JP3556324B2 - Hologram inspection apparatus and method - Google Patents

Hologram inspection apparatus and method Download PDF

Info

Publication number
JP3556324B2
JP3556324B2 JP14999595A JP14999595A JP3556324B2 JP 3556324 B2 JP3556324 B2 JP 3556324B2 JP 14999595 A JP14999595 A JP 14999595A JP 14999595 A JP14999595 A JP 14999595A JP 3556324 B2 JP3556324 B2 JP 3556324B2
Authority
JP
Japan
Prior art keywords
hologram
light source
light
optical sensor
inspection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14999595A
Other languages
Japanese (ja)
Other versions
JPH095209A (en
Inventor
一義 海老名
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Inc filed Critical Toppan Inc
Priority to JP14999595A priority Critical patent/JP3556324B2/en
Publication of JPH095209A publication Critical patent/JPH095209A/en
Application granted granted Critical
Publication of JP3556324B2 publication Critical patent/JP3556324B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
本発明は、ホログラムの撮影時又は製造時における検査、並びに出荷後における検査およびホログラムの検証に使用されるホログラム検査装置及び方法に関する。
【0002】
【従来の技術】
これまで、ホログラムの撮影時および製造工程での検査は、再生用の光源によって再生される像を目視で調べていた。あるいは再生像をCCDカメラ等の撮像装置を用いて二次元の画像として取り込み、画像解析を利用した光学的な検査方法が行われていた。また、この方法で更に観察位置を変える事で立体像を複数の二次元画像として検査する方法も公知である。また、特別な場合として、機械読み取り用ホログラム等の光学センサで読み取ることを前提に作られたホログラム等では、その読み取り機を用いて検査を行う方法が公知である。これ等に関する公知技術としては、例えば、特開平3−211096号公報,特開平6−76365号公報が上げられる。
【0003】
【発明が解決しようとする課題】
ホログラム撮影時あるいは複製工程での目視による検査では、検査者の個人差から来る完成品品質のばらつきが大きくなり、数値管理的な手法を適用することが難しい。そのため、対策を講ずるにも検査基準が明確に成らず、全体の品質を効果的に上げる事が困難となっている。また、出荷後における品質の追跡調査などを行うに至っては、出荷時の状態と比較するための基準が残らないため検査者の記憶のみが頼りとなり、十分な分析調査を行う事が非常に困難である。更に、セキュリティーに用いられるホログラムの真偽判定は、出荷後の検査同様に、明確な判定基準が残っていないばかりか利用者のその殆どが素人であるため、粗悪な偽造品に対しても真偽判断を誤るという可能性が有る。加えて、機械読み取り用ホログラム等の場合においても読み取り機の価格が高価になる等の問題点がある。
【0004】
本発明は、以上の問題点を解決するもので、従来の目視的又は光学的なホログラムの再生画像を対象とする検査方法の替りに電気的手段によりホログラムを構成する微細な回折格子の形状,構造を定量的に高精度で求め、検査品質の向上とこれに基づくホログラム製品の品質の向上が図れると共に簡便,小型の構造を有し安価に実施出来るホログラム検査装置及び方法を提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明は、以上の目的を達成するために、所定の白色波長成分を含む光線を放射する光源部と、前記波長成分に対し感度を有する光センサと、検査対象のホログラムに対し前記光源部および光センサを配置する保持部と、前記光センサの出力に基づき前記ホログラムを構成する回折格子パターンの検査特性値を演算する演算手段とを備えるホログラム検査装置であって、前記光源部は、その光線が前記ホログラムの所望の二次元領域を照射するように配置され、前記光センサは、前記ホログラムの所望の二次元領域に含まれる回折格子パターンにより回折された回折光を受光するように配置され、前記演算手段は光センサの出力に基づいて回折光の回折角度および強度から回折格子パターンの格子ピッチ,格子方向および回折効率の少なくともいずれか1つを表わす検査特性値を演算することを特徴とするホログラム検査装置を構成するものである。更に具体的に、前記光源部が、レーザ,発光ダイオード,水銀灯等の輝線スペクトルを発する光源、もしくは前記輝線スペクトルの光源や連続スペクトルの白色光源と波長選択性を有する光学素子との組み合わせの光源からなることを特徴とする。また、前記光源部側には、当該光源から放射される光線の波面を検査対象となる前記ホログラムの作製時における条件に合わせて整える調整用光学系が付設され、該光学系は、レンズ,ミラー又は回折格子からなることを特徴とする。前記光センサが、前記光源部の分光特性に対する波長域に感度を有し、かつ回折光の検出に必要な分解能を有するものであることを特徴とする。前記保持部が、前記光源部および光センサを所望の回転位置および座標位置に移動可能に形成されるものであることを特徴とする。更に、光源部から所定の白色波長成分を含む光線を直接又は調整用光学系を介して、かつその入射方向を調整して検査対象のホログラムの二次元領域に照射し、ホログラムからの回折光を前記波長成分に対し感度を有し回折光の検出に必要な分解能を有する光センサに入射せしめ、該光センサの出力に基づき前記ホログラムを構成する回折格子パターンの検査特性値を演算し該ホログラムの品質検査を行う検査方法であって、前記検査特性値が前記光センサにより検出された前記回折光の回折角度および強度から演算される回折格子パターンの格子ピッチ,格子方向および回折効率の少なくともいずれか1つを表わすことを特徴とするものである。
【0006】
【作用】
本装置では、光源とホログラムの相対的な位置関係を保持する事により、光線が照射されている領域に含まれ回折格子パターンから反射する回折光の射出角度からその回折格子パターンの格子ピッチを特定することが可能となる。すなわち、その回折光を、ホログラムの検査領域に対して相対的な空間上での位置が既知である光センサへ入射させる事で、回折格子パターンの格子ピッチとこれに加えて格子方向を演算により求める事が出来る。また、光センサから出力された電気信号の強度等から、回折光の強度,すなわち回折効率を知ることが出来る。以上により数値化された非常に精度の良い測定を行うことが出来る。ホログラムに代表されるような微小な回折格子パターンの集合体によって構成されている物品では、ホログラムへ入射する光線のスポット径によって複数の回折格子パターンによる回折光が射出する事になるが、この回折光の分布を光センサ面上での受光強度分布として捉える事が出来るのでその分布から照射領域に含まれる回折格子パターンの格子ピッチと格子方向を演算により求める事が出来る。また、ホログラム検査装置はホログラムに対して光源部および光センサが相対的に移動を行えるように構成されているため、ホログラム面上の複数点での測定を任意に行うことが可能となる。
【0007】
【実施例】
以下、本発明の実施例を図面に基づき説明する。図1は本発明の一実施例を示す概要構成図、図2は本実施例の検査方法の概要を説明する模式図、図3は回折格子パターンの微細構造を求める解析方法を説明するための図面である。
【0008】
図1に示すように、本実施例のホログラム検査装置1は、光源部2と、光源部2に付設される調整用光学系3と、光センサ4と、演算手段5と、光源部2と光センサ4および検査対象のホログラム7を回動および移動可能に支持する保持部6等からなる。
【0009】
光源部2はホログラム7の検査に必要な白色波長成分を含む光線を放射するものからなり、例えば、半導体レーザに代表される固体レーザ,He−Neレーザ等の気体レーザ、発光ダイオード,水銀灯等の輝線スペクトルを持つ光源単体、或は前記輝線スペクトルを持つ光源や白熱灯等の白色光源等と波長選択性を持つ光学素子(例えば、ダイクロイックミラーやダイクロイックフィルタ等)を組み合わせたものからなる。また、光源部2は検査対象となるホログラム7の測定箇所(所望領域)に入線角θの光線を照射するため保持部6に回動もしくは位置移動可能に支持される(支持構造は省略)。一方、調整用光学系3は例えばホログラム7に照射される光線を当該ホログラム7の作製時に使用された参照光と共役条件に調整し、光の波面を整えてホログラム7の測定精度を向上させるためのものである。例えば、凸レンズ,凹レンズ,ミラー又は回折格子等の光学素子が使用される。
【0010】
光センサ4は、前記波長成分に対し感度を有するセンサからなり、図1に示すように複数個の受光素子8a,8b,8c,8d等を一次的に並べたラインセンサ8やCCD9等からなる無数の受光素子を二次元的に平面上に配置したエリアセンサ11等からなる。なお、光センサ4はホログラム7からの回折光を受光し得るように取り付け位置が移動可能に保持部6に支持される。実際には、検査内容等に応じてラインセンサ8とエリアセンサ11を適宜選択して検査装置に組み込めばよい。
【0011】
演算手段5はマイクロコンピュータ等からなり光センサ4に連結され、光センサ4による回折光の検出結果に応じた信号出力を基にしてホログラム7に含まれる回折格子パターンの検査特性値を演算するものである。なお、検査特性値としては回折格子パターンの格子ピッチ,格子方向,回折効率や回折格子の微細構造等が上げられる。
【0012】
保持部6は前記したように光源部2および光センサ4を回動又は移動可能に支持するものである。また、図1に示すように、ホログラム7も矢印方向に沿って移動可能に支持される。
【0013】
次に、本実施例によるホログラム7の検査方法について説明する。一般に回折格子パターンの格子ピッチpと回折光の出射角、すなわち回折角θとの間には次式が成立する。
p=λ/(sinθ+sinθ)・・・(1)
(1)式において、λは光源部2から放射される光線の波長であり、θは当該光線の入射角である。従って回折光の出射角θを光センサ4で検出することにより格子ピッチpは理論的に求められる。
【0014】
図2の模式図に示すように、光源部2から入射角θで波長λのガラス分布の光強度分布をもつ光線をホログラム7の所定の二次元領域12に含まれる回折格子パターンを照射すると当該回折格子パターンからガラス分布を持ち回折光が出射される。この回折光をラインセンサ8又はエリアセンサ11で受光する。入射光と回折光が同一面上に配置される光学構成では、例えばラインセンサ8を用いて回折光を受光出来る。その検出出力はグラフに示すように、ラインセンサ8の一次元方向(X方向)に沿った受光強度分布となる。この強度分布のピーク位置を読み取ることにより回折角θが求まり、これと既知の入射角θおよび波長λの値を用いて前記(1)式を演算すると照射領域に含まれる回折格子パターンの格子ピッチが求められる。また、受光強度分布のピークレベルに基づいて回折格子パターンの回折効率が求める。これに対し、回折光が二次元方向(xおよびy方向)に分布する場合には、エリアセンサ11を用いて回折光を受光し、二次元の受光強度分布を得る。この場合には、格子ピッチおよび回折効率に加え、格子方向を検出出来る。すなわち、格子方向(格子方位)とピークの二次元位置は互いに相関している。次に、ホログラム7を適宜移動することにより前記二次元領域12以外の場所における回折格子パターンの検査が前記と同様の方法により行われる。
【0015】
図3(a)に示すように、ホログラム7の回折格子パターンを拡大視するとピッチpの凸凹部から形成される。この基本的な回折格子形状は電波に例えると搬送波の形状に近似するものであり、仮りに搬送波回折格子13と称呼する。一方、ホログラム7上に形成される回折格子パターンには前記の搬送波回折格子13の他にこれと重畳する複数の微細な回折格子が複雑に包含されている。この微細な回折格子は搬送波にのる変調波にたとえられ変調波回折格子14と称呼する。これ等の回折格子から反射する回折光を光センサ4で検出すると図3(b)のように搬送波回折格子13および変調波回折格子14に対応したいくつかのピークを有する受光強度分布が求められる。このピークを解析することにより回折格子パターンの微細構造を把握することが出来る。
【0016】
【発明の効果】
本発明は、ホログラムを構成している微小な回折格子単位での、格子ピッチ,格子方向,回折効率の全てもしくは一部に関して、同時に測定を行う事が出来るので、数値化された非常に精度の良いホログラム検査を行う事が出来る。この数値情報を記録しておくことにより、数値管理手法を適応することが可能となり、全体の品質を効果的に上げることが可能となる。出荷後の検査においても、基準となる数値データが残るので十分な検査を行う事が出来る。また、装置が一体化される事により誰でも正確な測定を行えるので測定者による測定のばらつきを押さえることが出来、なおかつ構造も単純に出来るため、小型化が容易で、故障も少なく出来るメリットを有する。更に、光源や光センサに様々な仕様の部品を用いる事が可能なので、安価な部品を使用出来るだけでなく、検査装置を構成する部品の標準化を行いやすいので低価格化が容易になる。
【図面の簡単な説明】
【図1】本発明の一実施例の概要構成図。
【図2】本実施例の検査方法の概要を説明するための模式図。
【図3】回折格子の微細な構造を求める検査方法を説明するための概要線図。
【符号の説明】
1 ホログラム検査装置
2 光源部
3 調整用光学系
4 光センサ
5 演算手段
6 保持部
7 ホログラム
8 ラインセンサ
9 CCD
11 エリアセンサ
12 二次元領域
13 搬送波回折格子
14 変調波回折格子
[0001]
[Industrial applications]
The present invention relates to a hologram inspection apparatus and method used for inspection at the time of photographing or manufacturing a hologram, inspection after shipment, and verification of a hologram.
[0002]
[Prior art]
Heretofore, during inspection of the hologram and during the manufacturing process, an image reproduced by a light source for reproduction has been visually inspected. Alternatively, a reproduced image is captured as a two-dimensional image using an imaging device such as a CCD camera, and an optical inspection method using image analysis has been performed. A method of inspecting a stereoscopic image as a plurality of two-dimensional images by further changing the observation position by this method is also known. As a special case, a method of inspecting a hologram or the like made on the premise of being read by an optical sensor such as a machine-readable hologram using a reader is known. Known techniques relating to this are, for example, Japanese Patent Application Laid-Open Nos. Hei 3-211096 and Hei 6-76365.
[0003]
[Problems to be solved by the invention]
In visual inspection at the time of hologram photographing or in the duplication process, the variation in the quality of finished products due to individual differences among inspectors is large, and it is difficult to apply a numerical management method. For this reason, even though measures are taken, the inspection standards are not clear, making it difficult to effectively increase the overall quality. In addition, when conducting a follow-up survey of quality after shipping, there is no standard for comparison with the state at the time of shipping, so only the memory of the inspector is relied on, and it is extremely difficult to conduct a sufficient analytical survey. It is. In addition, as with post-shipment inspections, the authenticity of holograms used for security is not limited to clear judgment criteria, and most of the users are amateurs. There is a possibility that false judgments will be made. In addition, even in the case of a machine-readable hologram, there is a problem that the price of the reader becomes expensive.
[0004]
The present invention solves the above problems, and replaces the conventional inspection method for visually or optically reproduced images of a hologram with a fine diffraction grating that forms a hologram by an electric means instead of an inspection method. It is an object of the present invention to provide a hologram inspection apparatus and method which can quantitatively determine the structure with high precision, improve the inspection quality and the quality of a hologram product based on the inspection, and have a simple, compact structure and can be implemented at low cost. And
[0005]
[Means for Solving the Problems]
The present invention provides a light source unit that emits a light beam containing a predetermined white wavelength component, an optical sensor having sensitivity to the wavelength component, and the light source unit for a hologram to be inspected. A hologram inspection apparatus comprising: a holding unit for arranging an optical sensor; and arithmetic means for calculating an inspection characteristic value of a diffraction grating pattern forming the hologram based on an output of the optical sensor. There is arranged to illuminate a desired two-dimensional region of the hologram, the light sensor is positioned to receive light diffracted by the diffraction grating pattern included in the desired two-dimensional region of the hologram, The calculating means determines at least the grating pitch, grating direction and diffraction efficiency of the diffraction grating pattern from the diffraction angle and intensity of the diffracted light based on the output of the optical sensor. It constitutes a hologram inspection apparatus characterized by computing a test characteristic values representing any one. More specifically, the light source unit may be a light source that emits an emission line spectrum such as a laser, a light emitting diode, a mercury lamp, or a combination of a light source having the emission line spectrum or a white light source having a continuous spectrum and an optical element having wavelength selectivity. It is characterized by becoming. Further, an adjustment optical system for adjusting a wavefront of a light beam emitted from the light source according to conditions at the time of manufacturing the hologram to be inspected is provided on the light source unit side, and the optical system includes a lens and a mirror. Alternatively, it is characterized by comprising a diffraction grating. The optical sensor is characterized in that it has sensitivity in a wavelength range with respect to the spectral characteristics of the light source unit and has a resolution required for detecting diffracted light. The holding unit is formed so that the light source unit and the optical sensor can be moved to desired rotation positions and coordinate positions. Further, a light beam containing a predetermined white wavelength component is irradiated from the light source unit directly or through an adjustment optical system, and the incident direction is adjusted to irradiate the two-dimensional area of the hologram to be inspected, and the diffracted light from the hologram is irradiated. The light is incident on an optical sensor having sensitivity to the wavelength component and having a resolution necessary for detecting the diffracted light, and an inspection characteristic value of a diffraction grating pattern constituting the hologram is calculated based on an output of the optical sensor to calculate the inspection characteristic value of the hologram. An inspection method for performing quality inspection, wherein the inspection characteristic value is at least one of a grating pitch, a grating direction, and a diffraction efficiency of a diffraction grating pattern calculated from a diffraction angle and an intensity of the diffracted light detected by the optical sensor. It is characterized by representing one.
[0006]
[Action]
In this device, by maintaining the relative positional relationship between the light source and the hologram, the grating pitch of the diffraction grating pattern is specified from the exit angle of the diffracted light included in the area irradiated with the light beam and reflected from the diffraction grating pattern. It is possible to do. That is, by making the diffracted light incident on an optical sensor whose position in the space relative to the inspection region of the hologram is known, the grating pitch of the diffraction grating pattern and the grating direction are calculated by calculation. You can ask. Further, the intensity of the diffracted light, that is, the diffraction efficiency, can be known from the intensity of the electric signal output from the optical sensor and the like. As described above, it is possible to perform a very accurate measurement which is quantified. In an article composed of an aggregate of minute diffraction grating patterns represented by a hologram, diffracted light by a plurality of diffraction grating patterns is emitted depending on the spot diameter of a light beam incident on the hologram. Since the light distribution can be regarded as a light receiving intensity distribution on the optical sensor surface, the grating pitch and the grating direction of the diffraction grating pattern included in the irradiation area can be calculated from the distribution. In addition, the hologram inspection device is configured so that the light source unit and the optical sensor can relatively move with respect to the hologram, so that measurement at a plurality of points on the hologram surface can be arbitrarily performed.
[0007]
【Example】
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a schematic configuration diagram illustrating an embodiment of the present invention, FIG. 2 is a schematic diagram illustrating an outline of an inspection method according to the embodiment, and FIG. 3 is a diagram illustrating an analysis method for obtaining a fine structure of a diffraction grating pattern. It is a drawing.
[0008]
As shown in FIG. 1, the hologram inspection apparatus 1 according to the present embodiment includes a light source unit 2, an adjustment optical system 3 attached to the light source unit 2, an optical sensor 4, an arithmetic unit 5, and a light source unit 2. It comprises an optical sensor 4 and a holder 6 for supporting a hologram 7 to be inspected in a rotatable and movable manner.
[0009]
The light source unit 2 emits a light beam containing a white wavelength component necessary for inspection of the hologram 7. For example, a solid-state laser represented by a semiconductor laser, a gas laser such as a He-Ne laser, a light-emitting diode, a mercury lamp, and the like. It is composed of a single light source having a bright line spectrum, or a combination of a light source having the bright line spectrum, a white light source such as an incandescent lamp, and an optical element having a wavelength selectivity (for example, a dichroic mirror or a dichroic filter). In addition, the light source unit 2 is supported by the holding unit 6 so as to rotate or move in position so as to irradiate a measurement point (desired area) of the hologram 7 to be inspected with a light beam having an incident angle θ 0 (support structure is omitted). . On the other hand, the adjusting optical system 3 adjusts, for example, a light beam irradiated on the hologram 7 to a conjugate condition with the reference light used at the time of manufacturing the hologram 7, adjusts the wavefront of the light, and improves the measurement accuracy of the hologram 7. belongs to. For example, an optical element such as a convex lens, a concave lens, a mirror or a diffraction grating is used.
[0010]
The optical sensor 4 is a sensor having sensitivity to the wavelength component, and includes a line sensor 8 and a CCD 9 in which a plurality of light receiving elements 8a, 8b, 8c, 8d and the like are arranged in a line as shown in FIG. It comprises an area sensor 11 and the like in which countless light receiving elements are two-dimensionally arranged on a plane. The optical sensor 4 is supported by the holder 6 so that the mounting position is movable so that the optical sensor 4 can receive the diffracted light from the hologram 7. Actually, the line sensor 8 and the area sensor 11 may be appropriately selected according to the inspection content and the like and incorporated into the inspection device.
[0011]
The calculating means 5 is composed of a microcomputer or the like, is connected to the optical sensor 4, and calculates an inspection characteristic value of a diffraction grating pattern included in the hologram 7 based on a signal output according to a detection result of the diffracted light by the optical sensor 4. It is. The inspection characteristic values include the grating pitch of the diffraction grating pattern, the grating direction, the diffraction efficiency, the fine structure of the diffraction grating, and the like.
[0012]
The holding section 6 supports the light source section 2 and the optical sensor 4 so as to be able to rotate or move as described above. Further, as shown in FIG. 1, the hologram 7 is also supported so as to be movable along the arrow direction.
[0013]
Next, a method of inspecting the hologram 7 according to the present embodiment will be described. In general, the following equation holds between the grating pitch p of the diffraction grating pattern and the output angle of the diffracted light, that is, the diffraction angle θ.
p = λ / (sin θ 0 + sin θ) (1)
In the equation (1), λ is the wavelength of the light beam emitted from the light source unit 2, and θ 0 is the incident angle of the light beam. Therefore, the grating pitch p can be theoretically obtained by detecting the output angle θ of the diffracted light by the optical sensor 4.
[0014]
As shown in the schematic diagram of FIG. 2, when a light beam having a light intensity distribution of a glass distribution having a wavelength λ at an incident angle θ 0 from a light source unit 2 irradiates a diffraction grating pattern included in a predetermined two-dimensional region 12 of a hologram 7. Diffracted light having a glass distribution is emitted from the diffraction grating pattern. This diffracted light is received by the line sensor 8 or the area sensor 11. In an optical configuration in which the incident light and the diffracted light are arranged on the same plane, the diffracted light can be received using, for example, the line sensor 8. As shown in the graph, the detected output is a received light intensity distribution along the one-dimensional direction (X direction) of the line sensor 8. The diffraction angle θ is determined by reading the peak position of this intensity distribution, and the above equation (1) is calculated using this and the known values of the incident angle θ 0 and the wavelength λ. Pitch is required. Further, the diffraction efficiency of the diffraction grating pattern is obtained based on the peak level of the received light intensity distribution. On the other hand, when the diffracted light is distributed in the two-dimensional directions (x and y directions), the area sensor 11 receives the diffracted light to obtain a two-dimensional light receiving intensity distribution. In this case, the grating direction can be detected in addition to the grating pitch and the diffraction efficiency. That is, the lattice direction (lattice orientation) and the two-dimensional position of the peak are correlated with each other. Next, by appropriately moving the hologram 7, the inspection of the diffraction grating pattern in a place other than the two-dimensional area 12 is performed by the same method as described above.
[0015]
As shown in FIG. 3A, when the diffraction grating pattern of the hologram 7 is viewed in an enlarged manner, the hologram 7 is formed of convex and concave portions having a pitch p. This basic diffraction grating shape is similar to the shape of a carrier wave when compared to a radio wave, and is tentatively called a carrier diffraction grating 13. On the other hand, the diffraction grating pattern formed on the hologram 7 includes a plurality of fine diffraction gratings overlapping with the carrier diffraction grating 13 in addition to the carrier diffraction grating 13 in a complicated manner. This fine diffraction grating is likened to a modulated wave on a carrier wave and is called a modulated wave diffraction grating 14. When the diffracted light reflected from these diffraction gratings is detected by the optical sensor 4, a received light intensity distribution having several peaks corresponding to the carrier diffraction grating 13 and the modulation wave diffraction grating 14 is obtained as shown in FIG. . By analyzing this peak, the fine structure of the diffraction grating pattern can be grasped.
[0016]
【The invention's effect】
The present invention enables simultaneous measurement of all or a part of the grating pitch, grating direction, and diffraction efficiency in a minute diffraction grating unit constituting a hologram, so that a highly accurate numerical value is obtained. Good hologram inspection can be performed. By recording this numerical information, it becomes possible to apply a numerical management method, and it is possible to effectively improve the overall quality. In the inspection after shipment, sufficient numerical inspection can be performed because the reference numerical data remains. Also, by integrating the device, anyone can perform accurate measurement, so that the variation of the measurement by the measurer can be suppressed, and the structure can be simplified, so that the size can be easily reduced and the number of failures can be reduced. Have. Furthermore, since parts having various specifications can be used for the light source and the optical sensor, not only can inexpensive parts be used, but also the parts constituting the inspection apparatus can be easily standardized, so that the cost can be reduced easily.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of an embodiment of the present invention.
FIG. 2 is a schematic diagram for explaining the outline of the inspection method according to the embodiment.
FIG. 3 is a schematic diagram for explaining an inspection method for obtaining a fine structure of a diffraction grating.
[Explanation of symbols]
Reference Signs List 1 hologram inspection device 2 light source unit 3 adjustment optical system 4 optical sensor 5 calculation unit 6 holding unit 7 hologram 8 line sensor 9 CCD
Reference Signs List 11 Area sensor 12 Two-dimensional area 13 Carrier diffraction grating 14 Modulated wave diffraction grating

Claims (6)

所定の白色波長成分を含む光線を放射する光源部と、前記波長成分に対し感度を有する光センサと、検査対象のホログラムに対し前記光源部および光センサを配置する保持部と、前記光センサの出力に基づき前記ホログラムを構成する回折格子パターンの検査特性値を演算する演算手段とを備えるホログラム検査装置であって、前記光源部は、その光線が前記ホログラムの所望の二次元領域を照射するように配置され、前記光センサは、前記ホログラムの所望の二次元領域に含まれる回折格子パターンにより回折された回折光を受光するように配置され、前記演算手段は光センサの出力に基づいて回折光の回折角度および強度から回折格子パターンの格子ピッチ,格子方向および回折効率の少なくともいずれか1つを表わす検査特性値を演算することを特徴とするホログラム検査装置。A light source unit that emits a light beam containing a predetermined white wavelength component, an optical sensor having sensitivity to the wavelength component, a holding unit that arranges the light source unit and the optical sensor with respect to a hologram to be inspected, Operating means for calculating an inspection characteristic value of the diffraction grating pattern constituting the hologram based on the output, wherein the light source unit irradiates a desired two-dimensional area of the hologram with the light beam. And the optical sensor is arranged to receive the diffracted light diffracted by a diffraction grating pattern included in a desired two-dimensional area of the hologram, and the arithmetic means is configured to output the diffracted light based on an output of the optical sensor. Calculates inspection characteristic values representing at least one of the grating pitch, grating direction, and diffraction efficiency of the diffraction grating pattern from the diffraction angle and intensity of Hologram inspection apparatus according to claim Rukoto. 前記光源部が、レーザ,発光ダイオード,水銀灯等の輝線スペクトルを発する光源、もしくは前記輝線スペクトルの光源や連続スペクトルの白色光源と波長選択性を有する光学素子との組み合わせの光源からなる請求項1のホログラム検査装置。2. The light source unit according to claim 1, wherein the light source unit is a light source that emits an emission line spectrum such as a laser, a light emitting diode, or a mercury lamp, or a combination of a light source having the emission line spectrum or a white light source having a continuous spectrum and an optical element having wavelength selectivity. Hologram inspection device. 前記光源部側には、当該光源から放射される光線の波面を検査対象となる前記ホログラムの作製時における条件に合わせて整える調整用光学系が付設され、該光学系は、レンズ,ミラー又は回折格子からなることを特徴とする請求項1のホログラム検査装置。An adjusting optical system for adjusting the wavefront of a light beam emitted from the light source to the condition at the time of manufacturing the hologram to be inspected is provided on the light source unit side, and the optical system includes a lens, a mirror, or a diffraction optical system. 2. The hologram inspection device according to claim 1, wherein the hologram inspection device comprises a grating. 前記光センサが、前記光源部の分光特性に対する波長域に感度を有し、かつ回折光の検出に必要な分解能を有するものである請求項1又は2のホログラム検査装置。The hologram inspection apparatus according to claim 1, wherein the optical sensor has sensitivity in a wavelength range with respect to a spectral characteristic of the light source unit and has a resolution necessary for detecting diffracted light. 前記保持部が、前記光源部および光センサを所望の回転位置および座標位置に移動可能に形成されるものである請求項1のホログラム検査装置。2. The hologram inspection apparatus according to claim 1, wherein the holding unit is formed so as to move the light source unit and the optical sensor to desired rotation positions and coordinate positions. 光源部から所定の白色波長成分を含む光線を直接又は調整用光学系を介して、かつその入射方向を調整して検査対象のホログラムの二次元領域に照射し、ホログラムからの回折光を前記波長成分に対し感度を有し回折光の検出に必要な分解能を有する光センサに入射せしめ、該光センサの出力に基づき前記ホログラムを構成する回折格子パターンの検査特性値を演算し該ホログラムの品質検査を行う検査方法であって、前記検査特性値が前記光センサにより検出された前記回折光の回折角度および強度から演算される回折格子パターンの格子ピッチ,格子方向および回折効率の少なくともいずれか1つを表わすことを特徴とするホログラム検査方法。A light beam containing a predetermined white wavelength component is emitted from the light source unit directly or through an adjustment optical system, and the incident direction is adjusted to irradiate a two-dimensional area of the hologram to be inspected, and the diffracted light from the hologram is converted to the wavelength. The light is incident on an optical sensor having sensitivity to the component and having a resolution necessary for detecting the diffracted light, and an inspection characteristic value of a diffraction grating pattern constituting the hologram is calculated based on an output of the optical sensor to inspect the quality of the hologram. Wherein the inspection characteristic value is calculated from a diffraction angle and an intensity of the diffracted light detected by the optical sensor, at least one of a grating pitch, a grating direction, and a diffraction efficiency of a diffraction grating pattern. A hologram inspection method characterized by representing:
JP14999595A 1995-06-16 1995-06-16 Hologram inspection apparatus and method Expired - Fee Related JP3556324B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14999595A JP3556324B2 (en) 1995-06-16 1995-06-16 Hologram inspection apparatus and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14999595A JP3556324B2 (en) 1995-06-16 1995-06-16 Hologram inspection apparatus and method

Publications (2)

Publication Number Publication Date
JPH095209A JPH095209A (en) 1997-01-10
JP3556324B2 true JP3556324B2 (en) 2004-08-18

Family

ID=15487171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14999595A Expired - Fee Related JP3556324B2 (en) 1995-06-16 1995-06-16 Hologram inspection apparatus and method

Country Status (1)

Country Link
JP (1) JP3556324B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4569991B2 (en) * 2000-05-12 2010-10-27 大日本印刷株式会社 Method for measuring optical characteristics of hologram
DE10216562C1 (en) * 2002-04-05 2003-12-11 Ovd Kinegram Ag Zug Security element with micro and macro structures

Also Published As

Publication number Publication date
JPH095209A (en) 1997-01-10

Similar Documents

Publication Publication Date Title
JP5199539B2 (en) Multispectral technique for defocus detection
US5987978A (en) Apparatus for testing tire tread depth
KR100246268B1 (en) Apparatus for optical inspection of patterned substrates
US7511293B2 (en) Scatterometer having a computer system that reads data from selected pixels of the sensor array
US5471066A (en) Defect inspection apparatus of rotary type
EP0028774B1 (en) Apparatus for detecting defects in a periodic pattern
US20020054704A1 (en) Pixel based machine for patterned wafers
JP2005530144A (en) Single structure optical measurement
KR970707432A (en) DEFECT DETECTION IN PATTERNED SUBSTRATES USING OPTICAL COMPUTING
JP4090860B2 (en) 3D shape measuring device
US6642999B2 (en) Method and device for analyzing flows
KR920004751B1 (en) Measuring method for minute height difference and measuring apparatus
JPH0654221B2 (en) Step measuring device and method
JP2947513B1 (en) Pattern inspection equipment
JP3556324B2 (en) Hologram inspection apparatus and method
JP3072909B2 (en) Method and apparatus for measuring hologram diffraction efficiency
JP2009109263A (en) Apparatus and method for inspection
JP3792273B2 (en) Spectrometer
JPS63200042A (en) Method and apparatus for inspecting flaw of pattern
JPH0783840A (en) Rotary defect inspection device
JPH06281425A (en) Method and device for inspecting pattern hole
JPH0682373A (en) Inspection of defect
JPH09126947A (en) Hologram inspecting apparatus
JPH0763689A (en) Rotation-type flaw inspection apparatus
CN116399244A (en) High-resolution surface measurement method and device based on broad-spectrum laser and wavefront coding

Legal Events

Date Code Title Description
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040512

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080521

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090521

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100521

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110521

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110521

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120521

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120521

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140521

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees