JPH095209A - Apparatus and method for inspecting hologram - Google Patents
Apparatus and method for inspecting hologramInfo
- Publication number
- JPH095209A JPH095209A JP14999595A JP14999595A JPH095209A JP H095209 A JPH095209 A JP H095209A JP 14999595 A JP14999595 A JP 14999595A JP 14999595 A JP14999595 A JP 14999595A JP H095209 A JPH095209 A JP H095209A
- Authority
- JP
- Japan
- Prior art keywords
- hologram
- light source
- optical sensor
- light
- diffraction grating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Testing Of Optical Devices Or Fibers (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、ホログラムの撮影時又
は製造時における検査、並びに出荷後における検査およ
びホログラムの検証に使用されるホログラム検査装置及
び方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hologram inspection apparatus and method used for inspecting holograms at the time of photographing or manufacturing, and for inspecting after shipment and verifying holograms.
【0002】[0002]
【従来の技術】これまで、ホログラムの撮影時および製
造工程での検査は、再生用の光源によって再生される像
を目視で調べていた。あるいは再生像をCCDカメラ等
の撮像装置を用いて二次元の画像として取り込み、画像
解析を利用した光学的な検査方法が行われていた。ま
た、この方法で更に観察位置を変える事で立体像を複数
の二次元画像として検査する方法も公知である。また、
特別な場合として、機械読み取り用ホログラム等の光学
センサで読み取ることを前提に作られたホログラム等で
は、その読み取り機を用いて検査を行う方法が公知であ
る。これ等に関する公知技術としては、例えば、特開平
3−211096号公報,特開平6−76365号公報
が上げられる。2. Description of the Related Art Hitherto, visual inspection of an image reproduced by a reproducing light source has been performed in inspections during photographing of holograms and in manufacturing processes. Alternatively, an optical inspection method has been performed in which a reproduced image is captured as a two-dimensional image using an image pickup device such as a CCD camera and image analysis is used. A method of inspecting a stereoscopic image as a plurality of two-dimensional images by further changing the observation position by this method is also known. Also,
As a special case, for holograms and the like created on the premise that they are read by an optical sensor such as holograms for machine reading, a method of performing inspection using the reader is known. Known techniques related to these are, for example, JP-A-3-211096 and JP-A-6-76365.
【0003】[0003]
【発明が解決しようとする課題】ホログラム撮影時ある
いは複製工程での目視による検査では、検査者の個人差
から来る完成品品質のばらつきが大きくなり、数値管理
的な手法を適用することが難しい。そのため、対策を講
ずるにも検査基準が明確に成らず、全体の品質を効果的
に上げる事が困難となっている。また、出荷後における
品質の追跡調査などを行うに至っては、出荷時の状態と
比較するための基準が残らないため検査者の記憶のみが
頼りとなり、十分な分析調査を行う事が非常に困難であ
る。更に、セキュリティーに用いられるホログラムの真
偽判定は、出荷後の検査同様に、明確な判定基準が残っ
ていないばかりか利用者のその殆どが素人であるため、
粗悪な偽造品に対しても真偽判断を誤るという可能性が
有る。加えて、機械読み取り用ホログラム等の場合にお
いても読み取り機の価格が高価になる等の問題点があ
る。In visual inspection during hologram recording or in the duplication process, variations in the quality of the finished product due to individual differences among inspectors become large, making it difficult to apply a numerical control method. Therefore, even if measures are taken, the inspection standard is not clarified, and it is difficult to effectively improve the overall quality. In addition, when conducting a quality follow-up survey after shipping, there is no standard for comparing with the state at the time of shipping, so only the memory of the inspector is relied on, and it is very difficult to carry out a sufficient analytical survey. Is. In addition, as for the authenticity determination of holograms used for security, as with post-shipment inspection, there are no clear criteria for determination, and most of the users are amateurs.
There is a possibility that the authenticity judgment may be erroneous even for a bad counterfeit product. In addition, in the case of a hologram for machine reading, the price of the reader becomes expensive.
【0004】本発明は、以上の問題点を解決するもの
で、従来の目視的又は光学的なホログラムの再生画像を
対象とする検査方法の替りに電気的手段によりホログラ
ムを構成する微細な回折格子の形状,構造を定量的に高
精度で求め、検査品質の向上とこれに基づくホログラム
製品の品質の向上が図れると共に簡便,小型の構造を有
し安価に実施出来るホログラム検査装置及び方法を提供
することを目的とする。The present invention solves the above-mentioned problems, and instead of the conventional inspection method for a reproduced image of a visual or optical hologram, a fine diffraction grating that constitutes a hologram by electrical means is used. Provide a hologram inspection apparatus and method that can quantitatively and accurately obtain the shape and structure of the above, improve the inspection quality and the quality of the hologram product based on the inspection, and have a simple and small structure and can be implemented at low cost. The purpose is to
【0005】[0005]
【課題を解決するための手段】本発明は、以上の目的を
達成するために、所定の波長成分を含む光線を放射する
光源部と、前記波長成分に対し感度を有する光センサ
と、検査対象のホログラムに対し前記光源部および光セ
ンサを配置する保持部と、前記光センサの出力に基づき
前記ホログラムを構成する回折格子パターンの検査特性
値を演算する演算手段とを備えるホログラム検査装置で
あって、前記光源部は、その光線が前記ホログラムの所
望領域を照射するように配置され、前記光センサは、前
記ホログラムの所望領域に含まれる回折格子パターンに
より回折された回折光を受光するように配置され、前記
演算手段は光センサの出力に基づいて回折光の回折角度
および強度から回折格子パターンの格子ピッチ,格子方
向および回折効率の少なくともいずれか1つを表わす検
査特性値を演算するホログラム検査装置を構成するもの
である。更に具体的に、前記光源部が、レーザ,発光ダ
イオード,水銀灯等の輝線スペクトルを発する光源、も
しくは前記輝線スペクトルの光源や連続スペクトルの白
色光源と波長選択性を有する光学素子との組み合わせか
らなることを特徴とする。また、前記光源部側には、当
該光源から放射される光線の波面を検査対象となる前記
ホログラムの作製時における条件に合わせて整える調整
用光学系が付設され、該光学系は、レンズ,ミラー又は
回折格子からなることを特徴とする。また、前記光セン
サが、前記光源部の分光特性に対する波長域に感度を有
し、かつ回折光の検出に必要な分解能を有するものであ
ることを特徴とする。前記保持部が、前記光源部および
光センサを所望の回転位置および座標位置に移動可能に
形成されるものであることを特徴とする。更に、光源部
から所定の波長成分を含む光線を直接又は調整用光学系
を介して、かつその入射方向を調整して検査対象のホロ
グラムに照射し、ホログラムからの回折光を前記波長成
分に対し感度を有し回折光の検出に必要な分解能を有す
る光センサに入射せしめ、該光センサの出力に基づき前
記ホログラムを構成する回折格子パターンの検査特性値
を演算し該ホログラムの品質検査を行う検査方法であっ
て、前記検査特性値が前記光センサにより検出された前
記回折光の回折角度および強度から演算される回折格子
パターンの格子ピッチ,格子方向および回折効率の少な
くともいずれか1つを表わすホログラム検査方法を特徴
とするものである。In order to achieve the above object, the present invention provides a light source section that emits a light beam containing a predetermined wavelength component, an optical sensor having sensitivity to the wavelength component, and an inspection target. A hologram inspection apparatus comprising: a holder for arranging the light source unit and an optical sensor for the hologram of 1 .; and an operation unit for operating an inspection characteristic value of a diffraction grating pattern forming the hologram based on the output of the optical sensor. The light source unit is arranged so that its light beam irradiates a desired region of the hologram, and the optical sensor is arranged to receive diffracted light diffracted by a diffraction grating pattern included in the desired region of the hologram. Based on the output of the optical sensor, the calculating means determines the diffraction angle and intensity of the diffracted light to determine the grating pitch, the grating direction and the diffraction efficiency of the diffraction grating pattern. Even without those constituting the hologram inspection apparatus for calculating an inspection characteristic value representing any one. More specifically, the light source unit comprises a light source emitting a bright line spectrum such as a laser, a light emitting diode, a mercury lamp, or a combination of a light source having the bright line spectrum or a white light source having a continuous spectrum and an optical element having wavelength selectivity. Is characterized by. Further, on the light source section side, an adjusting optical system for adjusting the wavefront of the light beam emitted from the light source in accordance with the conditions at the time of manufacturing the hologram to be inspected is attached, and the optical system includes a lens and a mirror. Alternatively, it is characterized by comprising a diffraction grating. Further, the optical sensor is characterized in that it has sensitivity in a wavelength range with respect to the spectral characteristic of the light source section and has a resolution necessary for detecting diffracted light. It is characterized in that the holding part is formed so that the light source part and the optical sensor can be moved to desired rotational positions and coordinate positions. Further, a light beam containing a predetermined wavelength component is irradiated from a light source unit directly or through an adjusting optical system, and its incident direction is adjusted to irradiate the hologram to be inspected, and diffracted light from the hologram is applied to the wavelength component. An inspection which is made incident on an optical sensor having sensitivity and resolution necessary for detecting diffracted light, and an inspection characteristic value of a diffraction grating pattern forming the hologram is calculated based on an output of the optical sensor to perform quality inspection of the hologram. A method, wherein the inspection characteristic value represents at least one of a grating pitch, a grating direction, and a diffraction efficiency of a diffraction grating pattern calculated from a diffraction angle and intensity of the diffracted light detected by the optical sensor. It is characterized by an inspection method.
