JPH0950969A - Beam facing plate for semiconductor manufacturing device and its manufacture - Google Patents

Beam facing plate for semiconductor manufacturing device and its manufacture

Info

Publication number
JPH0950969A
JPH0950969A JP7199659A JP19965995A JPH0950969A JP H0950969 A JPH0950969 A JP H0950969A JP 7199659 A JP7199659 A JP 7199659A JP 19965995 A JP19965995 A JP 19965995A JP H0950969 A JPH0950969 A JP H0950969A
Authority
JP
Japan
Prior art keywords
beam facing
plate
carbon
semiconductor manufacturing
heat sink
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7199659A
Other languages
Japanese (ja)
Inventor
Yoshihiro Kikuchi
好洋 菊池
Takayuki Suzuki
孝幸 鈴木
Yasuo Hyakki
康夫 百鬼
Kenichi Nakayama
憲一 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP7199659A priority Critical patent/JPH0950969A/en
Publication of JPH0950969A publication Critical patent/JPH0950969A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To suppress the temperature rise by a thermal load at the surface of a carbon protective plate which is formed as a beam facing surface as a countermeasure against erosion by joining a metallic heat sink to the rear surface of the protective plate. SOLUTION: It is preferable to use a metallurgical method at the time of joining 2 a metallic heat sink 3 to the rear surface of the carbon protective plate (carbon plate) 1 which is formed as a beam facing surface. It is also preferable to use brazing which can join the heat sink 3 to the rear surface of the plate 1 at a low temperature. A brazing material composed of Ag, Ag and Cu, Pd, Pd and AG, etc., is used for the brazing. It is also preferable to add an active metal, such as Ti, Zr, Hf, Be, W, V, Nb, Ta, etc., to the brazing material, because the wettability of the brazing material is improved. The metal used for making the heat sink 3 includes Cu, a Cu alloy, aluminum, an aluminum alloy, stainless steel, etc.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、半導体製造装置
(イオン注入装置、高エネルギー注入装置等)におい
て、電子ビーム、イオンビーム等のアパーチャー、ビー
ム電流モニター又は保護板として利用される半導体製造
装置用ビーム対向板及びその製造法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor manufacturing apparatus (ion implantation apparatus, high-energy implantation apparatus, etc.) which is used as an aperture for an electron beam, an ion beam or the like, a beam current monitor or a protective plate. TECHNICAL FIELD The present invention relates to a beam facing plate and a method for manufacturing the same.

【0002】[0002]

【従来の技術】イオン注入装置、高エネルギー注入装置
等の半導体製造装置において、電子ビーム、イオンビー
ム等のアパーチャー及び保護板には、カーボン材料が使
用されている。カーボン材は耐熱性が高く、エロージョ
ンが少ないので使用されているが、装置の熱負荷の増大
にともない、エロージョンの増大が問題となり始めてい
る。カーボン材は、不活性雰囲気では、3000℃の耐
熱性を有するが、高真空中では、2000℃以上で昇華
が始まり、さらにイオン、電子に照射される雰囲気で
は、1000℃以上で照射により促進された昇華が起こ
ることが知られている。
2. Description of the Related Art In semiconductor manufacturing equipment such as ion implanters and high energy implanters, carbon materials are used for apertures and protective plates for electron beams and ion beams. Carbon materials are used because they have high heat resistance and little erosion, but as the heat load of the device increases, the increase in erosion is becoming a problem. The carbon material has a heat resistance of 3000 ° C. in an inert atmosphere, but sublimation starts at 2000 ° C. or higher in a high vacuum, and is accelerated by irradiation at 1000 ° C. or higher in an atmosphere irradiated with ions and electrons. Sublimation is known to occur.

【0003】カーボン製の保護板は、一般にボルト等で
装置内に取り付けられているが、ビームにより加熱さ
れ、高温になり、損耗する。カーボン材の熱容量は、体
積あたり1.3J/K・cm3と小さく、表面温度が簡
単に上昇してしまい、かつ、ボルトで締結された部分
は、接触熱抵抗があるため、その熱を除去するのが容易
でない。
The protective plate made of carbon is generally attached to the inside of the apparatus with bolts or the like, but it is heated by the beam, becomes high in temperature, and is worn. The heat capacity of the carbon material is as small as 1.3 J / K · cm 3 per volume, the surface temperature easily rises, and the portion fastened with bolts has contact thermal resistance, so the heat is removed. Not easy to do.

【0004】[0004]

【発明が解決しようとする課題】請求項1記載の発明
は、エロージョン対策として、熱負荷による表面温度上
昇を抑制した半導体製造装置用ビーム対向板を提供する
ものである。請求項2記載の発明は、請求項1記載の発
明の解決する課題のほかに金属との接合性に優れる半導
体製造装置用ビーム対向板を提供するものである。請求
項3記載の発明は、エロージョン対策として、熱負荷に
よる表面温度上昇を抑制した半導体製造装置用ビーム対
向板の製造法を提供するものである。
As a measure against erosion, the invention according to claim 1 provides a beam facing plate for a semiconductor manufacturing apparatus in which an increase in surface temperature due to a heat load is suppressed. In addition to the problem to be solved by the invention described in claim 1, the invention described in claim 2 provides a beam facing plate for a semiconductor manufacturing apparatus, which has excellent bondability with a metal. As a measure against erosion, the invention according to claim 3 provides a method of manufacturing a beam facing plate for a semiconductor manufacturing apparatus in which a surface temperature rise due to a heat load is suppressed.

【0005】[0005]

【課題を解決するための手段】本発明は、ビーム対向面
とするカーボン保護板の裏面に金属のヒートシンクが接
合されてなる半導体製造装置用ビーム対向板に関する。
また本発明は、前記ビーム対向面とするカーボン保護板
が、熱膨張率が4×10-6/℃〜15×10-6/℃のカ
ーボン材である半導体製造装置用ビーム対向板に関す
る。さらに本発明は、ビーム対向面とするカーボン保護
板の裏面に金属をヒートシンクとして冶金的に接合する
ことを特徴とする半導体製造装置用ビーム対向板の製造
法に関する。
The present invention relates to a beam facing plate for a semiconductor manufacturing apparatus in which a metal heat sink is bonded to the back surface of a carbon protective plate serving as a beam facing surface.
Further, the present invention relates to a beam facing plate for a semiconductor manufacturing apparatus, wherein the carbon protective plate serving as the beam facing surface is a carbon material having a coefficient of thermal expansion of 4 × 10 −6 / ° C. to 15 × 10 −6 / ° C. Further, the present invention relates to a method of manufacturing a beam facing plate for a semiconductor manufacturing apparatus, characterized in that metal is metallurgically bonded as a heat sink to a back surface of a carbon protective plate which is a beam facing surface.

【0006】[0006]

【発明の実施の形態】本発明は、ビーム対向面としてカ
ーボン材を用いる。用いるカーボン材は、一般に知られ
ている等方性や異方性の人造黒鉛材、炭素繊維強化炭素
複合材(C/C複合材)等の炭素材料からなるものであ
り、特に制限はない。一般に知られる人造黒鉛材は、コ
ークス粉、黒鉛粉、カーボンブラック等の骨材、ター
ル、ピッチ等の結合材を材料として用い、一般に捏和、
粉砕、成形、焼成、黒鉛化の各工程を経て製造される。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention uses a carbon material as a beam facing surface. The carbon material used is made of a generally known carbon material such as isotropic or anisotropic artificial graphite material and carbon fiber reinforced carbon composite material (C / C composite material), and is not particularly limited. Generally known artificial graphite materials include coke powder, graphite powder, aggregates such as carbon black, tar, binders such as pitch, and the like, which are generally kneaded,
It is manufactured through each process of crushing, molding, firing, and graphitization.

【0007】捏和は、一般に双腕型ニーダー等を用い
て、各材料を、好ましくは200〜250℃で、好まし
くは5〜10時間混練することにより行われる。粉砕
は、捏和で得られたものを、各種粉砕機を用いて平均粒
子径が20〜30μmになるように粉砕することにより
行われる。成形は、粉砕により得られた粉体を、金型プ
レス、ラバープレス等の方法で付形することにより行わ
れる。圧力は1000〜1500kg/cm2が好まし
い。
The kneading is generally carried out by using a double-arm kneader or the like to knead each material at preferably 200 to 250 ° C. for preferably 5 to 10 hours. The pulverization is performed by pulverizing the product obtained by kneading using various pulverizers so that the average particle diameter becomes 20 to 30 μm. The molding is performed by shaping the powder obtained by the pulverization by a method such as a mold press, a rubber press and the like. The pressure is preferably 1000 to 1500 kg / cm 2 .

【0008】焼成は、成形により得られた成形体を、還
元雰囲気下、好ましくは800〜1000℃に昇温して
行うことができる。焼成時間は、300〜500時間が
好ましい。還元雰囲気下で焼成する方法としては、成形
体のまわりに炭素の詰め粉を詰めて焼成する方法等があ
る。黒鉛化は、焼成により得られたものを、好ましくは
2500〜3000℃に昇温して行うことができる。黒
鉛化の時間は、40〜70時間が好ましい。さらに本発
明においては、ハロゲンガス中で、2000〜2800
で高純度化処理したものが好ましい。またさらに、好ま
しくは1×10-2torr以下の真空下で、好ましくは
1000〜2000℃でベーキングすると、放出ガスが
少なくなり、半導体装置内を清浄に保つことができるの
で好ましい。
The firing can be carried out by heating the molded body obtained by molding under a reducing atmosphere, preferably at 800 to 1000 ° C. The firing time is preferably 300 to 500 hours. As a method of firing in a reducing atmosphere, there is a method of firing by filling a powder of carbon around a compact. Graphitization can be performed by heating the product obtained by firing, preferably to 2500 to 3000 ° C. The graphitization time is preferably 40 to 70 hours. Further, in the present invention, in a halogen gas, 2000-2800
Those which have been subjected to a high-purification treatment are preferred. Furthermore, baking is preferably performed at a vacuum of 1 × 10 -2 torr or less, preferably at 1000 to 2000 ° C., because the amount of released gas is reduced and the inside of the semiconductor device can be kept clean, which is preferable.

【0009】本発明におけるビーム対向面に用いられる
カーボン材は熱膨張率が4×10-6/℃〜15×10-6
/℃であるのが金属との接合性に優れるので好ましい。
本発明において熱膨張率は、ビーム対向面に平行方向を
長軸とする5mm×5mm×15mmの直方体を試料と
し、その長軸方向(長さ15mmの方向)の線膨張率を
20〜700℃で測定した値とする。熱膨張率は、熱膨
張係数測定装置により測定できる。上記カーボン材は、
機械加工によりビーム対向面とするカーボン保護板に加
工される。
The carbon material used for the beam facing surface in the present invention has a coefficient of thermal expansion of 4 × 10 −6 / ° C. to 15 × 10 −6.
It is preferable that the temperature is / ° C., because the bondability with a metal is excellent.
In the present invention, the coefficient of thermal expansion is a rectangular parallelepiped of 5 mm × 5 mm × 15 mm whose major axis is in the direction parallel to the beam facing surface, and the linear expansion coefficient in the major axis direction (direction of length 15 mm) is 20 to 700 ° C. Use the value measured in. The coefficient of thermal expansion can be measured by a thermal expansion coefficient measuring device. The carbon material is
It is machined into a carbon protective plate that will be the beam facing surface.

【0010】金属製のヒートシンクを構成する金属とし
ては、銅、銅合金、アルミニウム、アルミニウム合金、
ステンレススチールなどが挙げられる。ヒートシンクを
構成する金属しては、熱容量が3.1J/K・cm3
ある銅、2.4J/K・cm3であるアルミニウム、銅
合金又はアルミニウム合金であり、熱容量がカーボン材
の1.8〜3倍あるものが好ましい。さらに、ビームに
よる熱負荷が長時間になるものは、そのヒートシンク材
に水冷却またはガス冷却のジャケットを設けて、ヒート
シンク自体を冷却すると、さらに冷却効果が大きいので
好ましい。
As the metal constituting the metal heat sink, copper, copper alloy, aluminum, aluminum alloy,
Examples include stainless steel. The metal constituting the heat sink is copper having a heat capacity of 3.1 J / K · cm 3 , aluminum having a heat capacity of 2.4 J / K · cm 3 , a copper alloy or an aluminum alloy, and the heat capacity of the carbon material is 1. It is preferably 8 to 3 times. Further, when the heat load by the beam is long, it is preferable to provide a water cooling or gas cooling jacket on the heat sink material to cool the heat sink itself, because the cooling effect is further large.

【0011】ビーム対向面とするカーボン保護板(カー
ボン板)の裏面に上記金属製のヒートシンクを接合して
ビーム対向板を製造する方法としては、カーボン板の裏
面に金属のヒートシンクを冶金的に接合する方法が好ま
しい。これには、ろう付けによる接合、拡散接合等が挙
げられるが、本発明においては比較的低温で接合が可能
なろう付けによる接合が好ましい。ろう付けにはAg、
Ag−Cu、Pd、Pd−Ag、Pd−Ag−Cu、N
i、Mn、Ni−Cu、Cu−Mn、Ag−Cu−I
n、Ag−Cu−Sn等のろう材が用いられる。なお上
記のろう材にTi、Zr、Hf、Be、W、V、Nb、
Ta等の活性金属を添加したものを用いるとろう材の濡
れ性が向上するので好ましい。ろう付けの条件は、用い
るろう材により適宜選定できる。
As a method of manufacturing the beam facing plate by bonding the above-mentioned metal heat sink to the back surface of the carbon protective plate (carbon plate) to be the beam facing surface, a metal heat sink is metallurgically bonded to the back surface of the carbon plate. Is preferred. Examples of the bonding include brazing, diffusion bonding, and the like. In the present invention, brazing is preferable because it can be bonded at a relatively low temperature. Ag for brazing,
Ag-Cu, Pd, Pd-Ag, Pd-Ag-Cu, N
i, Mn, Ni-Cu, Cu-Mn, Ag-Cu-I
A brazing material such as n or Ag-Cu-Sn is used. In addition, Ti, Zr, Hf, Be, W, V, Nb,
It is preferable to use a material to which an active metal such as Ta is added, because the brazing material has improved wettability. The brazing conditions can be appropriately selected depending on the brazing material used.

【0012】また、ろう付けの前に、例えばチタンを含
む銅粉末等をカーボン材に溶射し、表面をメタライズす
ると、接合性にさらに優れるので好ましい。メタライズ
する方法としては、プラズマ溶射、イオンプレーティン
グ、金属粉末又は金属ペーストの加熱融着等の方法があ
る。半導体製造装置用ビーム対向板には、必要に応じて
ベースメタルに固定するためのボルト穴を設けることが
できる。
Further, it is preferable to spray copper powder containing titanium, for example, onto a carbon material before brazing to metallize the surface, because the bondability is further excellent. As a method for metallizing, there are methods such as plasma spraying, ion plating, and heat fusion of metal powder or metal paste. The beam facing plate for a semiconductor manufacturing apparatus may be provided with a bolt hole for fixing it to the base metal, if necessary.

【0013】[0013]

【実施例】【Example】

実施例1 日立化成工業(株)製の等方性黒鉛(商品名 PD−6
00)を40mm×40mm×10mmの寸法に機械加
工した。ビーム対向面に平行方向を長軸とする5mm×
5mm×15mmの直方体を試料とし、石英製の熱膨張
係数測定装置で、その長軸方向(15mm)の線膨張率
を20〜700℃で測定したところ、熱膨張率5.5×
10-6/℃であった。チタン10重量%を含有する銅粉
末をプラズマスプレーで溶射し、40mm×40mmの
一表面をメタライズした。それと無酸素銅板(40mm
×40mm×10mm)を銀ロウ箔(材質名BAg−
8)を介して、800℃、1×10-4torr以下の真
空度でロウ付し、銅接合カーボン板を得た。
Example 1 Isotropic graphite (trade name PD-6 manufactured by Hitachi Chemical Co., Ltd.)
00) was machined to dimensions of 40 mm x 40 mm x 10 mm. 5 mm x with the major axis parallel to the beam facing surface
A 5 mm × 15 mm rectangular parallelepiped was used as a sample, and its linear expansion coefficient in the major axis direction (15 mm) was measured at 20 to 700 ° C. with a thermal expansion coefficient measuring device made of quartz.
It was 10 -6 / ° C. Copper powder containing 10% by weight of titanium was sprayed by plasma spraying to metallize one surface of 40 mm × 40 mm. Oxygen-free copper plate (40mm)
Silver wax foil (material name BAg-
Through 8), brazing was performed at 800 ° C. at a vacuum degree of 1 × 10 −4 torr or less to obtain a copper-bonded carbon plate.

【0014】実施例2 日立化成工業(株)製のC/C複合材(商品名 PCC
−2S)を40mm×40mm×10mmの寸法に機械
加工した。実施例1と同様にして熱膨張率を測定したと
ころ、9×10-6/℃であった。C/C複合材上に、チ
タン箔、銀ロウ箔(材質名BAg−8)の順にのせ、9
00℃、1×10-4torr以下の圧力で加熱溶融さ
せ、放冷し、メタライズしたC/C複合材を得た。その
C/C複合材を40mm×40mm×10mmのアルミ
ニウム板とハンダを介して、300℃の大気中で接合
し、アルミニウム接合カーボン板を得た。
Example 2 C / C composite material (trade name PCC manufactured by Hitachi Chemical Co., Ltd.)
-2S) was machined to dimensions of 40 mm x 40 mm x 10 mm. When the coefficient of thermal expansion was measured in the same manner as in Example 1, it was 9 × 10 −6 / ° C. Titanium foil and silver brazing foil (material name BAg-8) were placed on the C / C composite material in this order, and 9
A metallized C / C composite material was obtained by heating and melting at 00 ° C. under a pressure of 1 × 10 −4 torr or less and allowing to cool. The C / C composite material was bonded to an aluminum plate of 40 mm × 40 mm × 10 mm through a solder in the air at 300 ° C. to obtain an aluminum bonded carbon plate.

【0015】評価 実施例1及び2の金属接合カーボン板を電子ビームで加
熱し、温度上昇を測定した(電子ビーム照射条件:熱負
荷 5kW/cm2、照射面積 直径15mmの円、照
射時間 5秒)。比較例1及び2として、実施例1及び
2における金属を接合しないものを用いた。また、照射
後の照射前に対する損耗量を測定した。
Evaluation The metal-bonded carbon plates of Examples 1 and 2 were heated by an electron beam and the temperature rise was measured (electron beam irradiation conditions: heat load 5 kW / cm 2 , irradiation area diameter 15 mm circle, irradiation time 5 seconds. ). As Comparative Examples 1 and 2, those in which the metals in Examples 1 and 2 were not joined were used. Further, the amount of wear after irradiation and before irradiation was measured.

【0016】[0016]

【表1】 [Table 1]

【0017】[0017]

【発明の効果】請求項1記載の半導体製造装置用ビーム
対向板は、熱負荷による表面温度上昇が抑制され、エロ
ージョンの低減されたものである。請求項2記載の半導
体製造装置用ビーム対向板は、請求項1記載の半導体製
造装置用ビーム対向板の効果を奏し、さらに金属との接
合性に優れる。請求項3記載の半導体製造装置用ビーム
対向板の製造法によれば、熱負荷による表面温度上昇が
抑制され、エロージョンの低減された半導体製造装置用
ビーム対向板が製造できる。
The beam facing plate for a semiconductor manufacturing apparatus according to the first aspect of the present invention suppresses an increase in surface temperature due to a heat load and reduces erosion. A beam facing plate for a semiconductor manufacturing apparatus according to a second aspect has the effect of the beam facing plate for a semiconductor manufacturing apparatus according to the first aspect, and further has excellent bondability with a metal. According to the method of manufacturing a beam facing plate for a semiconductor manufacturing apparatus described in claim 3, it is possible to manufacture a beam facing plate for a semiconductor manufacturing apparatus in which an increase in surface temperature due to a heat load is suppressed and erosion is reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明半導体製造装置用ビーム対向板の一例の
断面図である。
FIG. 1 is a sectional view of an example of a beam facing plate for a semiconductor manufacturing apparatus according to the present invention.

【図2】従来の半導体製造装置用ビーム対向板の断面図
である。
FIG. 2 is a sectional view of a conventional beam facing plate for a semiconductor manufacturing apparatus.

【符号の説明】[Explanation of symbols]

1 カーボン板 2 接合面 3 金属製ヒートシンク 4 固定ボルト 5 ベースメタル 1 Carbon plate 2 Bonding surface 3 Metal heat sink 4 Fixing bolt 5 Base metal

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成7年8月22日[Submission date] August 22, 1995

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0007[Correction target item name] 0007

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0007】捏和は、一般に双腕型ニーダー等を用い
て、各材料を、好ましくは200〜250℃で、好まし
くは5〜10時間混練することにより行われる。粉砕
は、捏和で得られたものを、各種粉砕機を用いて平均粒
子径が20〜30μmになるように粉砕することにより
行われる。成形は、粉砕により得られた粉体を、金型プ
レス、ラバープレス等の方法で形することにより行わ
れる。圧力は1000〜1500kg/cm2が好ましい。
The kneading is generally carried out by using a double-arm kneader or the like to knead each material at preferably 200 to 250 ° C. for preferably 5 to 10 hours. The pulverization is performed by pulverizing the product obtained by kneading using various pulverizers so that the average particle diameter becomes 20 to 30 μm. Molding a powder obtained by milling, die pressing is carried out by shaping a method such as a rubber press. The pressure is preferably 1000 to 1500 kg / cm 2 .

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中山 憲一 茨城県日立市鮎川町三丁目3番1号 日立 化成工業株式会社山崎工場内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Kenichi Nakayama 3-3-1, Ayukawa-cho, Hitachi-shi, Ibaraki Hitachi Chemical Co., Ltd. Yamazaki factory

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 ビーム対向面とするカーボン保護板の裏
面に金属のヒートシンクが接合されてなる半導体製造装
置用ビーム対向板。
1. A beam facing plate for a semiconductor manufacturing apparatus, in which a metal heat sink is bonded to a back surface of a carbon protective plate which is a beam facing surface.
【請求項2】 ビーム対向面とするカーボン保護板が、
熱膨張率が4×10-6/℃〜15×10-6/℃のカーボ
ン材である請求項1記載の半導体製造装置用ビーム対向
板。
2. A carbon protective plate serving as a beam facing surface,
The beam facing plate for a semiconductor manufacturing apparatus according to claim 1, which is a carbon material having a thermal expansion coefficient of 4 × 10 −6 / ° C. to 15 × 10 −6 / ° C.
【請求項3】 ビーム対向面とするカーボン保護板の裏
面に金属をヒートシンクとして冶金的に接合することを
特徴とする半導体製造装置用ビーム対向板の製造法。
3. A method of manufacturing a beam facing plate for a semiconductor manufacturing apparatus, wherein metal is metallurgically bonded as a heat sink to a back surface of a carbon protective plate which is a beam facing surface.
JP7199659A 1995-08-04 1995-08-04 Beam facing plate for semiconductor manufacturing device and its manufacture Pending JPH0950969A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7199659A JPH0950969A (en) 1995-08-04 1995-08-04 Beam facing plate for semiconductor manufacturing device and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7199659A JPH0950969A (en) 1995-08-04 1995-08-04 Beam facing plate for semiconductor manufacturing device and its manufacture

Publications (1)

Publication Number Publication Date
JPH0950969A true JPH0950969A (en) 1997-02-18

Family

ID=16411510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7199659A Pending JPH0950969A (en) 1995-08-04 1995-08-04 Beam facing plate for semiconductor manufacturing device and its manufacture

Country Status (1)

Country Link
JP (1) JPH0950969A (en)

Similar Documents

Publication Publication Date Title
US8243884B2 (en) X-ray anode having improved heat removal
US4810289A (en) Hot isostatic pressing of high performance electrical components
JP2002527618A (en) Sputter target / back plate assembly and method of manufacturing the same
US5428882A (en) Process for the fabrication of aluminum metallized pyrolytic graphite sputtering targets
US20090274923A1 (en) Tools Having Compacted Powder Metal Work Surfaces, And Method
CN108161156A (en) A kind of vacuum brazing method of molybdenum alloy and graphite
JPH0344404A (en) Method for forming compressed material
JP2831356B2 (en) Manufacturing method of sputtering target
EP0116385A1 (en) Method of manufacturing a rotary anode for X-ray tubes and anode thus produced
JP5275555B2 (en) Composite member with structured tungsten element
EP0638530B1 (en) Method of bonding graphite to metal
JPH0950969A (en) Beam facing plate for semiconductor manufacturing device and its manufacture
KR101080713B1 (en) Molybdenum alloy x-ray targets having uniform grain structure
CN114749746B (en) Reaction brazing process for connecting graphite and molybdenum alloy by Ti/Zr foil
JP2997697B2 (en) High melting point metal joined body, ion gun component for ion implantation apparatus, and method of manufacturing these
EP0024764A1 (en) Method of producing a rotary anode for X-ray tubes and anode thus produced
JP3345439B2 (en) Method for producing X-ray tube rotating anode
JPH01203209A (en) Method for metallizing graphite and graphite conjugate material
RU2754864C1 (en) Method for producing an non-evaporable getter and a composite getter for an x-ray tube
JPS61111979A (en) Manufacture of bonded material of graphite and high melting point metal
JP2002093355A (en) X-ray tube target and its manufacturing method
JP2919896B2 (en) Manufacturing method of brazing filler metal
JP3411493B2 (en) X-ray tube target manufacturing method and target manufacturing unit
JPS61288065A (en) Target
JPH0936437A (en) Production of thermoelectric conversion module

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060629

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061019