JPH0952780A - Production of porous silicon carbide sintered compact - Google Patents

Production of porous silicon carbide sintered compact

Info

Publication number
JPH0952780A
JPH0952780A JP7225893A JP22589395A JPH0952780A JP H0952780 A JPH0952780 A JP H0952780A JP 7225893 A JP7225893 A JP 7225893A JP 22589395 A JP22589395 A JP 22589395A JP H0952780 A JPH0952780 A JP H0952780A
Authority
JP
Japan
Prior art keywords
silicon carbide
sintered body
powder
carbide powder
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7225893A
Other languages
Japanese (ja)
Inventor
Atsushi Inamine
淳 稲嶺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Carbon Co Ltd
Original Assignee
Tokai Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Carbon Co Ltd filed Critical Tokai Carbon Co Ltd
Priority to JP7225893A priority Critical patent/JPH0952780A/en
Publication of JPH0952780A publication Critical patent/JPH0952780A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Products (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce a porous silicon carbide sintered compact having high porosity and high strength and capable of easy control of pore diameter. SOLUTION: Silicon carbide whiskers are mixed with 30-50wt.% α-silicon carbide powder of <=30μm, preferably 0.5-10μm average particle diameter and the resultant mixture is compacted and sintered at 1,90O-2,100 deg.C in a nonoxidizing atmosphere.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、高気孔率と高強度
を有し、かつ気孔径を容易に制御することのできる多孔
質炭化珪素焼結体の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a porous silicon carbide sintered body having a high porosity and a high strength and capable of easily controlling the pore diameter.

【0002】炭化珪素焼結体は、耐熱性、高温強度、化
学的安定性などに優れているため、従来から高温用の各
種構造部材として広く利用されている。また、焼結体の
組織構造を多孔質とした多孔質炭化珪素焼結体は溶融金
属用フィルター、通気性高温断熱材、触媒担体、排気ガ
ス用フィルターなど多様な用途分野での実用化が図られ
ている。
Since a silicon carbide sintered body is excellent in heat resistance, high temperature strength, chemical stability, etc., it has been widely used as various structural members for high temperature. In addition, the porous silicon carbide sintered body, which has a porous structure of sintered body, is expected to be put to practical use in various application fields such as molten metal filters, breathable high temperature heat insulating materials, catalyst carriers, and exhaust gas filters. Has been.

【0003】[0003]

【従来の技術】多孔質炭化珪素焼結体を製造する方法と
しては、ポリウレタンフォームのような三次元網目構造
の有機質多孔体に炭化珪素のスラリーを含浸させて乾燥
したのち、熱処理して有機質体を焼却除去する方法が知
られている(例えば、特開昭58−122016号公報)が、こ
の方法で得られる炭化珪素多孔質体は気孔率が80%以
上と高い反面、強度が極めて低いという欠点がある。
2. Description of the Related Art As a method of producing a porous silicon carbide sintered body, an organic porous body having a three-dimensional network structure such as polyurethane foam is impregnated with a slurry of silicon carbide, dried and then heat-treated to form an organic body. There is known a method of incineration and removing (for example, JP-A-58-122016), but the silicon carbide porous body obtained by this method has a high porosity of 80% or more, but has an extremely low strength. There are drawbacks.

【0004】また、多孔質炭化珪素焼結体の製造方法と
しては炭化珪素の粉末に有機質の樹脂バインダーを加え
て混合し、この混合物を所定形状に成形したのち焼成し
て炭化珪素の粉末粒子を粒成長させる方法も知られてお
り、例えば特開平3−215374号公報には平均粒径
が100〜150μm で、平均粒径の±20%以内に9
0重量%以上が存在するような粒度分布を有する炭化珪
素顆粒に成形用バインダーと可塑剤を添加して混合した
後、該顆粒の表層部分が潰れて相互に連結し、かつその
内部が未潰れの状態で成形体中に残存するような成形圧
力で成形し、次いで焼結する方法が提案されている。
As a method for producing a porous silicon carbide sintered body, an organic resin binder is added to and mixed with a powder of silicon carbide, and the mixture is shaped into a predetermined shape and then fired to obtain powder particles of the silicon carbide. A method of growing grains is also known. For example, in Japanese Patent Application Laid-Open No. 3-215374, the average grain size is 100 to 150 μm, and the average grain size is within ± 20%.
After adding a molding binder and a plasticizer to silicon carbide granules having a particle size distribution such that 0% by weight or more is present and mixed, the surface layer portions of the granules are crushed and interconnected, and the inside thereof is not crushed. In this state, a method of molding under a molding pressure that remains in the molded body and then sintering is proposed.

【0005】更に、特開平3−215375号公報には
炭化珪素粉末に炭素質物質を配合してなる原料組成物か
ら成形体を成形し、これを非酸化性雰囲気下にて焼成し
て炭化珪素粉末を焼結させることにより、炭素質物質が
分散含有された炭化珪素焼結体を形成し、その後、その
焼結体を酸化性雰囲気下にて加熱することにより焼結体
中の炭素質物質を燃焼して消失させ、焼結体中に気孔を
形成する方法が、また特開平4−187578号公報に
はβ型炭化珪素粉末にα型炭化珪素粉末を配合した原料
炭化珪素粉末から成形体を成形し、その成形体を焼成す
ることによりβ型炭化珪素の異常粒成長を抑制して気孔
径を制御する方法が提案されている。
Further, in Japanese Patent Application Laid-Open No. 3-215375, a molded body is molded from a raw material composition prepared by mixing a carbonaceous substance with silicon carbide powder, and the molded body is fired in a non-oxidizing atmosphere to give silicon carbide. A carbonaceous material in the sintered body is formed by sintering the powder to form a silicon carbide sintered body in which the carbonaceous material is dispersed and contained, and then heating the sintered body in an oxidizing atmosphere. A method for burning and eliminating the powder to form pores in the sintered body is disclosed in Japanese Patent Laid-Open No. 187578/1992 by using a raw silicon carbide powder obtained by mixing α silicon carbide powder with β silicon carbide powder. Has been proposed, in which the abnormal grain growth of β-type silicon carbide is suppressed by controlling the pore diameter by molding the molded body and firing the molded body.

【0006】しかしながら、これらの方法により製造さ
れた多孔質炭化珪素焼結体は気孔率が50%程度のもの
が得られる反面、多孔質体を構成する炭化珪素粒子の結
合は炭化珪素微粒子の粒成長のみによるものであるから
機械的強度が小さく、気孔特性と強度特性の両立を図る
には十分でないという問題点がある。
However, while the porous silicon carbide sintered body produced by these methods has a porosity of about 50%, the bonding of the silicon carbide particles forming the porous body is the particle of silicon carbide fine particles. Since it is based only on growth, there is a problem that mechanical strength is small and it is not sufficient to achieve both pore characteristics and strength characteristics.

【0007】[0007]

【発明が解決しようとする課題】本発明者はこの問題点
を解消するために、炭化珪素粉末に炭化珪素ウイスカー
を配合した原料系を使用することにより気孔特性と強度
特性が両立できることを見出し、特願平6−11964
9号として炭化珪素ウイスカーに平均粒子径が30μm
以下の炭化珪素粉末を30〜50重量%の割合で混合
し、成形後非酸化性雰囲気下1900〜2100℃の温
度で焼結する炭化珪素焼結体の製造方法を提案した。
In order to solve this problem, the present inventor has found that by using a raw material system in which silicon carbide whiskers are mixed with silicon carbide powder, both pore characteristics and strength characteristics can be achieved, Japanese Patent Application No. 6-11964
No. 9 silicon carbide whiskers with an average particle size of 30 μm
A method for producing a silicon carbide sintered body was proposed, in which the following silicon carbide powders were mixed in a ratio of 30 to 50% by weight and sintered after molding at a temperature of 1900 to 2100 ° C in a non-oxidizing atmosphere.

【0008】本発明者は引き続き研究を進めた結果、用
いる炭化珪素粉末の結晶形により得られる炭化珪素焼結
体の気孔特性ならびに強度特性が異なり、α型炭化珪素
粉末を用いると優れた強度特性および気孔特性を有する
とともに、気孔径を容易に制御できることを見出した。
As a result of continuing research by the present inventor, the pore characteristics and strength characteristics of the silicon carbide sintered body obtained differ depending on the crystal form of the silicon carbide powder used, and when α-type silicon carbide powder is used, excellent strength characteristics are obtained. It has been found that it has pore characteristics and that the pore diameter can be easily controlled.

【0009】本発明は上記知見に基づいて開発されたも
のであり、その目的は高い気孔率と大きな材質強度を有
し、かつ気孔径を容易に制御することのできる多孔質炭
化珪素焼結体の製造方法を提供することにある。
The present invention has been developed on the basis of the above findings, and its object is to provide a porous silicon carbide sintered body having a high porosity and a large material strength and capable of easily controlling the pore diameter. It is to provide a manufacturing method of.

【0010】[0010]

【課題を解決するための手段】上記の目的を達成するた
めの本発明による多孔質炭化珪素焼結体の製造方法は、
炭化珪素ウイスカーに平均粒子径が30μm 以下のα型
炭化珪素粉末を30〜50重量%の割合で混合し、成形
後非酸化性雰囲気下1900〜2100℃の温度で焼結
することを構成上の特徴とする。
The method for producing a porous silicon carbide sintered body according to the present invention for achieving the above object comprises:
The α-type silicon carbide powder having an average particle diameter of 30 μm or less is mixed with silicon carbide whiskers in a proportion of 30 to 50% by weight, and after molding, sintering is performed at a temperature of 1900 to 2100 ° C. in a non-oxidizing atmosphere. Characterize.

【0011】[0011]

【発明の実施の形態】炭化珪素ウイスカーは、直径0.
1〜2.0μm 、長さ5〜100μm の針状単結晶から
なる極めて高強度を有する微細繊維状物質であり、本発
明においては炭化珪素ウイスカーを絡み合わせて炭化珪
素焼結体の内部に気孔を形成させるための骨格として機
能させるものである。そして、炭化珪素ウイスカーに炭
化珪素粉末を混合して加熱焼結すると、炭化珪素粉末に
より炭化珪素ウイスカー相互の結合が促進されて強固な
結合体が形成される。
BEST MODE FOR CARRYING OUT THE INVENTION Silicon carbide whiskers have a diameter of 0.
It is a fine fibrous substance having an extremely high strength, which is composed of a needle-shaped single crystal having a length of 1 to 2.0 μm and a length of 5 to 100 μm. To function as a skeleton for forming. Then, when silicon carbide powder is mixed with silicon carbide whiskers and heated and sintered, the silicon carbide powder promotes mutual bonding of the silicon carbide whiskers to form a strong bonded body.

【0012】本発明は、炭化珪素ウイスカーに混合する
炭化珪素粉末としてα型炭化珪素粉末を用いることを主
要な構成要件とする。β型炭化珪素粉末は焼結時に異常
粒成長し易いために、気孔特性とくに気孔径が大きく変
化するので気孔径を制御することが困難である。これに
対してα型炭化珪素粉末は高温においても安定度が高く
粒成長し難いので、気孔径の変化を小さく抑えることが
できる。
The present invention mainly uses α-type silicon carbide powder as the silicon carbide powder to be mixed with the silicon carbide whiskers. Since β-type silicon carbide powder is prone to abnormal grain growth during sintering, it is difficult to control the pore diameter because the pore characteristics, especially the pore diameter, greatly change. On the other hand, the α-type silicon carbide powder has high stability even at a high temperature and it is difficult for the particles to grow, so that the change in the pore diameter can be suppressed to a small level.

【0013】この場合、α型炭化珪素粉末は平均粒子径
が30μm 以下のものが用いられ、好ましくは0.5〜
10μm の微粉末が使用される。平均粒子径が30μm
を越えると焼結性が悪化して得られる多孔質炭化珪素焼
結体の材質強度の低下を招くためである。
In this case, the α-type silicon carbide powder having an average particle diameter of 30 μm or less is used, preferably 0.5 to
10 μm fine powder is used. Average particle size is 30μm
This is because if it exceeds 1.0, the sinterability is deteriorated and the material strength of the obtained porous silicon carbide sintered body is lowered.

【0014】また、α型炭化珪素粉末は炭化珪素ウイス
カーに対して30〜50重量%の割合で混合される。混
合割合が50重量%を越えると、炭化珪素ウイスカーが
絡み合って形成された空隙中にα型炭化珪素粉末が充填
されて気孔率が低下し、他方配合割合が30重量%未満
では、骨格となるウイスカー相互の結合が十分でないた
めに焼結体の材質強度の向上が図れなくなる。
The α-type silicon carbide powder is mixed in a proportion of 30 to 50% by weight with respect to the silicon carbide whiskers. If the mixing ratio exceeds 50% by weight, the α-type silicon carbide powder is filled in the voids formed by the intertwined silicon carbide whiskers and the porosity decreases. On the other hand, if the mixing ratio is less than 30% by weight, it becomes a skeleton. Since the whiskers are not sufficiently connected to each other, the material strength of the sintered body cannot be improved.

【0015】α型炭化珪素粉末と炭化珪素ウイスカーは
所定の割合になるように水あるいはアルコールやエーテ
ルなどの有機溶媒中に成形用バインダーとともに分散さ
せて均一な混合スラリーを作製したのち、所望形状の成
形体に成形される。成形用バインダーとしてはメチルセ
ルロース、カルボキシルメチルセルロースなどが用いら
れ、α型炭化珪素粉末と炭化珪素ウイスカーの合計10
0重量部に対して1〜30重量部の割合で配合される。
なお、必要に応じてグリセリンなどの成形助剤を添加す
ることもできる。
The α-type silicon carbide powder and the silicon carbide whiskers are dispersed together with a molding binder in water or an organic solvent such as alcohol or ether so as to have a predetermined ratio to prepare a uniform mixed slurry. Molded into a molded body. Methylcellulose, carboxymethylcellulose, etc. are used as the molding binder, and the total amount of α-type silicon carbide powder and silicon carbide whiskers is 10
It is mixed in a proportion of 1 to 30 parts by weight with respect to 0 parts by weight.
A molding aid such as glycerin may be added if necessary.

【0016】次いで混合スラリーは鋳込み成形、押し出
し成形、プレス成形、射出成形などの公知の成形手段に
よって所望形状の成形体に成形され、乾燥したのち窒
素、アルゴンなどの非酸化性雰囲気下に1900〜21
00℃の温度で焼結する。焼結温度が1900℃未満で
はα型炭化珪素粉末による炭化珪素ウイスカー相互の結
合が十分に行われず、また2100℃を越えると炭化珪
素ウイスカーの昇華が生じて絡み合ったウイスカー相互
の骨格の崩壊が起こるためである。
Next, the mixed slurry is molded into a molded body having a desired shape by a known molding means such as casting, extrusion molding, press molding, injection molding, etc., and after drying, it is heated to 1900 in a non-oxidizing atmosphere such as nitrogen or argon. 21
Sinter at a temperature of 00 ° C. When the sintering temperature is less than 1900 ° C, the silicon carbide whiskers are not sufficiently bonded to each other by the α-type silicon carbide powder, and when the sintering temperature exceeds 2100 ° C, sublimation of the silicon carbide whiskers occurs and the skeletons of the entangled whiskers collapse. This is because.