【0006】[0006]
【作用】本装置では、光源とホログラムの相対的な位置
関係を保持する事により、光線が照射されている領域に
含まれ回折格子パターンから反射する回折光の射出角度
からその回折格子パターンの格子ピッチを特定すること
が可能となる。すなわち、その回折光を、ホログラムの
検査領域に対して相対的な空間上での位置が既知である
光センサへ入射させる事で、回折格子パターンの格子ピ
ッチとこれに加えて格子方向を演算により求める事が出
来る。また、光センサから出力された電気信号の強度等
から、回折光の強度,すなわち回折効率を知ることが出
来る。以上により数値化された非常に精度の良い測定を
行うことが出来る。ホログラムに代表されるような微小
な回折格子パターンの集合体によって構成されている物
品では、ホログラムへ入射する光線のスポット径によっ
て複数の回折格子パターンによる回折光が射出する事に
なるが、この回折光の分布を光センサ面上での受光強度
分布として捉える事が出来るのでその分布から照射領域
に含まれる回折格子パターンの格子ピッチと格子方向を
演算により求める事が出来る。また、ホログラム検査装
置はホログラムに対して光源部および光センサが相対的
に移動を行えるように構成されているため、ホログラム
面上の複数点での測定を任意に行うことが可能となる。In this device, by maintaining the relative positional relationship between the light source and the hologram, the diffraction pattern of the diffraction grating pattern is extracted from the emission angle of the diffracted light that is included in the area irradiated with the light rays and reflected from the diffraction grating pattern. It becomes possible to specify the pitch. That is, the diffracted light is made incident on an optical sensor whose position in the space relative to the inspection area of the hologram is known, whereby the grating pitch of the diffraction grating pattern and the grating direction in addition to this are calculated. You can ask. Further, the intensity of the diffracted light, that is, the diffraction efficiency can be known from the intensity of the electric signal output from the optical sensor. As described above, it is possible to perform digitized and highly accurate measurement. In an article composed of a collection of minute diffraction grating patterns such as a hologram, diffracted light by a plurality of diffraction grating patterns is emitted depending on the spot diameter of the light beam entering the hologram. Since the light distribution can be grasped as the received light intensity distribution on the photosensor surface, the grating pitch and the grating direction of the diffraction grating pattern included in the irradiation region can be calculated from the distribution. Further, since the hologram inspection apparatus is configured so that the light source unit and the optical sensor can move relative to the hologram, it is possible to arbitrarily perform measurement at a plurality of points on the hologram surface.
【0007】[0007]
【実施例】以下、本発明の実施例を図面に基づき説明す
る。図1は本発明の一実施例を示す概要構成図、図2は
本実施例の検査方法の概要を説明する模式図、図3は回
折格子パターンの微細構造を求める解析方法を説明する
ための図面である。Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic configuration diagram showing an embodiment of the present invention, FIG. 2 is a schematic diagram illustrating an outline of an inspection method of the present embodiment, and FIG. 3 is an explanatory method for obtaining a fine structure of a diffraction grating pattern. It is a drawing.
【0008】図1に示すように、本実施例のホログラム
検査装置1は、光源部2と、光源部2に付設される調整
用光学系3と、光センサ4と、演算手段5と、光源部2
と光センサ4および検査対象のホログラム7を回動およ
び移動可能に支持する保持部6等からなる。As shown in FIG. 1, the hologram inspection apparatus 1 of this embodiment includes a light source unit 2, an adjusting optical system 3 attached to the light source unit 2, an optical sensor 4, an arithmetic unit 5, and a light source. Part 2
And a holding unit 6 for rotatably and movably supporting the optical sensor 4 and the hologram 7 to be inspected.
【0009】光源部2はホログラム7の検査に必要な波
長成分を含む光線を放射するものからなり、例えば、半
導体レーザに代表される固体レーザ,He−Neレーザ
等の気体レーザ、発光ダイオード,水銀灯等の輝線スペ
クトルを持つ光源単体、或は前記輝線スペクトルを持つ
光源や白熱灯等の白色光源等と波長選択性を持つ光学素
子(例えば、ダイクロイックミラーやダイクロイックフ
ィルタ等)を組み合わせたものからなる。また、光源部
2は検査対象となるホログラム7の測定箇所(所望領域)
に入線角θ0の光線を照射するため保持部6に回動もし
くは位置移動可能に支持される(支持構造は省略)。一
方、調整用光学系3は例えばホログラム7に照射される
光線を当該ホログラム7の作製時に使用された参照光と
共役条件に調整し、光の波面を整えてホログラム7の測
定精度を向上させるためのものである。例えば、凸レン
ズ,凹レンズ,ミラー又は回折格子等の光学素子が使用
される。The light source unit 2 is configured to emit a light beam containing a wavelength component necessary for inspecting the hologram 7. For example, a solid-state laser represented by a semiconductor laser, a gas laser such as He-Ne laser, a light-emitting diode, a mercury lamp. A single light source having a bright line spectrum such as, or a combination of a light source having the bright line spectrum, a white light source such as an incandescent lamp, and an optical element having wavelength selectivity (for example, a dichroic mirror or a dichroic filter). Further, the light source unit 2 is a measurement location (desired area) of the hologram 7 to be inspected.
Is rotatably or movably supported by the holding portion 6 in order to irradiate a light beam having an entrance angle of θ 0 (a support structure is omitted). On the other hand, the adjustment optical system 3 adjusts, for example, the light beam applied to the hologram 7 to the conjugate condition with the reference light used when the hologram 7 is manufactured, and adjusts the wavefront of the light to improve the measurement accuracy of the hologram 7. belongs to. For example, an optical element such as a convex lens, a concave lens, a mirror or a diffraction grating is used.
【0010】光センサ4は、前記波長成分に対し感度を
有するセンサからなり、図1に示すように複数個の受光
素子8a,8b,8c,8d等を一次的に並べたライン
センサ8やCCD9等からなる無数の受光素子を二次元
的に平面上に配置したエリアセンサ11等からなる。な
お、光センサ4はホログラム7からの回折光を受光し得
るように取り付け位置が移動可能に保持部6に支持され
る。実際には、検査内容等に応じてラインセンサ8とエ
リアセンサ11を適宜選択して検査装置に組み込めばよ
い。The optical sensor 4 is composed of a sensor having sensitivity to the wavelength component, and as shown in FIG. 1, a line sensor 8 and a CCD 9 in which a plurality of light receiving elements 8a, 8b, 8c, 8d etc. are temporarily arranged. An area sensor 11 and the like in which innumerable light receiving elements made up of two or more elements are two-dimensionally arranged on a plane. The optical sensor 4 is movably supported by the holding portion 6 so that the diffracted light from the hologram 7 can be received. Actually, the line sensor 8 and the area sensor 11 may be appropriately selected according to the inspection content and the like and incorporated into the inspection apparatus.
【0011】演算手段5はマイクロコンピュータ等から
なり光センサ4に連結され、光センサ4による回折光の
検出結果に応じた信号出力を基にしてホログラム7に含
まれる回折格子パターンの検査特性値を演算するもので
ある。なお、検査特性値としては回折格子パターンの格
子ピッチ,格子方向,回折効率や回折格子の微細構造等
が上げられる。The computing means 5 is composed of a microcomputer or the like and is connected to the optical sensor 4, and based on the signal output according to the detection result of the diffracted light by the optical sensor 4, the inspection characteristic value of the diffraction grating pattern included in the hologram 7 is obtained. It is something to calculate. The inspection characteristic values include the grating pitch of the diffraction grating pattern, the grating direction, the diffraction efficiency and the fine structure of the diffraction grating.
【0012】保持部6は前記したように光源部2および
光センサ4を回動又は移動可能に支持するものである。
また、図1に示すように、ホログラム7も矢印方向に沿
って移動可能に支持される。The holding section 6 supports the light source section 2 and the optical sensor 4 so as to be rotatable or movable, as described above.
Further, as shown in FIG. 1, the hologram 7 is also supported so as to be movable along the arrow direction.
【0013】次に、本実施例によるホログラム7の検査
方法について説明する。一般に回折格子パターンの格子
ピッチpと回折光の出射角、すなわち回折角θとの間に
は次式が成立する。 p=λ/(sinθ0+sinθ)・・・(1) (1)式において、λは光源部2から放射される光線の
波長であり、θ0は当該光線の入射角である。従って回
折光の出射角θを光センサ4で検出することにより格子
ピッチpは理論的に求められる。Next, a method of inspecting the hologram 7 according to this embodiment will be described. Generally, the following equation is established between the grating pitch p of the diffraction grating pattern and the outgoing angle of the diffracted light, that is, the diffraction angle θ. p = λ / (sin θ 0 + sin θ) (1) In the formula (1), λ is the wavelength of the light beam emitted from the light source unit 2, and θ 0 is the incident angle of the light beam. Therefore, the grating pitch p can be theoretically obtained by detecting the outgoing angle θ of the diffracted light with the optical sensor 4.
【0014】図2の模式図に示すように、光源部2から
入射角θ0で波長λのガラス分布の光強度分布をもつ光
線をホログラム7の所定の領域12に含まれる回折格子
パターンを照射すると当該回折格子パターンからガラス
分布を持ち回折光が出射される。この回折光をラインセ
ンサ8又はエリアセンサ11で受光する。入射光と回折
光が同一面上に配置される光学構成では、例えばライン
センサ8を用いて回折光を受光出来る。その検出出力は
グラフに示すように、ラインセンサ8の一次元方向(X
方向)に沿った受光強度分布となる。この強度分布のピ
ーク位置を読み取ることにより回折角θが求まり、これ
と既知の入射角θ0および波長λの値を用いて前記
(1)式を演算すると照射領域に含まれる回折格子パタ
ーンの格子ピッチが求められる。また、受光強度分布の
ピークレベルに基づいて回折格子パターンの回折効率が
求める。これに対し、回折光が二次元方向(xおよびy
方向)に分布する場合には、エリアセンサ11を用いて
回折光を受光し、二次元の受光強度分布を得る。この場
合には、格子ピッチおよび回折効率に加え、格子方向を
検出出来る。すなわち、格子方向(格子方位)とピーク
の二次元位置は互いに相関している。次に、ホログラム
7を適宜移動することにより前記領域12以外の場所に
おける回折格子パターンの検査が前記と同様の方法によ
り行われる。As shown in the schematic diagram of FIG. 2, a light beam having a light intensity distribution of a glass distribution of an incident angle θ 0 and a wavelength λ from a light source unit 2 is applied to a diffraction grating pattern included in a predetermined region 12 of the hologram 7. Then, diffracted light having a glass distribution is emitted from the diffraction grating pattern. The diffracted light is received by the line sensor 8 or the area sensor 11. In the optical configuration in which the incident light and the diffracted light are arranged on the same plane, the diffracted light can be received by using, for example, the line sensor 8. The detection output is, as shown in the graph, one-dimensional direction (X
Direction) along with the received light intensity distribution. The diffraction angle θ is obtained by reading the peak position of this intensity distribution, and the equation (1) is calculated by using this and the values of the known incident angle θ 0 and wavelength λ, and the grating of the diffraction grating pattern included in the irradiation region is obtained. Pitch is required. Further, the diffraction efficiency of the diffraction grating pattern is obtained based on the peak level of the received light intensity distribution. On the other hand, the diffracted light has two-dimensional directions (x and y).
Direction), diffracted light is received using the area sensor 11 to obtain a two-dimensional received light intensity distribution. In this case, the grating direction can be detected in addition to the grating pitch and the diffraction efficiency. That is, the lattice direction (lattice orientation) and the two-dimensional position of the peak are correlated with each other. Next, the hologram 7 is appropriately moved to inspect the diffraction grating pattern in a place other than the region 12 by the same method as described above.
【0015】図3(a)に示すように、ホログラム7の
回折格子パターンを拡大視するとピッチpの凸凹部から
形成される。この基本的な回折格子形状は電波に例える
と搬送波の形状に近似するものであり、仮りに搬送波回
折格子13と称呼する。一方、ホログラム7上に形成さ
れる回折格子パターンには前記の搬送波回折格子13の
他にこれと重畳する複数の微細な回折格子が複雑に包含
されている。この微細な回折格子は搬送波にのる変調波
にたとえられ変調波回折格子14と称呼する。これ等の
回折格子から反射する回折光を光センサ4で検出すると
図3(b)のように搬送波回折格子13および変調波回
折格子14に対応したいくつかのピークを有する受光強
度分布が求められる。このピークを解析することにより
回折格子パターンの微細構造を把握することが出来る。As shown in FIG. 3A, when the diffraction grating pattern of the hologram 7 is magnified, it is formed of convex and concave portions having a pitch p. This basic diffraction grating shape is similar to the shape of a carrier wave when compared to a radio wave, and is temporarily called a carrier wave diffraction grating 13. On the other hand, in the diffraction grating pattern formed on the hologram 7, in addition to the carrier diffraction grating 13 described above, a plurality of fine diffraction gratings to be superimposed thereon are complicatedly included. This fine diffraction grating is likened to a modulated wave on a carrier and is called a modulated wave diffraction grating 14. When the diffracted light reflected from these diffraction gratings is detected by the optical sensor 4, a received light intensity distribution having several peaks corresponding to the carrier diffraction grating 13 and the modulated wave diffraction grating 14 is obtained as shown in FIG. 3B. . By analyzing this peak, the fine structure of the diffraction grating pattern can be understood.
【0016】[0016]
【発明の効果】本発明は、ホログラムを構成している微
小な回折格子単位での、格子ピッチ,格子方向,回折効
率の全てもしくは一部に関して、同時に測定を行う事が
出来るので、数値化された非常に精度の良いホログラム
検査を行う事が出来る。この数値情報を記録しておくこ
とにより、数値管理手法を適応することが可能となり、
全体の品質を効果的に上げることが可能となる。出荷後
の検査においても、基準となる数値データが残るので十
分な検査を行う事が出来る。また、装置が一体化される
事により誰でも正確な測定を行えるので測定者による測
定のばらつきを押さえることが出来、なおかつ構造も単
純に出来るため、小型化が容易で、故障も少なく出来る
メリットを有する。更に、光源や光センサに様々な仕様
の部品を用いる事が可能なので、安価な部品を使用出来
るだけでなく、検査装置を構成する部品の標準化を行い
やすいので低価格化が容易になる。INDUSTRIAL APPLICABILITY The present invention can quantify all or a part of the grating pitch, the grating direction, and the diffraction efficiency in a minute diffraction grating unit which constitutes a hologram, and therefore can be digitized. It is possible to perform very accurate hologram inspection. By recording this numerical information, it becomes possible to adapt the numerical management method,
It is possible to effectively improve the overall quality. Even in the inspection after shipping, since the reference numerical data remains, sufficient inspection can be performed. In addition, since the device is integrated, anyone can perform accurate measurements, and it is possible to suppress variations in measurement by the operator, and because the structure can be simplified, it is easy to downsize and there are advantages that failures can be reduced. Have. Further, since it is possible to use parts having various specifications for the light source and the optical sensor, not only inexpensive parts can be used, but also the parts constituting the inspection device can be easily standardized, so that the cost can be easily reduced.
【図1】本発明の一実施例の概要構成図。FIG. 1 is a schematic configuration diagram of an embodiment of the present invention.
【図2】本実施例の検査方法の概要を説明するための模
式図。FIG. 2 is a schematic diagram for explaining the outline of the inspection method of the present embodiment.
【図3】回折格子の微細な構造を求める検査方法を説明
するための概要線図。FIG. 3 is a schematic diagram for explaining an inspection method for obtaining a fine structure of a diffraction grating.
1 ホログラム検査装置 2 光源部 3 調整用光学系 4 光センサ 5 演算手段 6 保持部 7 ホログラム 8 ラインセンサ 9 CCD 11 エリアセンサ 12 領域 13 搬送波回折格子 14 変調波回折格子 DESCRIPTION OF SYMBOLS 1 Hologram inspection device 2 Light source part 3 Adjustment optical system 4 Optical sensor 5 Computing means 6 Holding part 7 Hologram 8 Line sensor 9 CCD 11 Area sensor 12 Area 13 Carrier wave diffraction grating 14 Modulated wave diffraction grating
Claims (6)
源部と、前記波長成分に対し感度を有する光センサと、
検査対象のホログラムに対し前記光源部および光センサ
を配置する保持部と、前記光センサの出力に基づき前記
ホログラムを構成する回折格子パターンの検査特性値を
演算する演算手段とを備えるホログラム検査装置であっ
て、前記光源部は、その光線が前記ホログラムの所望領
域を照射するように配置され、前記光センサは、前記ホ
ログラムの所望領域に含まれる回折格子パターンにより
回折された回折光を受光するように配置され、前記演算
手段は光センサの出力に基づいて回折光の回折角度およ
び強度から回折格子パターンの格子ピッチ,格子方向お
よび回折効率の少なくともいずれか1つを表わす検査特
性値を演算することを特徴とするホログラム検査装置。1. A light source unit that emits a light beam including a predetermined wavelength component, and an optical sensor that is sensitive to the wavelength component.
A hologram inspecting apparatus comprising: a holding unit for arranging the light source unit and an optical sensor for a hologram to be inspected; and an operation unit for calculating an inspection characteristic value of a diffraction grating pattern forming the hologram based on an output of the optical sensor. Then, the light source unit is arranged so that the light beam irradiates a desired region of the hologram, and the optical sensor receives the diffracted light diffracted by the diffraction grating pattern included in the desired region of the hologram. And calculating the inspection characteristic value representing at least one of the grating pitch, the grating direction and the diffraction efficiency of the diffraction grating pattern from the diffraction angle and intensity of the diffracted light based on the output of the optical sensor. A hologram inspection apparatus characterized by the following.
ド,水銀灯等の輝線スペクトルを発する光源、もしくは
前記輝線スペクトルの光源や連続スペクトルの白色光源
と波長選択性を有する光学素子との組み合わせの光源か
らなる請求項1のホログラム検査装置。2. The light source unit is a light source that emits a bright line spectrum such as a laser, a light emitting diode, or a mercury lamp, or a light source that is a combination of a light source having the bright line spectrum or a white light source having a continuous spectrum and an optical element having wavelength selectivity. The hologram inspection apparatus according to claim 1, wherein
れる光線の波面を検査対象となる前記ホログラムの作製
時における条件に合わせて整える調整用光学系が付設さ
れ、該光学系は、レンズ,ミラー又は回折格子からなる
ことを特徴とする請求項1のホログラム検査装置。3. An adjusting optical system for adjusting the wavefront of a light beam emitted from the light source in accordance with the conditions at the time of manufacturing the hologram to be inspected is attached to the light source section side, and the optical system comprises: The hologram inspection apparatus according to claim 1, comprising a lens, a mirror, or a diffraction grating.
に対する波長域に感度を有し、かつ回折光の検出に必要
な分解能を有するものである請求項1又は2のホログラ
ム検査装置。4. The hologram inspection apparatus according to claim 1, wherein the optical sensor has sensitivity in a wavelength range with respect to the spectral characteristic of the light source unit and has a resolution necessary for detecting diffracted light.
サを所望の回転位置および座標位置に移動可能に形成さ
れるものである請求項1のホログラム検査装置。5. The hologram inspection apparatus according to claim 1, wherein the holding section is formed so as to move the light source section and the optical sensor to desired rotational positions and coordinate positions.
直接又は調整用光学系を介して、かつその入射方向を調
整して検査対象のホログラムに照射し、ホログラムから
の回折光を前記波長成分に対し感度を有し回折光の検出
に必要な分解能を有する光センサに入射せしめ、該光セ
ンサの出力に基づき前記ホログラムを構成する回折格子
パターンの検査特性値を演算し該ホログラムの品質検査
を行う検査方法であって、前記検査特性値が前記光セン
サにより検出された前記回折光の回折角度および強度か
ら演算される回折格子パターンの格子ピッチ,格子方向
および回折効率の少なくともいずれか1つを表わすこと
を特徴とするホログラム検査方法。6. A hologram to be inspected is irradiated with a light beam containing a predetermined wavelength component from a light source section directly or through an adjusting optical system and with its incident direction adjusted, and diffracted light from the hologram is irradiated with the wavelength. It is made incident on an optical sensor having sensitivity to the component and having a resolution necessary for detecting diffracted light, and the inspection characteristic value of the diffraction grating pattern forming the hologram is calculated based on the output of the optical sensor to inspect the quality of the hologram. At least one of a grating pitch, a grating direction and a diffraction efficiency of a diffraction grating pattern in which the inspection characteristic value is calculated from the diffraction angle and intensity of the diffracted light detected by the optical sensor. And a hologram inspection method characterized by:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14999595A JP3556324B2 (en) | 1995-06-16 | 1995-06-16 | Hologram inspection apparatus and method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14999595A JP3556324B2 (en) | 1995-06-16 | 1995-06-16 | Hologram inspection apparatus and method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH095209A true JPH095209A (en) | 1997-01-10 |
JP3556324B2 JP3556324B2 (en) | 2004-08-18 |
Family
ID=15487171
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14999595A Expired - Fee Related JP3556324B2 (en) | 1995-06-16 | 1995-06-16 | Hologram inspection apparatus and method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3556324B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001324411A (en) * | 2000-05-12 | 2001-11-22 | Dainippon Printing Co Ltd | Optical characteristics measuring method for hologram |
JP2005528633A (en) * | 2002-04-05 | 2005-09-22 | オーファオデー キネグラム アーゲー | Security elements with micro and macro structures |
-
1995
- 1995-06-16 JP JP14999595A patent/JP3556324B2/en not_active Expired - Fee Related
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001324411A (en) * | 2000-05-12 | 2001-11-22 | Dainippon Printing Co Ltd | Optical characteristics measuring method for hologram |
JP4569991B2 (en) * | 2000-05-12 | 2010-10-27 | 大日本印刷株式会社 | Method for measuring optical characteristics of hologram |
JP2005528633A (en) * | 2002-04-05 | 2005-09-22 | オーファオデー キネグラム アーゲー | Security elements with micro and macro structures |
US7680274B2 (en) | 2002-04-05 | 2010-03-16 | Ovd Kinegram Ag | Security element comprising micro- and macrostructures |
Also Published As
Publication number | Publication date |
---|---|
JP3556324B2 (en) | 2004-08-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5199539B2 (en) | Multispectral technique for defocus detection | |
US7511293B2 (en) | Scatterometer having a computer system that reads data from selected pixels of the sensor array | |
US6366690B1 (en) | Pixel based machine for patterned wafers | |
JP3323537B2 (en) | Microstructure evaluation device and microstructure evaluation method | |
JPH0695075B2 (en) | Surface texture detection method | |
JP2947513B1 (en) | Pattern inspection equipment | |
JP2009109263A (en) | Apparatus and method for inspection | |
JPH095209A (en) | Apparatus and method for inspecting hologram | |
JPH0783840A (en) | Rotary defect inspection device | |
CN113763316A (en) | Image-based surface deformation metrology | |
JP3168480B2 (en) | Foreign matter inspection method and foreign matter inspection device | |
CN116840260B (en) | Wafer surface defect detection method and device | |
JP3218726B2 (en) | Foreign matter inspection device | |
JPH07318499A (en) | Surface defect detecting device | |
JP2698696B2 (en) | Surface flaw inspection method | |
JPH0763689A (en) | Rotation-type flaw inspection apparatus | |
JPH06281425A (en) | Method and device for inspecting pattern hole | |
JP2006029833A (en) | Method and apparatus for evaluating optical element | |
JPH0410967B2 (en) | ||
JPH04128637A (en) | Inspecting method for surface defect | |
JP2000146545A (en) | Optical disc inspection instrument | |
JPH0682378A (en) | Defect inspection device | |
JPH11118483A (en) | Photographic measuring device and its method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040512 |
|
R150 | Certificate of patent (=grant) or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080521 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090521 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100521 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110521 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110521 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120521 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120521 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130521 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140521 Year of fee payment: 10 |
|
LAPS | Cancellation because of no payment of annual fees |