するに際して、
上記の細胞膜電位の2次元分布を測定することにより活
動部位の特定や活動の程度を観察することができる。
2. Description of the Related Art In recent years, medical examination of nerve cells and possibility of application as an electric element have been actively conducted. An action potential is generated when a nerve cell is activated.
This action potential is caused by a change in the ion concentration inside and outside the cell membrane accompanying a change in the ion permeability of the nerve cell, and a change in the cell membrane potential accordingly. Therefore, when observing the activity state of sample cells or tissues,
By measuring the above-mentioned two-dimensional distribution of cell membrane potential, it is possible to identify the active site and observe the degree of activity.

【0003】このような細胞電位の測定において、いわ
ゆるガラスや刺激を与える電極を細胞に挿入することな
く測定し、しかも、平面上の複数箇所を同時に測定する
ことを可能にする2次元センサとして、本出願人によっ
て先に出願された一体化複合電極がある(特開平6−7
8889号公報、特開平6−296595号公報参
照)。この一体化複合電極は、ガラス基板上に導電性物
質を用いてマトリックス状に配列された複数の微小電極
とその引出しパターンを形成し、この上での細胞培養を
可能にしたものである。これによって、ガラス電極等を
用いる場合に比べて狭い間隔の複数箇所において同時に
電位変化を測定することができ、しかも細胞・組織を培
養しながら長時間にわたって観測することができるよう
になった。
In the measurement of such a cell potential, a so-called two-dimensional sensor that enables measurement without inserting a so-called glass or an electrode for giving a stimulus into a cell, and at the same time, can measure a plurality of points on a plane. There is an integrated composite electrode previously filed by the applicant (Japanese Patent Application Laid-Open No. 6-7
8889, JP-A-6-296595). This integrated composite electrode is formed by forming a plurality of microelectrodes arranged in a matrix using a conductive substance on a glass substrate and drawing patterns thereof, and enables cell culture on this. As a result, compared to the case where a glass electrode or the like is used, it is possible to simultaneously measure the potential change at a plurality of places at narrow intervals, and further, it is possible to observe it for a long time while culturing cells / tissues.

【0004】[0004]

【発明が解決しようとする課題】しかし、上記のような
従来の一体化複合電極は、測定電極の位置や大きさが固
定であるので汎用性に欠け、種々の細胞や組織の活動測
定に兼用することが難しかった。実際、測定対象の細胞
に合わせて測定電極の間隔や大きさを実験によって最適
化し、ほぼ専用の一体化複合電極を作成していた。
However, the conventional integrated composite electrode as described above lacks versatility because the position and size of the measuring electrode are fixed, and is also used for measuring the activity of various cells and tissues. It was difficult to do. Actually, the intervals and sizes of the measurement electrodes were optimized by experiments according to the cells to be measured, and an almost dedicated integrated composite electrode was created.

【0005】そこで、本発明は、上記従来の一体化複合
電極を改良し、測定電極の位置等を可変とすることによ
り、汎用性に富む細胞活動測定用2次元センサ及びこれ
を用いた測定装置を提供することを目的とする。
Therefore, the present invention improves the conventional integrated composite electrode described above and makes the position of the measuring electrode variable so as to provide a versatile two-dimensional sensor for measuring cell activity and a measuring device using the same. The purpose is to provide.

【0006】[0006]

【課題を解決するための手段】本発明による細胞活動測
定用2次元センサの特徴は、Si、SiO2、及びSi3
4の3層からなるセンサ基板のSi側の裏面に作用電
極用薄膜が蒸着され、Si34側の表面に試料である細
胞、培養液、及び参照電極を入れる囲いが設けられ、そ
の囲い内に置かれた細胞の活動によって発生する電位変
化の平面分布のうち、光が照射された部分の電位変化に
主として対応する信号が前記作用電極から取り出される
点にある。
The features of the two-dimensional sensor for measuring cell activity according to the present invention are Si, SiO 2 , and Si 3.
Thin film for the working electrode on the back surface of the Si side of the sensor substrate made of three layers of N 4 is deposited, the cell as a sample on the surface of the Si 3 N 4 side, broth, and the enclosure to put a reference electrode is provided, that In the plane distribution of the potential change generated by the activity of cells placed in the enclosure, a signal mainly corresponding to the potential change in the portion irradiated with light is extracted from the working electrode.

【0007】また、上記の2次元センサを用いた本発明
による細胞活動測定装置の特徴は、前記2次元センサの
裏面にレーザビームを照射するレーザ光源と、前記2次
元センサの裏面側の作用電極と表面側の囲い内に入れら
れた参照電極との間に直流バイアス電圧を印加する直流
電源と、前記両電極間に得られる信号を処理する処理手
段とを備えている点にある。好ましい具体構成について
は後述する。
A feature of the cell activity measuring apparatus according to the present invention using the above two-dimensional sensor is that the back surface of the two-dimensional sensor is irradiated with a laser beam and a working electrode on the back surface of the two-dimensional sensor. It is provided with a DC power source for applying a DC bias voltage between the electrode and the reference electrode placed in the enclosure on the surface side, and a processing means for processing a signal obtained between the both electrodes. A preferred specific configuration will be described later.

【0008】[0008]

【作用】本発明による細胞活動測定用2次元センサは、
米国モレキュラーデバイス社が開発したLAPS(Ligh
t-Addressable Ptentiometric sensor,米国特許第4,75
8,786号、第4,963,815号等参照)の原理を細胞電位の測
定に応用したものである。このLAPSは、図5に示す
ように、半導体シリコン基板101の上に酸化膜102
及び窒化膜103を形成したものであり、例えば、その
上に接触させた溶液(電解液)104のpHを測定する
センサーとして用いられる。その測定原理について簡単
に触れておく。
The two-dimensional sensor for measuring cell activity according to the present invention is
LAPS (Ligh
t-Addressable Ptentiometric sensor, US Pat. No. 4,75
8786, No. 4,963,815, etc.) is applied to the measurement of cell potential. As shown in FIG. 5, the LAPS is formed by depositing an oxide film 102 on the semiconductor silicon substrate 101.
And a nitride film 103 are formed, and are used as, for example, a sensor for measuring the pH of a solution (electrolytic solution) 104 brought into contact therewith. The measurement principle is briefly touched upon.

【0009】電解液(Electrolyte)、絶縁膜(Insulato
r)、及び半導体(Semiconductor)からなるEIS構造に
ポテンショスタット105によってバイアス電圧を印加
し、EIS構造の裏面からある周波数で変調した光を照
射すると、図6に示すような光交流電流が流れる。この
とき、バイアス電圧Vと光交流電流Iとの関係を示すI
−V曲線が溶液のpHに応じて図に示すように横軸(バ
イアス電圧)方向にシフトする。したがって、所定のバ
イアス電圧を印加している状態で光交流電流Iを検出す
ることにより電解液のpHを測定することができる。I
−V曲線が溶液のpHに応じてシフトする理由は次のよ
うに考えられている。
Electrolyte, Insulato
When a bias voltage is applied to the EIS structure composed of r) and a semiconductor by a potentiostat 105 and light modulated at a certain frequency is irradiated from the back surface of the EIS structure, an optical alternating current as shown in FIG. 6 flows. At this time, I showing the relationship between the bias voltage V and the optical alternating current I
The −V curve shifts in the horizontal axis (bias voltage) direction as shown in the figure depending on the pH of the solution. Therefore, the pH of the electrolytic solution can be measured by detecting the photocurrent I while the predetermined bias voltage is being applied. I
The reason why the −V curve shifts depending on the pH of the solution is considered as follows.

【0010】EIS構造に電圧が印加されると、半導体
と絶縁膜との界面でエネルギーバンドの曲りが生ずる
が、この曲りは、絶縁膜に接している溶液のpHにも依
存する。つまり、絶縁膜の表面にはシラノール基(Si-O
H)とアミノ基(Si-NH2)が形成されているが、これらの官
能基がプロトン(H+)と選択的に結合して、溶液中に存在
するプロトンと結合したプロトンとの平衡状態が維持さ
れている。したがって、溶液のpHが変われば絶縁膜上
の電荷が変わり、それによってエネルギーバンドの曲り
が変化する。その結果、半導体と絶縁膜との界面の空乏
層の幅、従って空乏層容量が変化するので、流れる光交
流電流も変化するのである。このLAPSは、光を照射
することにより電気伝導度が高くなる半導体の光伝導現
象をも利用している。
When a voltage is applied to the EIS structure, a bending of the energy band occurs at the interface between the semiconductor and the insulating film, and this bending also depends on the pH of the solution in contact with the insulating film. In other words, silanol groups (Si-O
H) and an amino group (Si-NH 2 ) are formed, but these functional groups selectively bond with the proton (H + ) and the equilibrium state between the proton present in the solution and the bound proton Has been maintained. Therefore, if the pH of the solution changes, the charge on the insulating film changes, which changes the bending of the energy band. As a result, the width of the depletion layer at the interface between the semiconductor and the insulating film, and hence the depletion layer capacitance, changes, and the flowing photocurrent also changes. This LAPS also utilizes the photoconduction phenomenon of a semiconductor whose electric conductivity is increased by irradiation with light.

【0011】本発明による細胞活動測定用2次元センサ
も、上記LAPSと同様に、Si、SiO2、及びSi3
4の3層からなるセンサ基板を備え、Si側の裏面に
作用電極用薄膜が蒸着されている。しかし、Si34
の表面に試料である細胞、培養液、及び参照電極を入れ
る囲いが設けられ、その囲い内に置かれた細胞の活動に
よって発生する電位変化の平面分布を直接測定する。つ
まり、LAPSを用いたpHセンサーのように、絶縁膜
表面に形成されたシラノール基及びアミノ基とプロトン
との結合によって絶縁膜表面に電位が発生するのではな
く、絶縁膜表面に接する細胞の活動によって直接的に絶
縁膜表面に電位が発生し、これによって半導体と絶縁膜
との界面の空乏層の幅、従って静電容量が変化する。そ
して、光が照射された部分の電気伝導度が高くなること
により、主としてその部分の電位変化に主として対応す
る信号を作用電極から取り出すことができるのである。
The two-dimensional sensor for measuring cell activity according to the present invention, like the LAPS, has Si, SiO 2 and Si 3 as well.
A sensor substrate composed of three layers of N 4 is provided, and a thin film for a working electrode is vapor-deposited on the back surface on the Si side. However, the surface of the Si 3 N 4 side is provided with an enclosure for containing the sample cells, the culture solution, and the reference electrode, and the planar distribution of the potential change caused by the activity of the cells placed in the enclosure is directly measured. . That is, unlike the pH sensor using LAPS, the action of cells contacting the surface of the insulating film does not generate a potential on the surface of the insulating film due to the bond between the silanol groups and amino groups formed on the surface of the insulating film and the protons. By this, a potential is directly generated on the surface of the insulating film, which changes the width of the depletion layer at the interface between the semiconductor and the insulating film, and thus the capacitance. Then, since the electric conductivity of the portion irradiated with light becomes high, a signal mainly corresponding to the potential change of the portion can be taken out from the working electrode.

【0012】従って、このような2次元センサを用いた
細胞活動測定装置の構成として、2次元センサの裏面に
光ビームを照射する光源と、2次元センサの裏面側の作
用電極と表面側の囲い内に入れられた参照電極との間に
直流バイアス電圧を印加する電源と、両電極間に得られ
る信号を処理する処理手段とが必要である。光源として
レーザ光源を用いれば、照射スポットの位置決めが正確
であり、スポット径を絞ることができる点で有利であ
る。また、センサ表面の囲い内に置かれた細胞の培養環
境を維持する培養維持手段を備えることにより、長時間
にわたる測定が可能になる。
Therefore, as a structure of a cell activity measuring apparatus using such a two-dimensional sensor, a light source for irradiating the back surface of the two-dimensional sensor with a light beam, a working electrode on the back surface side of the two-dimensional sensor, and an enclosure on the front surface side. A power supply for applying a DC bias voltage between the reference electrode placed inside and a processing means for processing the signal obtained between both electrodes are required. The use of a laser light source as a light source is advantageous in that the irradiation spot can be accurately positioned and the spot diameter can be narrowed. Further, by providing the culture maintaining means for maintaining the culture environment of the cells placed in the enclosure of the sensor surface, the measurement for a long time becomes possible.

【0013】信号処理のための具体構成として、レーザ
光源を高周波駆動して高周波変調光を照射させる光源駆
動手段が設けられ、上記処理手段が作用電極と参照電極
との間に流れる光交流電流の振幅の変化を検出するもの
であることが好ましい。つまり、前述のように、絶縁膜
表面に接する細胞の活動によって生ずる電位変化による
半導体と絶縁膜との界面の空乏層の幅(容量)の変化を
光交流電流の振幅の変化として検出するのである。
As a specific configuration for signal processing, a light source driving means for driving a laser light source at a high frequency to irradiate a high frequency modulated light is provided, and the processing means is provided for generating an optical alternating current flowing between a working electrode and a reference electrode. It is preferable to detect a change in amplitude. That is, as described above, a change in the width (capacitance) of the depletion layer at the interface between the semiconductor and the insulating film due to a change in potential caused by the activity of cells in contact with the surface of the insulating film is detected as a change in the amplitude of the photocurrent. .

【0014】また、レーザ光源から照射されるレーザビ
ームを2次元センサの裏面の所定範囲内で(高速に)走
査する手段が備えられていることが好ましく、これによ
って、所定範囲内の複数箇所の細胞活動をほぼ同時に測
定することができる。1本のレーザビームを走査させる
代わりに、2次元センサの裏面に対してほぼ垂直にレー
ザ光を照射する複数のレーザ素子を2次元マトリックス
状に配列したレーザアレイを備え、これらの複数のレー
ザ素子を時分割で駆動させれば、一層高速の走査が可能
になる。あるいは、レーザビームを走査させる代わり
に、2次元センサの水平方向における位置を制御するX
Yステージを備え、これを制御することによって2次元
センサのレーザ光を照射させる位置を変えるようにして
もよい。
Further, it is preferable that a means for scanning the laser beam emitted from the laser light source within a predetermined range on the back surface of the two-dimensional sensor (at high speed) is provided, whereby a plurality of locations within the predetermined range can be provided. Cell activity can be measured almost simultaneously. A laser array in which a plurality of laser elements that irradiate laser light substantially perpendicularly to the back surface of the two-dimensional sensor instead of scanning one laser beam are arranged in a two-dimensional matrix is provided. If is driven in a time-division manner, higher speed scanning becomes possible. Alternatively, instead of scanning the laser beam, X that controls the horizontal position of the two-dimensional sensor
A Y stage may be provided, and the position where the two-dimensional sensor irradiates the laser light may be changed by controlling the Y stage.

【0015】[0015]

【実施例】以下、図面を参照しながら本発明の実施例を
説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0016】図1に本発明による細胞活動測定装置の一
実施例の構成を示す。細胞活動測定用2次元センサ1の
上にサンプルである細胞2及び培養液をセットしたもの
が、インキュベータ部3に収納されている。
FIG. 1 shows the configuration of an embodiment of the cell activity measuring apparatus according to the present invention. A cell 2 and a culture solution set on the two-dimensional sensor 1 for measuring cell activity are stored in the incubator unit 3.

【0017】2次元センサ1は、図2に断面図(a)及
び平面図(b)を示すように、Si,SiO2,及びS
34の3層からなるセンサ基板のSi側の裏面に作用
電極用の金アンチモン薄膜1aを蒸着し、Si3N側の
表面に細胞及び培養液、そして参照電極を入れる囲い1
bを設けたものである。尚、図2(a)の断面図は厚さ
方向に誇張して描かれており、実際には全体の厚さが2
00μm、そのうち、SiO2が50nm以下、Si3
4膜が100nm以下である。シリコン(Si)基板に
は10オームcmのN型、厚さ200μmで、裏面も鏡
面研磨したものを用いた。裏面に蒸着した金アンチモン
薄膜1aは、500℃でアロイ化してオーミックコンタ
クトを形成した。
The two-dimensional sensor 1 includes Si, SiO 2 , and S as shown in the sectional view (a) and the plan view (b) of FIG.
A gold antimony thin film 1a for a working electrode is vapor-deposited on the Si-side back surface of a sensor substrate composed of three layers of i 3 N 4 , and an enclosure 1 for containing cells, a culture solution, and a reference electrode on the Si 3 N-side surface.
b. The cross-sectional view of FIG. 2A is exaggerated in the thickness direction, and in actuality, the total thickness is 2
00 μm, of which SiO 2 is 50 nm or less, Si 3 N
4 films are 100 nm or less. As the silicon (Si) substrate, an N-type of 10 ohm cm, a thickness of 200 μm, and a mirror-polished back surface was used. The gold antimony thin film 1a deposited on the back surface was alloyed at 500 ° C. to form an ohmic contact.

【0018】基板表面に形成したシリコン窒化膜(Si
34)は細胞等の生体に対して非侵襲性であるので、細
胞等の培養に適している。細胞等を入れる囲い1bは、
内径26mmのポリカーボネイト製円筒体をSi34
の表面に接着したものである。尚、円板状の2次元セン
サ1の周縁部4箇所に、アルミニウム製フレームを取り
付けるための小ねじが固着されている。
A silicon nitride film (Si
Since 3 N 4 ) is non-invasive to living bodies such as cells, it is suitable for culturing cells and the like. The enclosure 1b containing cells etc. is
A polycarbonate cylinder having an inner diameter of 26 mm is adhered to the surface of a Si 3 N 4 film. In addition, machine screws for attaching an aluminum frame are fixed to four peripheral portions of the disc-shaped two-dimensional sensor 1.

【0019】図1に戻って、インキュベータ部3は二重
構造を採用しており、雑菌による外部からの汚染防止に
万全を期している。インキュベータ部3のサンプル室3
aは、温度制御ユニット4が温度センサの出力に基づい
てヒータ・ファンユニット5を制御することによって、
37±0.5℃に維持される。また、空気95%、二酸
化炭素5%の割合に調整された混合ガスがサンプル室に
導入されている。この混合ガス供給路には流量計6及び
電磁弁7が備えられ、さらに電磁弁7の駆動回路7aを
オン・オフするタイマー7bも備えられている。これら
インキュベータ部、温度制御ユニット4等によって培養
維持手段が構成されている上記2次元センサ1の囲い内
に入れられた参照電極(RE)と裏面の作用電極との間
にバイアス電圧を印加するためのポテンショスタット8
が設けられ、両電極間に流れる電流信号がアンプ9を介
して処理手段であるコンピュータ10に入力される。コ
ンピュータ10には16ビットA/D変換器が装着され
ている。
Returning to FIG. 1, the incubator section 3 has a double structure, and it is sensible to prevent external contamination by various bacteria. Sample chamber 3 of incubator section 3
a is that the temperature control unit 4 controls the heater / fan unit 5 based on the output of the temperature sensor,
Maintained at 37 ± 0.5 ° C. In addition, a mixed gas adjusted to a ratio of 95% air and 5% carbon dioxide is introduced into the sample chamber. A flow meter 6 and a solenoid valve 7 are provided in the mixed gas supply path, and a timer 7b for turning on / off a drive circuit 7a for the solenoid valve 7 is also provided. To apply a bias voltage between the reference electrode (RE) placed in the enclosure of the two-dimensional sensor 1 in which the culture maintaining means is constituted by the incubator portion, the temperature control unit 4, etc., and the working electrode on the back surface. The potentiostat 8
Is provided, and the current signal flowing between both electrodes is input to the computer 10, which is a processing unit, via the amplifier 9. The computer 10 is equipped with a 16-bit A / D converter.

【0020】また、2次元センサ1の囲い内には、培養
液に浸された参照電極(RE)と同じポテンショスタッ
ト8に接続された対向電極(CE)が備えられている。
この対向電極(CE)をサンプルに接触させて参照電極
(RE)との間にパルス電圧を印加することにより、サ
ンプルに刺激を与えて、その結果生ずる誘発電位を測定
することができる。この刺激電圧(パルス電圧)はコン
ピュータ10からの指令によってポテンショスタット8
が発生する。もちろん、刺激を与えずに自発電位の測定
をすることもできる。
In the enclosure of the two-dimensional sensor 1, there is provided a counter electrode (CE) connected to the same potentiostat 8 as the reference electrode (RE) immersed in the culture solution.
By contacting the counter electrode (CE) with the sample and applying a pulse voltage between the counter electrode (CE) and the reference electrode (RE), the sample can be stimulated and the resulting evoked potential can be measured. This stimulation voltage (pulse voltage) is supplied from the computer 10 according to a command from the potentiostat 8
Occurs. Of course, it is also possible to measure the self-power generation position without giving a stimulus.

【0021】図1には、2次元センサ1の裏面にレーザ
ビームを照射するレーザ光源11やその駆動装置12も
示されている。レーザ光源11から出たレーザビームは
ミラーやレンズ(倒立顕微鏡の対物レンズを使用した)
による光学系で数μm程度のビーム径に集光されて2次
元センサ1の裏面に照射される。また、光源駆動装置1
2はレーザビームを数kHz〜10kHz程度の高周波
で変調する変調器を含んでいる。
FIG. 1 also shows a laser light source 11 for irradiating the back surface of the two-dimensional sensor 1 with a laser beam and a driving device 12 for the laser light source 11. The laser beam emitted from the laser light source 11 is a mirror or lens (using an objective lens of an inverted microscope)
The beam is condensed to a beam diameter of about several μm by the optical system according to (3) and is irradiated on the back surface of the two-dimensional sensor 1. Also, the light source driving device 1
Reference numeral 2 includes a modulator that modulates the laser beam at a high frequency of several kHz to 10 kHz.

【0022】また、2次元センサ1の裏面のレーザビー
ムが照射される位置を変更するための手段として、イン
キュベータ部3ごと2次元センサ1を水平方向に変位さ
せるXYステージ13が備えられている。このXYステ
ージ13は、コンピュータ10からの指令に従ってステ
ップモータが駆動されることにより、2次元センサ1の
レーザビームが照射される位置を1μm単位でXY方向
に変位させることができる。
As a means for changing the position of the back surface of the two-dimensional sensor 1 irradiated with the laser beam, an XY stage 13 for horizontally displacing the two-dimensional sensor 1 together with the incubator unit 3 is provided. The XY stage 13 is capable of displacing the laser beam irradiation position of the two-dimensional sensor 1 in the XY direction in units of 1 μm by driving a step motor according to a command from the computer 10.

【0023】本実施例では、このようにレーザビームの
位置を固定して2次元センサ1をXY方向に変位させた
が、高速スキャン(走査)を実現するには、むしろ、2
次元センサ1の位置を固定して、レーザビームを走査さ
せるほうがよい。これは、光学系にXYガルバノミラー
を使用することにより実現できる。あるいは、2次元セ
ンサの裏面に対してほぼ垂直にレーザ光を照射する複数
のレーザ素子を2次元マトリックス状に配列したレーザ
アレイを用い、これらの複数のレーザ素子を時分割で駆
動させる方法も考えられる。
In this embodiment, the position of the laser beam is fixed and the two-dimensional sensor 1 is displaced in the XY directions as described above.
It is better to fix the position of the dimension sensor 1 and scan the laser beam. This can be achieved by using an XY galvanometer mirror in the optical system. Alternatively, a method of using a laser array in which a plurality of laser elements that irradiate a laser beam substantially perpendicularly to the back surface of the two-dimensional sensor are arranged in a two-dimensional matrix and driving the plurality of laser elements in a time division manner is also considered. To be

【0024】上記のようにして、2次元センサ1のレー
ザ光が照射された部分には正孔・電子対が発生し、参照
電極と作用電極との間に印加されているバイアス電圧に
よって光電流が流れようとする。2次元センサ1の表面
には絶縁膜(SiO2及びSi34)が形成されている
ので直流電流は流れないが、前述のようにレーザビーム
が高周波変調されていることにより交流電流が流れ得
る。絶縁膜の静電容量(以下、単に容量という)をC
i、半導体と絶縁膜との界面の空乏層の容量をCd、高
周波変調されたレーザビームによる光励起によって空乏
層に生成される光交流電流をiPとすれば、外部で検出
可能な参照電極と作用電極との間に流れる光交流電流i
は、図3の等価回路から、次式(数1)のようになる。
As described above, hole-electron pairs are generated in the portion of the two-dimensional sensor 1 irradiated with laser light, and photocurrent is generated by the bias voltage applied between the reference electrode and the working electrode. Is about to flow. Since the insulating film (SiO 2 and Si 3 N 4 ) is formed on the surface of the two-dimensional sensor 1, a direct current does not flow, but an alternating current flows due to the high frequency modulation of the laser beam as described above. obtain. The capacitance of the insulating film (hereinafter simply referred to as capacitance) is C
i, the capacitance of the depletion layer at the interface between the semiconductor and the insulating film is Cd, and the photo-AC current generated in the depletion layer by photoexcitation by the high-frequency modulated laser beam is i P. Photoacoustic current i flowing between the working electrode and
Is given by the following equation (Equation 1) from the equivalent circuit of FIG.

【0025】[0025]

【数1】 i=Ci・iP/(Ci+Cd) 絶縁膜表面に接する細胞の活動によって絶縁膜表面に電
位が発生すると、これによって半導体と絶縁膜との界面
付近におけるエネルギーバンドの曲りが生じ、その結
果、半導体と絶縁膜との界面の空乏層の幅、従って空乏
層容量Cdが変化する。すると、上式(数1)にしたが
って外部に検出される光交流電流iも変化する。本実施
例のようにN型半導体を用いたセンサの場合、絶縁膜表
面に発生する電位が正であれば空乏層容量Cdが大きく
なって光交流電流iは小さくなることがわかっている。
逆に絶縁膜表面に発生する電位が負であれば空乏層容量
Cdが小さくなって光交流電流iは大きくなる。
Equation 1 the potential to i = Ci · i P / ( Ci + Cd) insulating film surface by activities of cells in contact with the insulating film surface is generated, whereby bending of the energy band is generated in the vicinity of the interface between the semiconductor and the insulating film, As a result, the width of the depletion layer at the interface between the semiconductor and the insulating film, that is, the depletion layer capacitance Cd changes. Then, the photo-acoustic current i detected outside also changes according to the above formula (Equation 1). In the case of the sensor using the N-type semiconductor as in the present embodiment, it is known that the depletion layer capacitance Cd increases and the photo-AC current i decreases when the potential generated on the surface of the insulating film is positive.
On the contrary, if the potential generated on the surface of the insulating film is negative, the depletion layer capacitance Cd becomes small and the photo-AC current i becomes large.

【0026】以下に、上記のような測定装置を用いてラ
ットの脳切片の神経活動の観察を行った実験例について
説明する。生後2日齢のSDラットの脳を摘出し、その
視覚野の部分を約0.5mm厚の切片に切り取った。こ
の脳切片を上記2次元センサの囲いの中で培養した。切
片の付着製を良くするために、センサ表面のシリコン窒
化膜をポリリジンで処理し、培地にはDF+fを用い
た。ここで、DFはDMEMとNutrient Mixture(F12培
地)を1対1で混ぜたものであり、fはinsulin5μg/m
l,transferrin 100μg/ml,progesterone 20nM,hydrocor
tisone 20nM,putresine 100μM,selenium 20nM、さらに
牛胎児血清5%を加えたものである。
An example of an experiment in which the neural activity of a rat brain slice is observed using the above measuring device will be described below. The brains of 2-day-old postnatal SD rats were excised, and the visual cortex was cut into about 0.5 mm thick sections. This brain section was cultured in the enclosure of the two-dimensional sensor. The silicon nitride film on the sensor surface was treated with polylysine to improve the adhesion of the slices, and DF + f was used as the medium. Here, DF is a 1: 1 mixture of DMEM and Nutrient Mixture (F12 medium), and f is insulin 5 μg / m 2.
l, transferrin 100 μg / ml, progesterone 20nM, hydrocor
tisone 20 nM, putresine 100 μM, selenium 20 nM, and 5% fetal calf serum were added.

【0027】このようなサンプル(生後1〜2日齢のラ
ットの脳切片)は培養開始から1週間から10日程度で
自発発火を起こすようになる。図4に上記の測定装置で
検出されたサンプルの電気的活動を示す。図4(a)は
48kHzでディジタルサンプリングした光交流電流波
形であり、この光交流電流の振幅を10msecごとに
平均化処理した波形を図4(b)に示す。これらの図か
らわかるように、時間軸の約144.8秒から145.
2秒の間で光交流電流の振幅が約5%小さくなってい
る。
Such a sample (brain slice of a rat aged 1 to 2 days) causes spontaneous ignition within 1 week to 10 days after the start of culture. FIG. 4 shows the electrical activity of the sample detected by the above measuring device. FIG. 4A shows an optical AC current waveform digitally sampled at 48 kHz. FIG. 4B shows a waveform obtained by averaging the amplitude of this optical AC current every 10 msec. As can be seen from these figures, about 144.8 seconds to 145.
The amplitude of the optical alternating current is reduced by about 5% in 2 seconds.

【0028】このことから、レーザビームが照射された
箇所において、神経細胞の活動によって絶縁膜表面に正
の電位が発生していることが考えられる。レーザビーム
の照射箇所を他に移動させた場合も、神経細胞の自発発
火が生じていると考えられる箇所では同様に光交流電流
の振幅の現象が認められた。
From this, it is considered that a positive potential is generated on the surface of the insulating film due to the activity of nerve cells at the portion irradiated with the laser beam. Even when the irradiation location of the laser beam was moved to another location, a similar phenomenon of the amplitude of the photocurrent was observed at the location where spontaneous firing of the nerve cells was considered to occur.

【0029】[0029]

【発明の効果】以上説明したように、本発明によれば、
Si、SiO2、及びSi34の3層からなるLAPS
構造の2次元センサを用い、その上でサンプルの細胞を
培養できるようにして、2次元センサ基板の裏面からレ
ーザビームが照射された箇所の細胞活動による電位変化
を検出できるようにしたので、レーザビームが照射され
る位置、及びそのスポット径を変えることにより、いわ
ば測定電極の位置及び大きさをほぼ任意に調節すること
が可能になった。つまり、サンプルに合わせて測定電極
の位置や大きさを任意に設定できる汎用性のある2次元
センサとそれを用いた測定装置を提供することができ
た。
As described above, according to the present invention,
LAPS consisting of three layers of Si, SiO 2 and Si 3 N 4
A two-dimensional sensor with a structure is used, and the cells of the sample can be cultured on the two-dimensional sensor substrate so that the potential change due to the cell activity at the portion irradiated with the laser beam from the back surface of the two-dimensional sensor substrate can be detected. By changing the beam irradiation position and the spot diameter, the position and size of the measurement electrode can be adjusted almost arbitrarily. That is, it was possible to provide a general-purpose two-dimensional sensor in which the position and size of the measurement electrode can be arbitrarily set according to the sample and a measurement device using the two-dimensional sensor.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に係る細胞活動測定装置の構成
FIG. 1 is a block diagram of a cell activity measuring apparatus according to an embodiment of the present invention.

【図2】図1の細胞活動測定装置に用いる2次元センサ
の側面断面図(模式図)及び平面図
FIG. 2 is a side sectional view (schematic diagram) and a plan view of a two-dimensional sensor used in the cell activity measuring apparatus of FIG.

【図3】図1の測定装置における光交流電流が流れる回
路の等価回路を示す図
FIG. 3 is a diagram showing an equivalent circuit of a circuit in which a photo-AC current flows in the measuring apparatus of FIG.

【図4】測定された光交流電流及びその振幅の変化の一
例を示す波形図
FIG. 4 is a waveform diagram showing an example of the measured optical AC current and changes in its amplitude.

【図5】本発明に関連するLAPSによるpH測定回路
の構成図
FIG. 5 is a block diagram of a pH measurement circuit using LAPS related to the present invention.

【図6】図5の測定回路から得られる光交流電流対バイ
アス電圧特性がpH煮応じてシフトする様子を示すグラ
FIG. 6 is a graph showing how the photo-AC current vs. bias voltage characteristic obtained from the measurement circuit of FIG. 5 shifts depending on the pH.

【符号の説明】[Explanation of symbols]

1 2次元センサ 1a 作用電極用薄膜 1b 囲い 2 試料(細胞) 3 インキュベータ部 4 温度制御ユニット 5 ヒータ・ファンユニット 6 流量計 7 電磁弁 8 ポテンショスタット 9 アンプ 10 コンピュータ 11 レーザ光源 12 光源駆動装置 13 XYステージ 1 Two-dimensional sensor 1a Working electrode thin film 1b Enclosure 2 Sample (cell) 3 Incubator part 4 Temperature control unit 5 Heater / fan unit 6 Flowmeter 7 Solenoid valve 8 Potentiostat 9 Amplifier 10 Computer 11 Laser light source 12 Light source driving device 13 XY stage

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岩崎 裕 大阪府枚方市東香里新町8−14 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yu Iwasaki 8-14 Higashikari Shinmachi, Hirakata City, Osaka Prefecture

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 Si、SiO2、及びSi34の3層か
らなるセンサ基板のSi側の裏面に作用電極用薄膜が蒸
着され、Si34側の表面に試料である細胞、培養液、
及び参照電極を入れる囲いが設けられ、その囲いの内部
に置かれた細胞の活動によって発生する電位変化の平面
分布のうち、光が照射された部分の電位変化に主として
対応する信号が前記作用電極から取り出されることを特
徴とする細胞活動測定用2次元センサ。
1. A thin film for a working electrode is vapor-deposited on the Si-side back surface of a sensor substrate composed of three layers of Si, SiO 2 , and Si 3 N 4 , and a sample cell, a culture, is deposited on the Si 3 N 4- side surface. liquid,
And a reference electrode is provided with an enclosure, and in the planar distribution of the potential change generated by the activity of cells placed inside the enclosure, a signal mainly corresponding to the potential change of the portion irradiated with light is the working electrode. A two-dimensional sensor for measuring cell activity, which is characterized by being taken out from a cell.
【請求項2】 請求項1に記載された細胞活動測定用2
次元センサと、その裏面にレーザビームを照射するレー
ザ光源と、前記細胞活動測定用2次元センサの裏面側の
作用電極と表面側の囲い内に入れられた参照電極との間
に直流バイアス電圧を印加する直流電源と、前記両電極
間に得られる信号を処理する処理手段とを備えている細
胞活動測定装置。
2. The cell activity measuring device according to claim 1
A DC bias voltage is applied between the two-dimensional sensor, a laser light source for irradiating a laser beam on the back surface thereof, a working electrode on the back surface side of the two-dimensional sensor for measuring cell activity, and a reference electrode placed in an enclosure on the front surface side. A cell activity measuring device comprising a direct current power source to be applied and a processing means for processing a signal obtained between the both electrodes.
【請求項3】 前記細胞活動測定用2次元センサの囲い
内に置かれた細胞の培養環境を維持する培養維持手段が
備えられている請求項2記載の細胞活動測定装置。
3. The cell activity measuring device according to claim 2, further comprising a culture maintaining means for maintaining a culture environment of the cells placed in the enclosure of the two-dimensional sensor for measuring cell activity.
【請求項4】 前記レーザ光源を高周波駆動して高周波
変調光を照射させる光源駆動手段が設けられ、前記処理
手段は、前記両電極間に流れる光交流電流の振幅の変化
を検出するように構成されている請求項2記載の細胞活
動測定装置。
4. A light source driving means for driving the laser light source at a high frequency to irradiate a high frequency modulated light is provided, and the processing means is configured to detect a change in amplitude of an optical alternating current flowing between the both electrodes. The cell activity measuring device according to claim 2.
【請求項5】 前記レーザ光源から照射されるレーザビ
ームを前記細胞活動測定用2次元センサの裏面の所定範
囲内で走査する手段が備えられている請求項2記載の細
胞活動測定装置。
5. The cell activity measuring device according to claim 2, further comprising means for scanning the laser beam emitted from the laser light source within a predetermined range on the back surface of the two-dimensional sensor for measuring cell activity.
【請求項6】 前記レーザ光源として、前記細胞活動測
定用2次元センサの裏面に対してほぼ垂直にレーザ光を
照射する複数のレーザが2次元マトリックス状に配列さ
れてなるレーザアレイが備えられている請求項2記載の
細胞活動測定装置。
6. The laser light source is provided with a laser array in which a plurality of lasers for irradiating the back surface of the two-dimensional cell activity measuring sensor with laser light are arranged in a two-dimensional matrix. The cell activity measuring device according to claim 2.
【請求項7】 前記細胞活動測定用2次元センサの水平
方向における位置を制御するXYステージが備えられて
いる請求項2記載の細胞活動測定装置。
7. The cell activity measuring device according to claim 2, further comprising an XY stage for controlling the position of the two-dimensional sensor for measuring cell activity in the horizontal direction.
JP7153343A 1995-06-20 1995-06-20 Two-dimensional sensor for measuring nerve cell activity and measuring device using the same Expired - Fee Related JP2930181B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP7153343A JP2930181B2 (en) 1995-06-20 1995-06-20 Two-dimensional sensor for measuring nerve cell activity and measuring device using the same
TW085107072A TW324062B (en) 1995-06-20 1996-06-11 Patent two-dimensional sensor utilizing light addressing potentiometer for measuring cell's activities sensor substrate includes three layers of Si, SiO2, and Si3N4 + a placing area in the sensor's substrate for sample cells, developing gene and a reference electrode
US08/661,314 US6288527B1 (en) 1995-06-20 1996-06-13 Two-dimensional sensor using laps for measuring cell activity
KR1019960022231A KR970000190A (en) 1995-06-20 1996-06-19 2D sensor for measuring neuronal activity and measuring device using the same
CA002179459A CA2179459A1 (en) 1995-06-20 1996-06-19 Two-dimensional sensor using laps for measuring cell activity
CN96108205A CN1156825A (en) 1995-06-20 1996-06-19 Two-dimensional sensor using LAPS for measuring cell activity
DE69618390T DE69618390T2 (en) 1995-06-20 1996-06-20 Two-dimensional sample using LAPS to measure cell activity
AT96109996T ATE211823T1 (en) 1995-06-20 1996-06-20 TWO-DIMENSIONAL SAMPLE USING LAPS TO MEASURE CELL ACTIVITY
EP96109996A EP0750195B1 (en) 1995-06-20 1996-06-20 Two-dimensional sensor using LAPS for measuring cell activity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7153343A JP2930181B2 (en) 1995-06-20 1995-06-20 Two-dimensional sensor for measuring nerve cell activity and measuring device using the same

Publications (2)

Publication Number Publication Date
JPH095289A true JPH095289A (en) 1997-01-10
JP2930181B2 JP2930181B2 (en) 1999-08-03

Family

ID=15560403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7153343A Expired - Fee Related JP2930181B2 (en) 1995-06-20 1995-06-20 Two-dimensional sensor for measuring nerve cell activity and measuring device using the same

Country Status (9)

Country Link
US (1) US6288527B1 (en)
EP (1) EP0750195B1 (en)
JP (1) JP2930181B2 (en)
KR (1) KR970000190A (en)
CN (1) CN1156825A (en)
AT (1) ATE211823T1 (en)
CA (1) CA2179459A1 (en)
DE (1) DE69618390T2 (en)
TW (1) TW324062B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112763557A (en) * 2020-12-23 2021-05-07 西北工业大学 Method for preparing honeycomb mesh-shaped working electrode of optical addressing potential sensor

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3688096B2 (en) * 1997-05-10 2005-08-24 財団法人地球環境産業技術研究機構 Material evaluation method
FR2764702B1 (en) * 1997-06-11 1999-09-03 Lyon Ecole Centrale METHOD FOR IDENTIFYING AND / OR DETERMINING BIOLOGICAL SUBSTANCES PRESENT IN A CONDUCTIVE LIQUID, DEVICE AND AFFINITY SENSOR USEFUL FOR THE IMPLEMENTATION OF THIS PROCESS
US6788071B2 (en) * 2001-07-24 2004-09-07 Auburn University Method and apparatus for generating a voltage across a membrane
ATE442587T1 (en) * 2002-07-20 2009-09-15 Acea Biosciences Inc IMPEDANCE BASED DEVICES AND METHODS FOR ANALYZING CELLS AND PARTICLES
US7560269B2 (en) 2002-12-20 2009-07-14 Acea Biosciences, Inc. Real time electronic cell sensing system and applications for cytotoxicity profiling and compound assays
US7470533B2 (en) 2002-12-20 2008-12-30 Acea Biosciences Impedance based devices and methods for use in assays
US8263375B2 (en) 2002-12-20 2012-09-11 Acea Biosciences Dynamic monitoring of activation of G-protein coupled receptor (GPCR) and receptor tyrosine kinase (RTK) in living cells using real-time microelectronic cell sensing technology
US8206903B2 (en) 2002-12-20 2012-06-26 Acea Biosciences Device and method for electroporation-based delivery of molecules into cells and dynamic monitoring of cell responses
US7468255B2 (en) * 2002-12-20 2008-12-23 Acea Biosciences Method for assaying for natural killer, cytotoxic T-lymphocyte and neutrophil-mediated killing of target cells using real-time microelectronic cell sensing technology
US7732127B2 (en) * 2002-12-20 2010-06-08 Acea Biosciences, Inc. Dynamic monitoring of cell adhesion and spreading using the RT-CES system
US10551371B2 (en) 2003-11-10 2020-02-04 Acea Biosciences, Inc. System and method for monitoring cardiomyocyte beating, viability and morphology and for screening for pharmacological agents which may induce cardiotoxicity or modulate cardiomyocyte function
US10539523B2 (en) 2002-12-20 2020-01-21 Acea Biosciences, Inc. System and method for monitoring cardiomyocyte beating, viability, morphology, and electrophysiological properties
US10215748B2 (en) 2002-12-20 2019-02-26 Acea Biosciences, Inc. Using impedance-based cell response profiling to identify putative inhibitors for oncogene addicted targets or pathways
US11346797B2 (en) 2002-12-20 2022-05-31 Agilent Technologies, Inc. System and method for monitoring cardiomyocyte beating, viability, morphology and electrophysiological properties
US9612234B2 (en) 2008-05-05 2017-04-04 Acea Biosciences, Inc. Data analysis of impedance-based cardiomyocyte-beating signals as detected on real-time cell analysis (RTCA) cardio instruments
CA2550274A1 (en) 2003-11-12 2005-05-26 Acea Biosciences, Inc. Real time electronic cell sensing systems and applications for cell-based assays
US20050231186A1 (en) * 2004-03-23 2005-10-20 Saavedra Barrera Rafael H High throughput electrophysiology system
US7807042B2 (en) * 2005-01-27 2010-10-05 Auburn University System for and method of patch clamp analysis
WO2006133555A1 (en) * 2005-06-15 2006-12-21 Neurosilicon (1145990 Alberta Ltd.) Psychotropic drug screening device based on long-term photoconductive stimulation of neurons
KR20070077320A (en) * 2006-01-23 2007-07-26 삼성전자주식회사 Cell culture chip and method for monitoring cell culture in real time
US8041515B2 (en) * 2006-09-20 2011-10-18 Acea Biosciences, Inc. Use of impedance-based cytological profiling to classify cellular response profiles upon exposure to biologically active agents
US20080318870A1 (en) 2007-06-19 2008-12-25 Kythera Biopharmaceuticals, Inc. Synthetic bile acid compositions and methods
JOP20180077A1 (en) 2007-06-19 2019-01-30 Kythera Biopharmaceuticals Inc Synthetic bile acid compositions and methods
US8242294B2 (en) 2007-06-19 2012-08-14 Kythera Biopharmaceuticals, Inc. Synthetic bile acid compositions and methods
WO2009137440A1 (en) 2008-05-05 2009-11-12 Acea Biosciences, Inc. Label-free monitoring of excitation-contraction coupling and excitable cells using impedance based systems with millisecond time resolution
CN101666771B (en) * 2009-09-27 2012-07-25 南开大学 Light addressable potential sensor slide holder of sandwich structure
CA2783017C (en) 2010-08-12 2018-05-15 Kythera Biopharmaceuticals, Inc. Synthetic bile acid compositions and methods
CN102221572B (en) * 2011-03-07 2016-07-20 桂林电子科技大学 A kind of LAPS detection device for taste bionic perception
US11229789B2 (en) 2013-05-30 2022-01-25 Neurostim Oab, Inc. Neuro activator with controller
CA2913074C (en) 2013-05-30 2023-09-12 Graham H. Creasey Topical neurological stimulation
US11077301B2 (en) 2015-02-21 2021-08-03 NeurostimOAB, Inc. Topical nerve stimulator and sensor for bladder control
US12066428B2 (en) 2015-11-20 2024-08-20 Agilent Technologies, Inc. Cell-substrate impedance monitoring of cancer cells
TWI585401B (en) * 2015-12-17 2017-06-01 長庚大學 Light addressable potentiometric sensing unit
CN106849887B (en) * 2017-02-28 2024-03-22 河南师范大学 High-bandwidth front-end of tunnel junction parallel resistance scanning tunnel microscope
US11746328B2 (en) 2017-03-03 2023-09-05 Agilent Technologies, Inc. Methods and systems for functional maturation of iPSC and ESC derived cardiomyocytes
US10953225B2 (en) 2017-11-07 2021-03-23 Neurostim Oab, Inc. Non-invasive nerve activator with adaptive circuit
CN110260905A (en) * 2019-05-29 2019-09-20 西安邮电大学 A kind of permanent phase difference closed-loop measuring method of array detection optical address potential sensor
KR20220025834A (en) 2019-06-26 2022-03-03 뉴로스팀 테크놀로지스 엘엘씨 Non-invasive neural activators with adaptive circuits
KR20220115802A (en) 2019-12-16 2022-08-18 뉴로스팀 테크놀로지스 엘엘씨 Non-invasive neural activator with boost charge transfer function
USD941488S1 (en) 2020-02-07 2022-01-18 Agilent Technologies, Inc. Instrument for analyzing biological cells
US20210301245A1 (en) 2020-03-29 2021-09-30 Agilent Technologies, Inc. Systems and methods for electronically and optically monitoring biological samples
CN112958170A (en) * 2021-02-02 2021-06-15 周口师范学院 Liquid drop micro-fluidic system based on LAPS

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3448377A (en) * 1967-10-12 1969-06-03 Atomic Energy Commission Method utilizing an electron beam for nondestructively measuring the dielectric properties of a sample
US4855243A (en) * 1983-09-26 1989-08-08 H.S.G. Venture (A Joint Venture Partnership) Neurological and biological molecular electro-optical devices and methods
DE3407850A1 (en) * 1984-02-29 1985-09-05 Hahn-Meitner-Institut für Kernforschung Berlin GmbH, 1000 Berlin MICROWAVE MEASURING METHOD AND MEASURING APPARATUS FOR CONTACTLESS AND DESTRUCTION-FREE EXAMINATION OF PHOTO-SENSITIVE MATERIALS
US4758786A (en) 1986-08-06 1988-07-19 Molecular Devices Corporation Method of analyzing semiconductor systems
US4963815A (en) 1987-07-10 1990-10-16 Molecular Devices Corporation Photoresponsive electrode for determination of redox potential
WO1990004645A1 (en) * 1988-10-21 1990-05-03 Molecular Devices Corporation Methods and apparatus for detecting the effect of cell affecting agents on living cells
GB2224356A (en) 1988-10-31 1990-05-02 Plessey Co Plc Biosensor device
JP3101122B2 (en) 1993-04-16 2000-10-23 松下電器産業株式会社 Integrated composite electrode
JP3193471B2 (en) 1992-09-04 2001-07-30 松下電器産業株式会社 Integrated composite electrode
EP0745683B1 (en) * 1995-05-31 2001-08-16 Horiba, Ltd. Process for measuring microbial activity state
US5567302A (en) * 1995-06-07 1996-10-22 Molecular Devices Corporation Electrochemical system for rapid detection of biochemical agents that catalyze a redox potential change
JP3688096B2 (en) * 1997-05-10 2005-08-24 財団法人地球環境産業技術研究機構 Material evaluation method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112763557A (en) * 2020-12-23 2021-05-07 西北工业大学 Method for preparing honeycomb mesh-shaped working electrode of optical addressing potential sensor

Also Published As

Publication number Publication date
CN1156825A (en) 1997-08-13
KR970000190A (en) 1997-01-21
CA2179459A1 (en) 1996-12-21
JP2930181B2 (en) 1999-08-03
TW324062B (en) 1998-01-01
DE69618390D1 (en) 2002-02-14
US6288527B1 (en) 2001-09-11
EP0750195B1 (en) 2002-01-09
ATE211823T1 (en) 2002-01-15
EP0750195A1 (en) 1996-12-27
DE69618390T2 (en) 2002-09-26

Similar Documents

Publication Publication Date Title
JP2930181B2 (en) Two-dimensional sensor for measuring nerve cell activity and measuring device using the same
JP2930182B2 (en) Two-dimensional sensor for measuring nerve cell activity and measuring device using the same
US6638743B2 (en) Method for measuring a state variable
Tien et al. From self-assembled bilayer lipid membranes (BLMs) to supported BLMs on metal and gel substrates to practical applications
JPH07218510A (en) Method and equipment for inspeting metabolism in cell
Kanai et al. Integrated taste sensor using surface photovoltage technique
Ben-Tabou de Leon et al. Neurons culturing and biophotonic sensing using porous silicon
JP2003254932A (en) Method and device for measuring electric signal from biological membrane body, method for measuring biological activity of membrane-integrated type polypeptide and identifying active material, identified pharmaceutical, use of the pharmaceutical, screening method of material library, inhibitor and activator found by the method and use thereof
JPH07184686A (en) Method for measuring cell activity
US7741859B2 (en) Detection of sealing by means of noise analysis
Wu et al. A light-addressable potentiometric sensor for odorant detection using single bioengineered olfactory sensory neurons as sensing element
Eiler et al. Thin-film transistor platform for electrophysiological and electrochemical characterization of biological cells
CN2709979Y (en) Sensor for monocell investigating ecto-action potential
CN114002296B (en) Bioactive substance transient photovoltage measurement assembly, device and method
CN116609411B (en) Method for improving slope sensitivity of solid contact type ion selective electrode and application thereof
Aragón Beloso et al. Bioelectronics-on-a-chip for cardio myoblast proliferation enhancement using electric field stimulation
WO1992019959A1 (en) Device for determination of biologically active compounds in biological liquids and method for making its sensitive element
Shirinkami Reconfigurable Electrode Array for High-Resolution Neural Interface
Zhou et al. A novel ultrasonic-electric-based microsystem for the investigation of mechanical aging on lipid membranes
Nicolini et al. A new instrument for the simultaneous determination of p H and redox potential
GB2193326A (en) Lipid coated electrodes
CN114965622A (en) Thermal regulation and control electrochemical luminescence single-cell microscopic imaging device and imaging method
Ying et al. Integrated Cell-based Biosensor for Extracellular Electrophysiological Monitoring
Fare et al. Incorporation of ion channels in polymerized membranes and fabrication of a biosensor
Xu et al. A novel integrated cell-based biosensor for extracellular electrophysiological monitoring

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090521

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100521

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100521

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110521

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110521

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120521

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees