JPH07330462A - Porous silicon carbide sintered compact and its production - Google Patents

Porous silicon carbide sintered compact and its production

Info

Publication number
JPH07330462A
JPH07330462A JP14087694A JP14087694A JPH07330462A JP H07330462 A JPH07330462 A JP H07330462A JP 14087694 A JP14087694 A JP 14087694A JP 14087694 A JP14087694 A JP 14087694A JP H07330462 A JPH07330462 A JP H07330462A
Authority
JP
Japan
Prior art keywords
sic
powder
mosi
porous
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14087694A
Other languages
Japanese (ja)
Inventor
Chomei Yamada
朝明 山田
Yukio Hayashi
幸雄 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Carbon Co Ltd
Original Assignee
Tokai Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Carbon Co Ltd filed Critical Tokai Carbon Co Ltd
Priority to JP14087694A priority Critical patent/JPH07330462A/en
Publication of JPH07330462A publication Critical patent/JPH07330462A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00793Uses not provided for elsewhere in C04B2111/00 as filters or diaphragms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0081Uses not provided for elsewhere in C04B2111/00 as catalysts or catalyst carriers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Abstract

PURPOSE:To produce a porous SiC sintered compact excellent in pore characteristics and strength characteristics. CONSTITUTION:A powdery mixture of SiC powder with MoSi2 powder is compacted and fired at a temp. between the m.p. of MoSi2 and 2,200 deg.C in a nonoxidizing atmosphere to produce the objective porous SiC sintered compact contg. MoSi2 fused and filled into the bonding grain boundary parts of SiC grains constituting the sintered compact. The average particle diameter of the SiC powder is preferably 0.1-10mum, that of the MoSi2 powder is 5-30mum and the MoSi2 powder is preferably added by 10-30 pts.wt. to 100 pts.wt. of the SiC powder. The powdery mixture is preferably heat-treated at a temp. below the m.p. of MoSi2 before firing.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高気孔率と高強度を有
し、例えば排気ガス濾過用のフィルターとして好適な多
孔質SiC焼結体とその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a porous SiC sintered body having a high porosity and a high strength, which is suitable as a filter for filtering exhaust gas, for example, and a method for producing the same.

【0002】[0002]

【従来の技術】SiCは耐熱性および耐食性が優れてい
るので、SiC多孔質体は触媒担体や腐食性溶液の濾過
用フィルターとして使用されている。また、最近では、
ディーゼルエンジン等の内燃機関における排気ガス浄化
装置において、排気ガス中のカーボン煤を濾過するとと
もにこのカーボン煤を燃焼除去する触媒担体として、ハ
ニカム状に形成したフィルターが検討されている。
2. Description of the Related Art Since SiC has excellent heat resistance and corrosion resistance, porous SiC is used as a catalyst carrier and a filter for filtering corrosive solutions. Also, recently
BACKGROUND ART In an exhaust gas purifying apparatus for an internal combustion engine such as a diesel engine, a honeycomb-shaped filter has been studied as a catalyst carrier for filtering carbon soot in exhaust gas and burning and removing the carbon soot.

【0003】SiC多孔質体を排気ガス浄化用のフィル
ターとして用いる場合には、高強度である上に、排気ガ
スの流通濾過時における圧損を少なくするとともにカー
ボン煤の捕集効率を高めるために、気孔率が約45%以
上であること、気孔分布がシャープで平均気孔径が約1
0μm 以上であることなどの気孔特性が要求される。
When a porous SiC body is used as a filter for purifying exhaust gas, it has high strength and, in addition to reducing pressure loss at the time of flow filtration of exhaust gas, and enhancing the collection efficiency of carbon soot, Porosity of about 45% or more, sharp pore distribution and average pore diameter of about 1
Pore characteristics such as 0 μm or more are required.

【0004】従来SiC多孔質体を製造する方法として
は、ポリウレタンフォームのような三次元編目構造の有
機質多孔体にSiCのスラリーを含浸させて乾燥したの
ち、熱処理して有機質体を焼却除去する方法が知られて
いる(例えば、特開昭58−122016号公報)が、この方法
で得られるSiC多孔質体は気孔率が80%以上と高い
反面、強度が低いという欠点がある。
As a conventional method for producing a porous SiC body, a method of impregnating an organic porous body having a three-dimensional knit structure such as polyurethane foam with a slurry of SiC and drying it, and then heat-treating it to remove it by incineration. Is known (for example, JP-A-58-122016), the SiC porous body obtained by this method has a high porosity of 80% or more, but has a drawback of low strength.

【0005】また、多孔質SiC焼結体の製造方法とし
てSiCの微粒子を焼成することにより粒成長させる方
法があり、特開平3−215374号公報には平均粒径
が100〜150μm で、平均粒径の±20%以内に9
0重量%以上が存在する粒度分布を有するSiC顆粒
を、その表面部分が潰れて相互に連結し、かつその内部
が未潰れの状態で成形体中に残存するように成形圧縮し
たのち焼結する方法が提案されている。また、特開平3
−215375号公報には、SiC粉末に炭素質物質を
配合して成形、焼結したのち、焼結体を酸化性雰囲気下
に加熱して炭素質物質を燃焼消失させる方法が、更に特
開平4−187578号公報にはβ型SiC粉末にα型
SiC粉末を配合して成形したのち焼成することにより
β型SiCの異常粒成長を抑制して気孔径を制御する方
法が提案されている。しかしながら、これらの方法では
多孔体を構成するSiC粒子の結合はSiC微粒子の粒
成長のみによるものであるから機械的強度が小さく、気
孔特性と強度特性の両立を図るには十分でないという問
題点があった。
As a method for producing a porous SiC sintered body, there is a method in which fine particles of SiC are fired to grow grains. In JP-A-3-215374, the average grain size is 100 to 150 μm, and the average grain size is 100 to 150 μm. 9 within ± 20% of diameter
The SiC granules having a particle size distribution in which 0 wt% or more is present are compacted so that the surface portions thereof are crushed and connected to each other, and the inside of the SiC granules is compacted so as to remain in the compacted body and then sintered. A method has been proposed. In addition, JP-A-3
In JP-A-215375, there is further disclosed a method in which a carbonaceous substance is mixed with SiC powder, molded and sintered, and then the sintered body is heated in an oxidizing atmosphere to burn off the carbonaceous substance. Japanese Patent Laid-Open No. 187578 proposes a method of suppressing abnormal grain growth of β-type SiC and controlling the pore diameter by blending β-type SiC powder with α-type SiC powder and molding and then firing. However, in these methods, since the bonding of the SiC particles forming the porous body is only due to the particle growth of the SiC fine particles, the mechanical strength is small, and there is a problem that it is not sufficient to achieve both the pore characteristics and the strength characteristics. there were.

【0006】[0006]

【発明が解決しようとする課題】とくに排気ガス浄化装
置のフィルターとして使用する場合には、衝撃などによ
りクラックが発生するとそのクラックを通して排気ガス
が流通して濾過機能を果たさなくなるために高強度の多
孔質体が要求されており、また、濾過により捕集したカ
ーボン煤の燃焼除去に際しては通電により自己発熱する
ものが望まれている。
Particularly when used as a filter of an exhaust gas purifying apparatus, when a crack is generated due to impact or the like, exhaust gas flows through the crack and the filtration function is not fulfilled, so that a high-strength porous material is obtained. A substance is required, and it is also desired that the carbon soot collected by filtration is self-heated by energization when burning and removing carbon soot.

【0007】本発明の目的は、気孔特性ならびに強度特
性に優れ、また通電による自己発熱性の良好な、例えば
排気ガス浄化用のフィルターとして好適な多孔質SiC
焼結体とその製造方法を提供することにある。
An object of the present invention is porous SiC which is excellent in pore characteristics and strength characteristics and has a good self-heating property upon energization, and which is suitable as a filter for purifying exhaust gas, for example.
It is to provide a sintered body and a method for manufacturing the same.

【0008】[0008]

【課題を解決するための手段】上記の目的を達成するた
めの本発明による多孔質SiC焼結体は、多孔質体を構
成するSiC粒子の結合粒界部にMoSi2 を溶着充填
してなることを構成上の特徴とする。
Means for Solving the Problems A porous SiC sintered body according to the present invention for achieving the above object is obtained by welding and filling MoSi 2 in the bonding grain boundary portion of SiC particles constituting the porous body. This is a structural feature.

【0009】多孔質SiC焼結体は、焼結によりSiC
微粒子を粒成長させるとともにこれらの粒子を相互に結
合することにより多孔質体を形成するものであるから、
SiC粒子間の結合粒界部の強度が最も小さくなる。本
発明の多孔質SiC焼結体はこの結合粒界部にMoSi
2 を溶着充填することにより、SiC粒子間の結合粒界
部の強化を図るものである。MoSi2 は強度および耐
熱性に優れ、またSiCとの濡れ性が良好であるから、
結合粒界部に溶着充填することにより気孔特性および耐
熱性を低下させることなく、SiC粒子間の結合強度の
増大がもたらされる。
The porous SiC sintered body is made into SiC by sintering.
Since fine particles are grown to form a porous body by bonding these particles to each other,
The strength of the bonded grain boundary portion between the SiC particles becomes the smallest. The porous SiC sintered body of the present invention has MoSi in the bonding grain boundary portion.
By filling 2 by welding, the bond grain boundary between SiC particles is strengthened. MoSi 2 has excellent strength and heat resistance, and has good wettability with SiC.
By welding and filling the bond grain boundary portion, the bond strength between the SiC particles is increased without deteriorating the pore characteristics and the heat resistance.

【0010】本発明の多孔質SiC焼結体の製造方法
は、SiC粉末にMoSi2 粉末を配合した混合粉末を
成形し、非酸化性雰囲気下にMoSi2 の融点以上、か
つ2200℃以下の温度で焼成することを特徴とする。
The method for producing a porous SiC sintered body according to the present invention comprises molding a mixed powder of SiC powder and MoSi 2 powder, and heating the mixture at a temperature not lower than the melting point of MoSi 2 and not higher than 2200 ° C. in a non-oxidizing atmosphere. It is characterized by being fired at.

【0011】原料となるSiC粉末は結晶構造に係わり
なく、α型、β型いずれも用いることができるが、粉末
粒度として平均粒径が0.1〜10μm の粉末を使用す
ることが好ましい。平均粒径が0.1μm 未満では気孔
率および気孔径が低下するため、フィルターとして好ま
しい気孔特性を付与することが困難となる。一方、平均
粒径が10μm を越える場合には、焼結性が悪化し、強
度が低下するためである。
The SiC powder used as a raw material may be either α-type or β-type regardless of the crystal structure, but it is preferable to use a powder having an average particle size of 0.1 to 10 μm. If the average particle size is less than 0.1 μm, the porosity and the pore size decrease, so that it becomes difficult to impart preferable pore characteristics as a filter. On the other hand, when the average particle size exceeds 10 μm, the sinterability deteriorates and the strength decreases.

【0012】また、MoSi2 粉末は平均粒径が5〜3
0μm の粉末を用いることが好ましい。MoSi2 は焼
成の際に溶融してSiC粒子の結合粒界部に充填され、
凝固時に溶着することにより結合粒界部を強化するが、
MoSi2 粉末が存在した跡は気孔となる。したがっ
て、MoSi2 粉末の平均粒径はSiC焼結体の気孔特
性に大きく影響するために、平均粒径が5μm 未満では
多孔質SiC焼結体の平均気孔径が小さくなって排気ガ
スの濾過抵抗が増大し、また30μm を越えると平均気
孔径が大きくなりフィルターとしての機能が低下するた
めである。
The MoSi 2 powder has an average particle size of 5 to 3
Preference is given to using 0 μm powder. MoSi 2 is melted at the time of firing and filled in the bonding grain boundary portion of the SiC particles,
The bond grain boundary portion is strengthened by welding during solidification,
The traces where MoSi 2 powder was present become pores. Therefore, since the average particle diameter of the MoSi 2 powder has a great influence on the pore characteristics of the SiC sintered body, if the average particle diameter is less than 5 μm, the average pore diameter of the porous SiC sintered body becomes small and the exhaust gas filtering resistance becomes small. This is because the average pore size increases and the function as a filter decreases when the average pore size exceeds 30 μm.

【0013】このMoSi2 粉末は、SiC粉末100
重量部に対して10〜30重量部の割合で配合される。
配合量が10重量部未満の場合にはSiC粒子の結合粒
界部への溶着充填量が少ないために強度向上が十分に果
たされず、一方30重量部を越えると一部が気孔部分に
も充填されるために気孔率や気孔径の減少などによりフ
ィルターとしての機能の低下を招くためである。
This MoSi 2 powder is a SiC powder 100
It is blended in a ratio of 10 to 30 parts by weight with respect to parts by weight.
When the blending amount is less than 10 parts by weight, the amount of the SiC particles deposited and welded to the bonding grain boundary part is small, so that the strength cannot be sufficiently improved. Therefore, the function as a filter is deteriorated due to the decrease in the porosity and the pore diameter.

【0014】SiC粉末とMoSi2 粉末は、カルボキ
シルメチルセルロース、ポリエチレングリコール、ポリ
ビニルアルコール等の有機質バインダーおよび水を加え
て均一なスラリー状に調製し、これを鋳込み成形、押出
し成形など公知の成形手段により所定形状に成形され
る。
The SiC powder and the MoSi 2 powder are prepared into a uniform slurry by adding an organic binder such as carboxymethyl cellulose, polyethylene glycol, polyvinyl alcohol, etc. and water, and the slurry is prepared by a known molding means such as casting or extrusion molding. Shaped into a shape.

【0015】この成形体はN2 やArなどの非酸化性雰
囲気下にMoSi2 の融点以上の温度で、かつ2200
℃以下の温度により焼成される。MoSi2 は焼成時に
溶融し、またSiCとの濡れ性が大きいので凝固する際
に溶着して、SiC粒子の結合粒界部の強化が図られ
る。しかしながら、焼成温度が2200℃を越えると、
SiCおよびMoSi2 の分解が生じるので、焼成温度
は2200℃以下に設定される。
This molded product had a temperature of at least the melting point of MoSi 2 in a non-oxidizing atmosphere such as N 2 or Ar and a temperature of 2200.
It is fired at a temperature of ℃ or less. MoSi 2 melts at the time of firing, and since it has a high wettability with SiC, MoSi 2 is welded at the time of solidification to strengthen the bond grain boundary portion of the SiC particles. However, if the firing temperature exceeds 2200 ° C,
The firing temperature is set to 2200 ° C. or lower because decomposition of SiC and MoSi 2 occurs.

【0016】なお、この場合にMoSi2 の融点以下の
温度、例えば1900〜2000℃の温度で一定時間熱
処理してSiCの粒成長を進行させて、多孔質体を形成
してから所定温度に昇温、焼成することが気孔特性の向
上を図る上で好ましい。
In this case, heat treatment is carried out at a temperature below the melting point of MoSi 2 , for example, at a temperature of 1900 to 2000 ° C. for a certain period of time to promote grain growth of SiC to form a porous body and then rise to a predetermined temperature. Baking at a temperature is preferable in order to improve the pore characteristics.

【0017】[0017]

【作用】本発明の多孔質SiC焼結体は、多孔質体を構
成するSiC粒子の結合粒界部に溶融したMoSi2
充填したものであるから、強度の最も小さい粒界部が溶
着充填したMoSi2 によって補強されて、気孔特性を
損なうことなく強度特性の向上がもたらされる。更に、
MoSi2 は導電性が良好であるから通電発熱性も向上
し、排気ガス浄化用のフィルターや多孔質セラミックヒ
ータとして極めて好適である。
In the porous SiC sintered body of the present invention, since the bonded grain boundary portion of the SiC particles constituting the porous body is filled with molten MoSi 2 , the grain boundary portion having the smallest strength is weld filled. It is reinforced by MoSi 2 and provides improved strength properties without compromising porosity properties. Furthermore,
Since MoSi 2 has good conductivity, it also improves the heat generation by energization and is extremely suitable as a filter for purifying exhaust gas and a porous ceramic heater.

【0018】また、本発明の製造方法によれば、SiC
粉末にMoSi2 粉末を配合した混合粉末を成形し、非
酸化性雰囲気下にMoSi2 の融点以上で、かつ220
0℃以下の温度で焼成することにより、焼成時に溶融し
たMoSi2 はSiCとの界面濡れ性が良好なために粒
成長したSiC粒子の結合粒界部の凹部に優先的に充填
され、凝固する際に溶着して結合粒界部の強化が図られ
る。また、混合粉末中のMoSi2 の存在した跡は空隙
となるために、気孔特性の劣化を招くことなく強度特性
の向上がもたらされる。
Further, according to the manufacturing method of the present invention, SiC
A mixed powder in which MoSi 2 powder is mixed with the powder is molded, and the mixture has a melting point of MoSi 2 or more and 220
By firing at a temperature of 0 ° C. or lower, MoSi 2 melted at the time of firing is preferentially filled in the concave portion of the bonded grain boundary portion of the SiC particles grown due to the good interfacial wettability with SiC, and solidifies. At the time of welding, the grain boundaries are strengthened by welding. In addition, since the traces of the presence of MoSi 2 in the mixed powder form voids, the strength characteristics are improved without degrading the pore characteristics.

【0019】また、用いるSiC粉末およびMoSi2
粉末の平均粒径や配合比率を調整することにより、多孔
質SiC焼結体の気孔特性の制御ならびに強度特性を向
上させることが可能となる。更に、MoSi2 の融点以
下の温度で一定時間熱処理して、SiC粒子の粒成長を
進行させて多孔質体を形成してから焼成すると、気孔特
性のより一層の向上を図ることができる。
The SiC powder and MoSi 2 used
By adjusting the average particle diameter and the mixing ratio of the powder, it becomes possible to control the pore characteristics and improve the strength characteristics of the porous SiC sintered body. Furthermore, when heat treatment is performed for a certain period of time at a temperature equal to or lower than the melting point of MoSi 2 , the grain growth of SiC particles is promoted to form a porous body, and then firing is performed, the pore characteristics can be further improved.

【0020】[0020]

【実施例】以下、本発明の実施例を比較例と対比して具
体的に説明する。
EXAMPLES Examples of the present invention will be specifically described below in comparison with comparative examples.

【0021】実施例1 平均粒径5μm のα型SiC粉末100重量部に対し
て、平均粒径20μm のMoSi2 粉末を30重量部の
割合で配合し、更にポリビニルアルコール1重量部、水
22重量部を加えてスラリーを調製した。次いで、この
スラリーを鋳込み成形法によって直径12mm、長さ50
mmの円柱状に成形し、乾燥後、N2 雰囲気中で2100
℃の温度に1時間保持して焼成した。得られたSiC焼
結体の気孔率、平均気孔径および3点曲げ強度を測定し
て表1に示した。なお、気孔率、平均気孔径は水銀圧入
法により、3点曲げ強度はJIS R1601によりそ
れぞれ測定した。また、SiC焼結体の両端部にAgペ
ーストを塗布して電極とし、100℃および500℃に
設定した電気炉中で比抵抗を測定し、その結果も表1に
示した。なお、このSiC焼結体の粒子構造を走査型電
子顕微鏡で撮影した写真(倍率;1000倍)を図1に
示した。図1からSiC粒子の結合粒界部にMoSi2
が溶着充填されており、また焼成時にMoSi2 が存在
した跡はそのまま空隙となっていることが判る。
Example 1 100 parts by weight of α-type SiC powder having an average particle size of 5 μm was mixed with 30 parts by weight of MoSi 2 powder having an average particle size of 20 μm, and further 1 part by weight of polyvinyl alcohol and 22 parts by weight of water were added. Parts were added to prepare a slurry. Then, this slurry is cast by a casting method to have a diameter of 12 mm and a length of 50.
mm columnar shape, dried and then 2100 in N 2 atmosphere
The temperature was kept at 1 ° C for 1 hour for firing. The porosity, average pore diameter and three-point bending strength of the obtained SiC sintered body were measured and shown in Table 1. The porosity and the average pore diameter were measured by the mercury penetration method, and the three-point bending strength was measured by JIS R1601. Further, Ag paste was applied to both ends of the SiC sintered body to form electrodes, and the specific resistance was measured in an electric furnace set at 100 ° C. and 500 ° C. The results are also shown in Table 1. In addition, the photograph (magnification: 1000 times) which image | photographed the particle structure of this SiC sintered compact with the scanning electron microscope is shown in FIG. As shown in FIG. 1, MoSi 2 is formed at the bonding grain boundary part of the SiC particles.
It can be seen that is filled by welding, and the trace of MoSi 2 existing during firing is a void as it is.

【0022】比較例1 MoSi2 粉末を配合しなかったほかは実施例1と同一
の方法によりSiC焼結体を作製し、実施例1と同一の
方法で諸特性を測定して、その結果を表1に併載した。
また、このSiC焼結体の粒子構造を走査型電子顕微鏡
で撮影した写真(倍率;1000倍)を図2に示した。
Comparative Example 1 A SiC sintered body was produced by the same method as in Example 1 except that the MoSi 2 powder was not mixed, and various characteristics were measured by the same method as in Example 1, and the results are shown. It is also listed in Table 1.
A photograph (magnification: 1000 times) of the grain structure of this SiC sintered body taken by a scanning electron microscope is shown in FIG.

【0023】実施例2 平均粒径が0.3μm のβ型SiC粉末100重量部に
対して、平均粒径20μm のMoSi2 粉末10重量
部、メチルセルロース30重量部、グリセリン10重量
部および水20重量部を加えてスラリーを調製し、この
スラリーを押出し成形法によって直径12mm、長さ50
mmの円柱状の成形体を作製した。この成形体をArガス
雰囲気中で10℃/min.の昇温速度で加熱し、1950
℃の温度で4時間熱処理したのち再び昇温して、210
0℃の温度に1時間保持して焼成した。得られたSiC
焼結体について実施例1と同一の方法により諸特性を測
定して、その結果を表1に併載した。
Example 2 10 parts by weight of MoSi 2 powder having an average particle size of 20 μm, 30 parts by weight of methylcellulose, 10 parts by weight of glycerin and 20 parts by weight of water with respect to 100 parts by weight of β-type SiC powder having an average particle size of 0.3 μm. Parts to prepare a slurry, and the slurry is extruded to have a diameter of 12 mm and a length of 50
A cylindrical molded body having a size of mm was produced. The compact was heated in an Ar gas atmosphere at a temperature rising rate of 10 ° C./min.
After heat treatment at a temperature of ℃ for 4 hours, the temperature is raised again to 210
The temperature was kept at 0 ° C. for 1 hour for firing. Obtained SiC
Various properties of the sintered body were measured by the same method as in Example 1, and the results are also shown in Table 1.

【0024】実施例3 MoSi2 粉末の配合量を20重量部に変えたほかは、
実施例2と同一の方法によりSiC焼結体を製造した。
得られたSiC焼結体について実施例2と同様にして諸
特性を測定し、その結果を表1に併載した。
Example 3 Except that the compounding amount of MoSi 2 powder was changed to 20 parts by weight,
A SiC sintered body was manufactured by the same method as in Example 2.
Various properties of the obtained SiC sintered body were measured in the same manner as in Example 2, and the results are also shown in Table 1.

【0025】実施例4 MoSi2 粉末の配合量を30重量部に変えたほかは、
実施例2と同一の方法によりSiC焼結体を製造した。
得られたSiC焼結体について実施例2と同様にして諸
特性を測定し、その結果を表1に併載した。
Example 4 Except that the compounding amount of MoSi 2 powder was changed to 30 parts by weight,
A SiC sintered body was manufactured by the same method as in Example 2.
Various properties of the obtained SiC sintered body were measured in the same manner as in Example 2, and the results are also shown in Table 1.

【0026】実施例5 MoSi2 粉末の平均粒径を13μm に変えたほかは、
実施例2と同一の方法によりSiC焼結体を製造した。
得られたSiC焼結体について実施例2と同様にして諸
特性を測定し、その結果を表1に併載した。
Example 5 Except that the average particle size of MoSi 2 powder was changed to 13 μm,
A SiC sintered body was manufactured by the same method as in Example 2.
Various properties of the obtained SiC sintered body were measured in the same manner as in Example 2, and the results are also shown in Table 1.

【0027】比較例2 MoSi2 粉末を配合しないほかは、実施例2と同一の
方法によりSiC焼結体を製造した。得られたSiC焼
結体について実施例2と同様にして諸特性を測定し、そ
の結果を表1に併載した。
Comparative Example 2 A SiC sintered body was manufactured by the same method as in Example 2 except that MoSi 2 powder was not added. Various properties of the obtained SiC sintered body were measured in the same manner as in Example 2, and the results are also shown in Table 1.

【0028】比較例3 MoSi2 粉末の代わりに平均粒径20μm のα型Si
C粉末を用いたほかは実施例2と同一の方法によりSi
C焼結体を製造した。得られたSiC焼結体について実
施例2と同様にして諸特性を測定し、その結果を表1に
併載した。
Comparative Example 3 Instead of MoSi 2 powder, α-type Si having an average particle size of 20 μm
Si was prepared in the same manner as in Example 2 except that C powder was used.
A C sintered body was manufactured. Various properties of the obtained SiC sintered body were measured in the same manner as in Example 2, and the results are also shown in Table 1.

【0029】比較例4 MoSi2 粉末の代わりに平均粒径20μm のα型Si
C粉末を使用し、N2ガス雰囲気で焼成したほかは実施
例2と同一の方法によりSiC焼結体を製造した。得ら
れたSiC焼結体について実施例2と同様にして諸特性
を測定し、その結果を表1に併載した。
Comparative Example 4 Instead of MoSi 2 powder, α type Si having an average particle size of 20 μm
A SiC sintered body was manufactured in the same manner as in Example 2 except that C powder was used and fired in an N 2 gas atmosphere. Various properties of the obtained SiC sintered body were measured in the same manner as in Example 2, and the results are also shown in Table 1.

【0030】比較例5 1950℃の温度で4時間熱処理して焼成を終了したほ
かは、実施例2と同一の方法によりSiC焼結体を製造
した。得られたSiC焼結体について実施例2と同様に
して諸特性を測定し、その結果を表1に併載した。
Comparative Example 5 A SiC sintered body was manufactured in the same manner as in Example 2 except that the firing was completed by heat treatment at a temperature of 1950 ° C. for 4 hours. Various properties of the obtained SiC sintered body were measured in the same manner as in Example 2, and the results are also shown in Table 1.

【0031】比較例6 焼成温度を2300℃としたほかは、実施例2と同一の
方法によりSiC焼結体を製造した。得られたSiC焼
結体について実施例2と同様にして諸特性を測定し、そ
の結果を表1に併載した。
Comparative Example 6 A SiC sintered body was manufactured by the same method as in Example 2 except that the firing temperature was set to 2300 ° C. Various properties of the obtained SiC sintered body were measured in the same manner as in Example 2, and the results are also shown in Table 1.

【0032】[0032]

【表1】 [Table 1]

【0033】表1の結果から、実施例の多孔質SiC焼
結体は、比較例の多孔質SiC焼結体に比べて気孔率、
平均気孔径とも大きく優れた気孔特性を有する上に、強
度も高いことが認められ、また、MoSi2 粉末の平均
粒径や配合率を調整することにより気孔特性および強度
特性の調節が可能なことが判る。更に、比抵抗が小さ
く、その温度変化も少ないので通電発熱性にも優れてい
る。
From the results shown in Table 1, the porosity of the porous SiC sintered body of the example is higher than that of the porous SiC sintered body of the comparative example.
It has been found that not only the average pore diameter is large and the pore characteristics are excellent, but also the strength is high, and the pore characteristics and the strength characteristics can be adjusted by adjusting the average particle diameter and the compounding ratio of the MoSi 2 powder. I understand. Further, since the specific resistance is small and the temperature change is small, the heat generation by energization is also excellent.

【0034】[0034]

【発明の効果】以上のとおり、本発明の多孔質SiC焼
結体は、多孔質体を構成するSiC粒子の結合粒界部に
MoSi2 が溶着充填されているために、気孔特性を低
下させることなく高い強度特性を備え、通電発熱性も優
れている。また、本発明の製造方法によれば、特定の焼
成条件により焼結することにより前記SiC焼結体の製
造が可能であり、排気ガス濾過用のフィルターや多孔質
セラミックヒータなどに使用される多孔質SiC焼結体
およびその製造技術として極めて有用である。
As described above, in the porous SiC sintered body of the present invention, since the bonding grain boundary portion of the SiC particles constituting the porous body is filled with MoSi 2 by welding, the pore characteristics are deteriorated. It also has high strength characteristics and excellent heat generation by energization. Further, according to the manufacturing method of the present invention, it is possible to manufacture the SiC sintered body by sintering under a specific firing condition, and it is possible to use a porous ceramic used for a filter for exhaust gas filtration, a porous ceramic heater, or the like. It is extremely useful as a high quality SiC sintered body and its manufacturing technology.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1により製造された多孔質SiC焼結体
の粒子構造を示した電子顕微鏡写真(倍率;1000
倍)である。
1 is an electron micrograph showing the particle structure of a porous SiC sintered body produced according to Example 1 (magnification: 1000).
Times).

【図2】比較例1により製造された多孔質SiC焼結体
の粒子構造を示した電子顕微鏡写真(倍率;1000
倍)である。
FIG. 2 is an electron micrograph showing the particle structure of a porous SiC sintered body produced in Comparative Example 1 (magnification: 1000).
Times).

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 多孔質体を構成するSiC粒子の結合粒
界部にMoSi2 を溶着充填してなることを特徴とする
多孔質SiC焼結体。
1. A porous SiC sintered body, characterized in that MoSi 2 is weld-filled in the bonding grain boundary portion of SiC particles constituting the porous body.
【請求項2】 SiC粉末にMoSi2 粉末を配合した
混合粉末を成形し、非酸化性雰囲気下にMoSi2 の融
点以上、かつ2200℃以下の温度で焼成することを特
徴とする多孔質SiC焼結体の製造方法。
2. A porous SiC calcination characterized by molding a mixed powder of SiC powder mixed with MoSi 2 powder, and calcination in a non-oxidizing atmosphere at a temperature not lower than the melting point of MoSi 2 and not higher than 2200 ° C. A method for producing a bound body.
【請求項3】 SiC粉末の平均粒径が0.1〜10μ
m である請求項2記載の多孔質SiC焼結体の製造方
法。
3. The SiC powder has an average particle size of 0.1 to 10 μm.
The method for producing a porous SiC sintered body according to claim 2, wherein m is m 2.
【請求項4】 MoSi2 粉末の平均粒径が5〜30μ
m である請求項2又は3記載の多孔質SiC焼結体の製
造方法。
4. The average particle size of MoSi 2 powder is 5 to 30 μm.
The method for producing a porous SiC sintered body according to claim 2 or 3, wherein m is m 2.
【請求項5】 SiC粉末100重量部に対し、MoS
2 粉末を10〜30重量部の割合で配合する請求項
2、3又は4記載の多孔質SiC焼結体の製造方法。
5. MoS based on 100 parts by weight of SiC powder
The method for producing a porous SiC sintered body according to claim 2, 3 or 4, wherein i 2 powder is mixed in a ratio of 10 to 30 parts by weight.
【請求項6】 MoSi2 の融点以下の温度で熱処理し
たのち焼成する請求項2、3、4又は5記載の多孔質S
iC焼結体の製造方法。
6. The porous S according to claim 2, 3, 4, or 5, which is heat-treated at a temperature below the melting point of MoSi 2 and then fired.
Method for manufacturing iC sintered body.
JP14087694A 1994-05-31 1994-05-31 Porous silicon carbide sintered compact and its production Pending JPH07330462A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14087694A JPH07330462A (en) 1994-05-31 1994-05-31 Porous silicon carbide sintered compact and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14087694A JPH07330462A (en) 1994-05-31 1994-05-31 Porous silicon carbide sintered compact and its production

Publications (1)

Publication Number Publication Date
JPH07330462A true JPH07330462A (en) 1995-12-19

Family

ID=15278820

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14087694A Pending JPH07330462A (en) 1994-05-31 1994-05-31 Porous silicon carbide sintered compact and its production

Country Status (1)

Country Link
JP (1) JPH07330462A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009143762A (en) * 2007-12-13 2009-07-02 Ngk Insulators Ltd Silicon carbide-based porous body
US8475906B2 (en) 2007-11-30 2013-07-02 Ngk Insulators, Ltd. Silicon carbide based porous material and method for preparation thereof
US8475907B2 (en) 2007-12-13 2013-07-02 Ngk Insulators, Ltd. Silicon carbide-based porous body
CN112266263A (en) * 2020-10-26 2021-01-26 中南大学 Method for preparing porous molybdenum silicide/silicon carbide composite material by utilizing waste molybdenum silicide coating

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8475906B2 (en) 2007-11-30 2013-07-02 Ngk Insulators, Ltd. Silicon carbide based porous material and method for preparation thereof
EP2067756B1 (en) * 2007-11-30 2016-01-27 NGK Insulators, Ltd. Silicon carbide based porous material and method for preparation thereof
JP2009143762A (en) * 2007-12-13 2009-07-02 Ngk Insulators Ltd Silicon carbide-based porous body
US8475907B2 (en) 2007-12-13 2013-07-02 Ngk Insulators, Ltd. Silicon carbide-based porous body
US9045371B2 (en) 2007-12-13 2015-06-02 Ngk Insulators, Ltd. Silicon carbide-based porous body
EP2070890B1 (en) * 2007-12-13 2015-12-09 NGK Insulators, Ltd. A silicon carbide-based porous body and manufacturing method thereof
EP2070889B1 (en) * 2007-12-13 2016-03-02 NGK Insulators, Ltd. A silicon carbide-based porous body and manufacturing method thereof
CN112266263A (en) * 2020-10-26 2021-01-26 中南大学 Method for preparing porous molybdenum silicide/silicon carbide composite material by utilizing waste molybdenum silicide coating

Similar Documents

Publication Publication Date Title
EP1364928B1 (en) Honeycomb structure
JP4136319B2 (en) Honeycomb structure and manufacturing method thereof
JP4307781B2 (en) Silicon carbide based porous material and method for producing the same
EP0761279B1 (en) Honeycomb structure
EP1340735B1 (en) Silicon carbide based porous article
JP4110244B2 (en) Silicon carbide-based heat resistant porous structure and method for producing the same
JP5478259B2 (en) Silicon carbide based porous material
US6746748B2 (en) Honeycomb structure and process for production thereof
JP2003154224A (en) Method for manufacturing silicon nitride-coupled silicon carbide honeycomb filter
JP3185960B2 (en) Method for producing porous aluminum titanate sintered body
JP3461615B2 (en) Honeycomb structure and manufacturing method thereof
JP3642836B2 (en) Silicon carbide honeycomb structure and manufacturing method thereof
JPH08217565A (en) Porous electrically conductive silicon carbide sintered body, its production and use
JP3983838B2 (en) Method for producing high-strength porous α-SiC sintered body
JPH07330462A (en) Porous silicon carbide sintered compact and its production
JP2001247381A (en) Porous silicon carbide and method for producing the same
JP5208900B2 (en) Process for producing conductive silicon carbide based porous material for diesel particulate filter
JPH11130558A (en) Porous silicon carbide sintered product and its production
JP4381011B2 (en) Silicon carbide honeycomb structure and ceramic filter using the same
WO2008114895A1 (en) Silicon carbide-based porous body and method of fabricating the same
JPH01258715A (en) Silicon carbide honeycomb filter and its production
JP4468541B2 (en) Method for producing recrystallized SiC
JP4041879B2 (en) Ceramic porous body and method for producing the same
JPH08217568A (en) Production of porous electrically conductive silicon carbide sintered body
JPH07330461A (en) Production of high strength porous silicon carbide sintered compact