【0017】本発明によれば、炭化珪素ウイスカーとα
型炭化珪素粉末の混合成形体を焼結することにより、絡
み合った炭化珪素ウイスカー相互がα型炭化珪素粉末を
介して強固に結合した多孔質焼結体が形成され、また焼
結体内部の空隙の大部分は保持されるので高気孔率の炭
化珪素焼結体が得られる。
According to the invention, silicon carbide whiskers and α
By sintering the mixed compact of the silicon carbide powder of type α, a porous sintered body in which the entangled silicon carbide whiskers are firmly bonded to each other through the α type silicon carbide powder is formed, and voids inside the sintered body are formed. Since most of them are retained, a silicon carbide sintered body having a high porosity can be obtained.

【0018】さらに、α型炭化珪素粉末は高温における
安定性が高いので、焼結時の高温処理時にも異常粒成長
することがないので、形成される気孔径の急激な変動を
防止することができる。したがって、焼結温度を調節す
ることにより容易に気孔径の制御が可能となる。
Further, since the α-type silicon carbide powder has high stability at high temperature, abnormal grain growth does not occur even during high temperature treatment during sintering, so that it is possible to prevent abrupt changes in the formed pore size. it can. Therefore, the pore diameter can be easily controlled by adjusting the sintering temperature.

【0019】このようにα型炭化珪素粉末を使用して、
その平均粒子径および炭化珪素ウイスカーとの混合割合
ならびに焼結温度などを特定することにより高気孔率、
高強度特性を備えるとともに均一な平均気孔径を有する
多孔質炭化珪素焼結体を製造することができる。
In this way, using α-type silicon carbide powder,
High porosity by specifying the average particle size and the mixing ratio with the silicon carbide whiskers and the sintering temperature,
It is possible to manufacture a porous silicon carbide sintered body having high strength characteristics and having a uniform average pore diameter.

【0020】[0020]

【実施例】以下、本発明の実施例を比較例と対比して説
明する。
Hereinafter, examples of the present invention will be described in comparison with comparative examples.

【0021】実施例1〜8、比較例1〜8 原料として平均直径1.5μm 、平均長さ25μm の炭
化珪素ウイスカー、平均粒子径が0.7μm のα型炭化
珪素粉末および平均粒子径が0.7μm のβ型炭化珪素
粉末を用い、これらの原料の混合割合を変えて水中に分
散させて原料スラリーを調製した。なお混合原料100
重量部に対して成形用バインダーとしてメチルセルロー
ス20重量部および成形助剤としてグリセリン10重量
部を添加した。この原料スラリーを押し出し成形により
直径50mm、高さ100mmの円柱形状に成形したのち、
成形体を窒素雰囲気中で温度を変えて1時間焼結した。
得られた焼結体について水銀圧入法により気孔特性(平
均気孔径、気孔率)およびJISR1601により3点
曲げ強度を測定して、これらの結果を表1、2に示し
た。
Examples 1 to 8 and Comparative Examples 1 to 8 As raw materials, silicon carbide whiskers having an average diameter of 1.5 μm and an average length of 25 μm, α-type silicon carbide powder having an average particle size of 0.7 μm, and an average particle size of 0. A .beta.-type silicon carbide powder of 0.7 .mu.m was used, and the raw material slurry was prepared by dispersing the raw materials in water by changing the mixing ratio. 100 mixed raw materials
20 parts by weight of methyl cellulose as a binder for molding and 10 parts by weight of glycerin as a molding aid were added to parts by weight. After extruding this raw material slurry into a cylindrical shape with a diameter of 50 mm and a height of 100 mm,
The molded body was sintered in a nitrogen atmosphere at different temperatures for 1 hour.
The porosity characteristics (average porosity, porosity) of the obtained sintered body were measured by the mercury intrusion method and the three-point bending strength was measured by JISR1601, and the results are shown in Tables 1 and 2.

【0022】[0022]

【表1】 [Table 1]

【0023】[0023]

【表2】 [Table 2]

【0024】実施例9〜11、比較例9〜13 平均直径1.5μm 、平均長さ25μm の炭化珪素ウイ
スカーを用い、混合するα型炭化珪素粉末およびβ型炭
化珪素粉末の平均粒子径ならびに混合比を変えて原料ス
ラリーを調製したほかは、実施例1〜8と同一の方法で
成形体を作製し窒素雰囲気中2000℃の温度で1時間
焼結した。得られた焼結体について実施例1〜8と同一
の方法により気孔特性および3点曲げ強度を測定してそ
の結果を表3に示した。
Examples 9 to 11 and Comparative Examples 9 to 13 Using silicon carbide whiskers having an average diameter of 1.5 μm and an average length of 25 μm, the α-type silicon carbide powder and β-type silicon carbide powder to be mixed have an average particle size and mixing. A molded body was prepared in the same manner as in Examples 1 to 8 except that the raw material slurries were prepared by changing the ratio, and the molded body was sintered in a nitrogen atmosphere at a temperature of 2000 ° C. for 1 hour. The pore characteristics and the three-point bending strength of the obtained sintered body were measured by the same methods as in Examples 1 to 8 and the results are shown in Table 3.

【0025】[0025]

【表3】 [Table 3]

【0026】表1、2の結果からα型炭化珪素粉末を用
いた実施例1〜8の多孔質炭化珪素焼結体は焼結温度と
ともに気孔率および平均気孔径が緩やかに増加している
のに対して、β型炭化珪素粉末を用いた比較例1〜8の
多孔質炭化珪素焼結体では焼結温度が2100〜220
0℃付近で急激に増大していることが認められる。ま
た、実施例1〜8の多孔質炭化珪素焼結体はいずれも高
い曲げ強度特性を有し、かつ気孔率も70%程度あり、
比較例1〜8の多孔質炭化珪素焼結体に比べて材質強度
が優れていることが判る。更に、表3の結果から本発明
の要件を充足する実施例9〜11の多孔質炭化珪素焼結
体は、本発明の要件を外れる比較例9〜13の多孔質炭
化珪素焼結体に対比して気孔特性および強度特性が優位
にあることが明らかである。
From the results shown in Tables 1 and 2, the porosity and the average pore diameter of the porous silicon carbide sintered bodies of Examples 1 to 8 using α-type silicon carbide powder gradually increased with the sintering temperature. On the other hand, in the porous silicon carbide sintered bodies of Comparative Examples 1 to 8 using β-type silicon carbide powder, the sintering temperature was 2100 to 220.
It is recognized that the temperature rapidly increases near 0 ° C. Further, all of the porous silicon carbide sintered bodies of Examples 1 to 8 have high bending strength characteristics and a porosity of about 70%,
It can be seen that the material strength is superior to the porous silicon carbide sintered bodies of Comparative Examples 1 to 8. Furthermore, from the results of Table 3, the porous silicon carbide sintered bodies of Examples 9 to 11 which satisfy the requirements of the present invention are compared with the porous silicon carbide sintered bodies of Comparative Examples 9 to 13 which deviate from the requirements of the present invention. It is clear that the pore characteristics and strength characteristics are superior.

【0027】[0027]

【発明の効果】以上のとおり、本発明によれば炭化珪素
ウイスカーに特定粒子径範囲のα型炭化珪素粉末を所定
量混合した原料を用いることにより高い気孔率と高強度
の多孔質炭化珪素焼結体を製造することができ、また焼
結温度を適宜設定することにより平均気孔径の制御が可
能である。したがって、溶融金属用フィルター、通気性
高温断熱材、触媒担体、排気ガス浄化用フィルターや多
孔質セラミックスヒータ等の製造方法として極めて有用
である。
As described above, according to the present invention, by using a raw material obtained by mixing a predetermined amount of α-type silicon carbide powder having a specific particle size range with silicon carbide whiskers, a porous silicon carbide firing having high porosity and high strength is obtained. A bonded body can be manufactured, and the average pore size can be controlled by appropriately setting the sintering temperature. Therefore, it is extremely useful as a method for producing a molten metal filter, a breathable high-temperature heat insulating material, a catalyst carrier, an exhaust gas purifying filter, a porous ceramics heater, and the like.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 炭化珪素ウイスカーに平均粒子径が30
μm 以下のα型炭化珪素粉末を30〜50重量%の割合
で混合し、成形後非酸化性雰囲気下1900〜2100
℃の温度で焼結することを特徴とする多孔質炭化珪素焼
結体の製造方法。
1. A silicon carbide whisker having an average particle size of 30.
The α-type silicon carbide powder having a particle size of μm or less is mixed in a proportion of 30 to 50% by weight, and after molding, in a non-oxidizing atmosphere, 1900 to 2100.
A method for producing a porous silicon carbide sintered body, which comprises sintering at a temperature of ° C.
【請求項2】 α型炭化珪素粉末の平均粒子径が0.5
〜10μm である請求項1記載の多孔質炭化珪素焼結体
の製造方法。
2. The average particle diameter of the α-type silicon carbide powder is 0.5.
The method for producing a porous silicon carbide sintered body according to claim 1, which has a thickness of 10 μm.
JP7225893A 1995-08-10 1995-08-10 Production of porous silicon carbide sintered compact Pending JPH0952780A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7225893A JPH0952780A (en) 1995-08-10 1995-08-10 Production of porous silicon carbide sintered compact

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7225893A JPH0952780A (en) 1995-08-10 1995-08-10 Production of porous silicon carbide sintered compact

Publications (1)

Publication Number Publication Date
JPH0952780A true JPH0952780A (en) 1997-02-25

Family

ID=16836535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7225893A Pending JPH0952780A (en) 1995-08-10 1995-08-10 Production of porous silicon carbide sintered compact

Country Status (1)

Country Link
JP (1) JPH0952780A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7851396B2 (en) * 2006-03-31 2010-12-14 Ibiden Co., Ltd. Porous sintered body, method of manufacturing porous sintered body, and method of manufacturing exhaust gas purifying apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7851396B2 (en) * 2006-03-31 2010-12-14 Ibiden Co., Ltd. Porous sintered body, method of manufacturing porous sintered body, and method of manufacturing exhaust gas purifying apparatus

Similar Documents

Publication Publication Date Title
JP3581879B2 (en) Alumina porous body and method for producing the same
Chae et al. Porosity control of porous silicon carbide ceramics
CN101323524B (en) Preparation of oriented hole silicon carbide porous ceramic
CN102391012B (en) Method for preparing recrystallized silicon carbide porous ceramic by combining carbothermic reduction
JP4273195B2 (en) Method for producing silicon carbide heat-resistant lightweight porous structure
JPH04187578A (en) Production of sintered compact of porous silicon carbide
JP3983838B2 (en) Method for producing high-strength porous α-SiC sintered body
JPH11130558A (en) Porous silicon carbide sintered product and its production
JPH0232003B2 (en)
JPH0952780A (en) Production of porous silicon carbide sintered compact
JP2851100B2 (en) Method for producing low-density silicon carbide porous body
JP2000185979A (en) Production of porous molded article of silicon carbide
JPH09202671A (en) Production of silicon carbide-based honeycomb filter
KR960007500A (en) Manufacturing method of high density zirconium carbide ceramic using preceramic polymer binder
JP3468426B2 (en) Method for producing porous silicon carbide body
JPH0494736A (en) Silicon carbide barrier bonded with silicon nitride and its manufacture
JPH0826848A (en) Production of porous sic molding
JPH07330462A (en) Porous silicon carbide sintered compact and its production
JP2958472B2 (en) High strength porous member and method of manufacturing the same
JPH08217568A (en) Production of porous electrically conductive silicon carbide sintered body
JPS60264365A (en) Porous silicon carbide sintered body and manufacture
JPH0692736A (en) Method for controlling electric resistance of silicon carbide sintered compact
JP4468541B2 (en) Method for producing recrystallized SiC
JP2855471B2 (en) Silicate-bonded silicon carbide carrier and method for producing the same
JP2901303B2 (en) Method for producing porous silicon carbide sintered body

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Effective date: 20040224

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20041005

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20041104

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081112

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091112

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101112

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees