JPH0949749A - Electromagnetic flowmeter - Google Patents
Electromagnetic flowmeterInfo
- Publication number
- JPH0949749A JPH0949749A JP20015995A JP20015995A JPH0949749A JP H0949749 A JPH0949749 A JP H0949749A JP 20015995 A JP20015995 A JP 20015995A JP 20015995 A JP20015995 A JP 20015995A JP H0949749 A JPH0949749 A JP H0949749A
- Authority
- JP
- Japan
- Prior art keywords
- period
- excitation
- cycle
- small
- differential noise
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Measuring Volume Flow (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は矩形波励磁方式の電
磁流量計の改良に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement of a rectangular wave excitation type electromagnetic flowmeter.
【0002】[0002]
【従来の技術】矩形波の励磁方式を用いた電磁流量計で
は、励磁の切換り時に発生する微分ノイズにより零点変
動が生じることが知られている。2. Description of the Related Art It is known that in an electromagnetic flow meter using a rectangular wave excitation method, a zero point variation occurs due to differential noise generated when switching excitation.
【0003】このため特開昭53−75966号公報や
特開昭57−149919号公報に記載の電磁流量計の
ように、励磁を正・無・負・無の4期間を1周期とする
3値励磁方式により、無励磁期間に発生する微分ノイズ
により正又は負励磁期間の微分ノイズを打消して零点変
動を軽減し改善する方法が知られている。For this reason, like the electromagnetic flowmeters described in JP-A-53-75966 and JP-A-57-149919, there are four periods of positive, no, negative and no excitation as one cycle. A value excitation method is known in which differential noise generated during a non-excitation period cancels differential noise during a positive or negative excitation period to reduce and improve a zero point variation.
【0004】[0004]
【発明が解決しようとする課題】上記の方法で零点変動
は改善されるが、励磁の1周期の4期間のうち流量信号
を計測するのは正と負励磁の2期間だけで、無励磁の2
期間は微分ノイズを検出するだけに使われ、流量検出に
利用できない。Although the zero-point fluctuation is improved by the above method, the flow rate signal is measured only in the two periods of positive and negative excitation out of four periods of one cycle of excitation, and in the case of no excitation. Two
The period is used only to detect differential noise, not to detect flow rate.
【0005】このための問題点として、 .流量の速い変化に対する流量計測の応答が遅くな
る。 .信号をサンプリングする期間が無励磁期間のない通
常の2値励磁方式の1/2となり、流量信号に含まれる
フローノイズの平均化が小さくなりバラツキが大きくな
る。The problems for this are: The response of the flow rate measurement to the rapid change of the flow rate becomes slow. . The period for sampling the signal is 1/2 of that of the normal binary excitation method without the non-excitation period, and the averaging of the flow noise included in the flow rate signal becomes small and the variation becomes large.
【0006】.前記従来技術のような3値励磁方式と
すると2値励磁方式に対し実質的に励磁周波数が1/2
となり、周波数が低くなるほど大きくなる1/f特性を
持ったフローノイズに対して弱くなる。特に電池駆動な
どの低消費電力タイプの電磁流量計では必然的に流量信
号レベルが小さくなるため、上記のフローノイズの影響
を受けやすく、3値励磁方式にすることにより励磁周波
数が2値励磁方式の1/2になることは、零点変動が改
善されるメリットを消してしまうので重大な欠点とな
る。[0006] When the three-valued excitation method as in the prior art is used, the excitation frequency is substantially 1/2 of that of the two-valued excitation method.
And becomes weaker with respect to flow noise having a 1 / f characteristic, which becomes larger as the frequency becomes lower. In particular, a low power consumption type electromagnetic flowmeter such as a battery drive inevitably has a low flow rate signal level, so it is easily affected by the above flow noise, and a three-valued excitation method allows the excitation frequency to be a two-valued excitation method. It becomes a serious defect because the merit that the zero fluctuation is improved disappears.
【0007】そこで、本発明はこれらの問題点を解消で
きる電磁流量計を提供することを目的とする。Therefore, an object of the present invention is to provide an electromagnetic flow meter which can solve these problems.
【0008】[0008]
【課題を解決するための手段】前記目的を達成するため
に、請求項1の発明は、矩形波励磁方式の電磁流量計に
おいて、正の励磁期間(T1,T3,T5,)と負の励
磁期間(T2、T4、T6)の一つずつを隣接した期間
(T1+T2、T3+T4、T5+T6)を正・負2値
励磁の小周期(T1+T2、T3+T4、T5+T6)
として、この小周期を複数回くり返した後、前記小周期
の半周期に相当する無励磁期間(T7)を設けて、前記
小周期(T1+T2、T3+T4、T5+T6)の複数
回と前記無励磁期間(T7)の合計をその前半周期(T
a)とするとともに、負の励磁期間(T8,T10,T
12)と正の励磁期間(T9,T11,T13)の一つ
ずつを隣接した期間(T8+T9、T10+T11、T
12+T13)を負・正2値励磁の小周期(T8+T
9、T10+T11、T12+T13)として、この小
周期を複数回くり返した後、前記小周期の半周期に相当
する無励磁期間(T14)を設けて、前記小周期(T8
+T9、T10+T11、T12+T13)の複数回と
前記無励磁期間(T14)の合計をその後半周期(T
b)として、前記前半周期(Ta)と項半周期(Tb)
の合計期間(Ta+Tb)を励磁の大周期(Ta+T
b)となし、前記大周期の前半周期(Ta)と後半周期
(Tb)における2値励磁の小周期毎に微分ノイズを含
む流量信号(Va1,Va2,Va3,Va4,Va
5,Va6)を取り出すとともに、前記無励磁期間(T
7)(T14)毎又は前記大周期以前の無励磁期間(T
14’)毎に微分ノイズに対応した信号(Vb)(V
b’)を取り出して、前記微分ノイズを含む流量信号
(Va1,Va2,Va3,Va4,Va5,Va6)
と前記無励磁期間(T7)(T14)(T14’)毎の
微分ノイズに対応した信号(Vb)(Vb’)に基いて
微分ノイズを除いた流量信号を取り出すことを特徴とす
る電磁流量計である。In order to achieve the above object, the invention of claim 1 provides a positive excitation period (T1, T3, T5) and a negative excitation in a rectangular wave type electromagnetic flow meter. Short period of positive / negative binary excitation (T1 + T2, T3 + T4, T5 + T6) for adjacent periods (T1 + T2, T3 + T4, T5 + T6) adjacent to each one of the periods (T2, T4, T6)
As described above, after repeating this small cycle a plurality of times, a non-excitation period (T7) corresponding to a half cycle of the small cycle is provided, and a plurality of the small cycles (T1 + T2, T3 + T4, T5 + T6) and the non-excitation period ( The total of T7) is the first half period (T
a) and the negative excitation period (T8, T10, T
12) and one of the positive excitation periods (T9, T11, T13) adjacent to each other (T8 + T9, T10 + T11, T).
12 + T13) is a short cycle of negative / positive binary excitation (T8 + T)
9, T10 + T11, T12 + T13), after repeating this small cycle a plurality of times, a non-excitation period (T14) corresponding to a half cycle of the small cycle is provided, and the small cycle (T8
+ T9, T10 + T11, T12 + T13) a plurality of times and the non-excitation period (T14), the total of the latter half period (T).
As b), the first half cycle (Ta) and the term half cycle (Tb)
Of the total period (Ta + Tb) of the exciting period (Ta + T
b), and the flow rate signals (Va1, Va2, Va3, Va4, Va) including differential noise for each small cycle of binary excitation in the first half cycle (Ta) and the second half cycle (Tb) of the large cycle.
5, Va6), and the non-excitation period (T
7) Every non-excitation period (T14) or before the large cycle (T14)
14 ') signal (Vb) (V) corresponding to the differential noise
b ′) is taken out and the flow rate signal (Va1, Va2, Va3, Va4, Va5, Va6) including the differential noise is taken out.
And an electromagnetic flowmeter which extracts a flow rate signal from which differential noise is removed based on the signals (Vb) and (Vb ') corresponding to the differential noise for each non-excitation period (T7) (T14) (T14'). Is.
【0009】請求項2の発明は、請求項1の電磁流量計
において、複数の無励磁期間毎に取り出した前記微分ノ
イズの移動平均値を前記小周期毎の流量信号(Va1,
Va2,Va3,Va4,Va5,Va6)から引き算
して微分ノイズを除いた流量信号を取り出すことを特徴
とするものである。According to a second aspect of the present invention, in the electromagnetic flowmeter according to the first aspect, the moving average value of the differential noise extracted for each of a plurality of non-excitation periods is a flow rate signal (Va1, for each small period).
Va2, Va3, Va4, Va5, Va6) and subtracts the differential noise to extract the flow rate signal.
【0010】そして請求項3の発明は、請求項1又は2
の電磁流量計において、残留磁気励磁方式を用いたこと
を特徴とするものである。The invention of claim 3 relates to claim 1 or 2.
The residual magnetic excitation method is used in the above electromagnetic flowmeter.
【0011】[0011]
【作用】各小周期(T1+T2,T3+T4,T5+T
6,T8+T9,T10+T11,T12+T13)毎
の流量信号出力(Va1,Va2,…,Va6)から、
1つ前の大周期における無励磁期間に求めた微分ノイズ
(Vb′)を引き算して、流量信号出力(Va1,Va
2,…,Va6)に含まれる微分ノイズを除去するた
め、流量比例信号だけが取り出される。[Function] Each small cycle (T1 + T2, T3 + T4, T5 + T
6, T8 + T9, T10 + T11, T12 + T13) from the flow rate signal output (Va1, Va2, ..., Va6)
The differential noise (Vb ') obtained during the non-excitation period in the immediately preceding large cycle is subtracted to obtain the flow rate signal output (Va1, Va
2, ..., Va6) to remove the differential noise, only the flow rate proportional signal is taken out.
【0012】なお、電気化学的な直流ノイズは短期間で
は変化しないため各小周期間において半周期ごとの差か
ら信号(Va0 )を取り出すときに打消し合って除去さ
れる。Since the electrochemical direct current noise does not change in a short period of time, it is canceled and canceled when the signal (Va 0 ) is taken out from the difference of each half cycle between each small cycle.
【0013】同様に微分ノイズ(Vb0 )でも電気化学
的な直流ノイズは除去されて含まれない。請求項2の発
明では、更に、微分ノイズの移動平均値を用いるため、
そのぶん流量比例信号の精度が向上する。Similarly, in the differential noise (Vb 0 ), the electrochemical direct current noise is removed and not included. In the invention of claim 2, since the moving average value of the differential noise is further used,
Therefore, the accuracy of the flow rate proportional signal is improved.
【0014】また請求項3の発明では更に、励磁電力が
減少し、そのぶん電磁流量計の省電力化に役立つ。Further, in the invention of claim 3, the exciting power is further reduced, which is useful for power saving of the electromagnetic flowmeter.
【0015】[0015]
[第1実施例]図1は本発明の第1実施例を示すブロッ
ク図で、図2はソノ動作を示すタイミングと各部の波形
を示す線図である。[First Embodiment] FIG. 1 is a block diagram showing a first embodiment of the present invention, and FIG. 2 is a diagram showing the timing of sono operation and the waveform of each part.
【0016】コイル3に図2(a)の波形の励磁電流を
流して流管1内に磁界を発生させると、2つの電極2a
─2b間には図2(a)の励磁波形と同様な波形の流量
比例信号が発生し、差動増幅器4で増幅されE1sとな
る。7は励磁回路でタイミング回路8で制御される。When an exciting current having the waveform of FIG. 2A is passed through the coil 3 to generate a magnetic field in the flow tube 1, two electrodes 2a are formed.
A flow rate proportional signal having a waveform similar to the excitation waveform of FIG. 2 (a) is generated between −2b and amplified by the differential amplifier 4 to become E1s. An excitation circuit 7 is controlled by the timing circuit 8.
【0017】一方電極2a─2b間には励磁の切り換り
に伴い流量に関係なく微分ノイズが発生し差動増幅器4
で増幅されて図2(b)に示す波形E1mとなる。現実
には差動増幅器4の出力はE1sとE1mが合成(加
算)された波形E1となるが、理解しやすくするため各
々独立に図2(a)と図2(b)にそれぞれ(E1
s)、E1mとして示している。Differential noise is generated between the electrodes 2a and 2b between the electrodes 2a and 2b irrespective of the flow rate due to switching of excitation, and the differential amplifier 4
The waveform E1m is amplified by the waveform E1m shown in FIG. In reality, the output of the differential amplifier 4 has a waveform E 1 that is a combination (addition) of E1s and E1m, but for the sake of easy understanding, it is independently shown in FIG. 2 (a) and FIG. 2 (b).
s) and E1m.
【0018】この合成信号、E1=E1s+E1nをサ
ンプルホールド回路5でスイッチS1,S2のタイミン
グでサンプリングした出力が図2(C)で、実線が積分
器52の出力Vaであり、その斜線部をスイッチS4の
タイミングでコンデンサC2と増幅度1のアンプ53で
ホールドした値Va0 を点線で示してある。The output obtained by sampling the combined signal, E1 = E1s + E1n, at the timing of the switches S1 and S2 by the sample and hold circuit 5 is shown in FIG. 2C, the solid line is the output Va of the integrator 52, and the shaded portion is the switch. The value Va 0 held by the capacitor C2 and the amplifier 53 having the amplification factor of 1 at the timing of S4 is shown by a dotted line.
【0019】また51は増幅度が−1の反転増幅器で、
抵抗R1,R2及びコンデンサC1の回路定数とスイッ
チS1,S2がオンする積分時間で決る積分器52の増
幅度を1として説明する。Further, 51 is an inverting amplifier having an amplification degree of -1,
The amplification degree of the integrator 52, which is determined by the circuit constants of the resistors R1 and R2 and the capacitor C1 and the integration time when the switches S1 and S2 are turned on, will be described as 1.
【0020】この積分器52で図2(a),(b)の波
形の期間T1,T2,…,T14の後半部分の各値E及
びNを積分した結果を同一の値として図2(C)に示
す。最初の小半周期T1ではその前の小半周期T14′
が無励磁期間であって、微分ノイズは図2(b)に示す
ように通常の励磁期間に続く期間のときの半分のN/2
であるため、最初の小周期T1+T2におる積分器52
の出力Va1は、 Va1=2E+3/2N となる。The integrator 52 integrates the respective values E and N of the latter half of the periods T1, T2, ..., T14 of the waveforms of FIGS. ). In the first small half cycle T1, the preceding small half cycle T14 '
Is a non-excitation period, and the differential noise is N / 2, which is half that in the period following the normal excitation period, as shown in FIG.
Therefore, the integrator 52 in the first short cycle T1 + T2
Output Va1 of the above becomes Va1 = 2E + 3 / 2N.
【0021】この微分値Va1はスイッチS4のタイミ
ングでコンデンサC2にホールドされた後、スイッチS
3のタイミングでリセットされる。次の小周期T3+T
4及びT5+T6でも同様に積分されてサンプルホール
ドされるが、これらの小周期の直前に無励磁期間がない
ため、各小周期T3+T4のサンプル値Va2と小周期
T5+T6のサンプル値Va3は Va2=Va3=2E+2N となる。This differential value Va1 is held in the capacitor C2 at the timing of the switch S4, and then the switch S4.
It is reset at the timing of 3. Next small cycle T3 + T
4 and T5 + T6 are similarly integrated and sample-held, but since there is no non-excitation period immediately before these small cycles, the sample value Va2 of each small cycle T3 + T4 and the sample value Va3 of each small cycle T5 + T6 are Va2 = Va3 = 2E + 2N.
【0022】期間T1〜T7からなる期間、つまり大周
期の前半期間Ta、Ta=T1+T2+…+T7、の最
後の無励磁期間T7では、スイッチS6のタイミング
で、サンプルホールド回路5と同一の構成の、別のサン
プルホールド回路6によって差動増幅器4の出力E1が
サンプリングされる。In the last non-excitation period T7 of the period T1 to T7, that is, the first half period Ta of the large cycle, Ta = T1 + T2 + ... + T7, the same configuration as the sample hold circuit 5 is set at the timing of the switch S6. The output E1 of the differential amplifier 4 is sampled by another sample hold circuit 6.
【0023】期間T7は無励磁期間であるため流量比例
信号E1sはなく、微分ノイズE1nだけがサンプリン
グされて、その値はN/2となり大周期の前半期間Ta
を終わる。なお、上述のようにT1+T2などを小周期
と呼び、その半分の期間T1などを小半周期と呼ぶよう
にしたのは、T1+T2…+T14=Ta+Tbであら
わされる期間を大きな周期という意味で大周期と名付け
たのに対比して名付けた用語であり、必ずしも慣用され
ている技術用語ではない。しかし、本発明を説明するに
は適当であると考えて、半周期、小半周期、大周期等の
表現を用いる。Since the period T7 is a non-excitation period, there is no flow rate proportional signal E1s, and only the differential noise E1n is sampled, and the value becomes N / 2, which is Ta in the first half period Ta of the large cycle.
Ends. As described above, T1 + T2 and the like are called small cycles, and half the period T1 and the like are called small and half cycles. The period represented by T1 + T2 ... + T14 = Ta + Tb is called a large cycle and is called a large cycle. However, it is not a technical term that is commonly used. However, expressions such as half cycle, small half cycle, and large cycle are used as they are considered appropriate for explaining the present invention.
【0024】大周期の後半の期間Tb、Tb=T8+T
9+…+T14、でも上記と全く同様の動作で、期間T
8+T9の小周期のサンプル値Va4 Va4=2E+(3/2)N を、また期間T11+T12とT13+T14の各小周
期のサンプル値Va5,Va6 として Va5=Va6=2E+2N がそれぞれサンプルホールドをされるが、励磁のタイミ
ングが大周期の前半の期間Taと比べて図2(a)のよ
うに反転しているため、スイッチS5,S6によるサン
プリングのタイミングが、期間TaにおけるスイッチS
1とS2によるサンプリングのタイミングと逆の関係に
なっている。The second half period Tb of the large cycle, Tb = T8 + T
9 + ... + T14, the same operation as above is performed, and the period T
The sample value Va 4 Va4 = 2E + (3/2) N of the small cycle of 8 + T9 and the sample values Va 5 and Va 6 of the small cycles of the periods T11 + T12 and T13 + T14 are sample-held, respectively, Va5 = Va6 = 2E + 2N. However, since the excitation timing is inverted as shown in FIG. 2A as compared with the period Ta in the first half of the large cycle, the sampling timing by the switches S5 and S6 is the switch S in the period Ta.
The relationship is opposite to the sampling timing of 1 and S2.
【0025】大周期の後半の期間Tbの最後の期間T1
4は無励磁期間で、期間T7でスイッチS6のタイミン
グでサンプリングされた値Vb=N/2にスイッチS5
のタイミングで期間T7とは逆極性の微分ノイズが差動
的にサンプリングされて図2(d)に示すようにVb=
Nとなる。この値VbはスイッチS8のタイミングでコ
ンデンサC4にホールドされ、増幅度1の増幅器63の
出力Vb0 となる。The last period T1 of the latter half period Tb of the large cycle
Reference numeral 4 denotes a non-excitation period, and the switch S5 is set to the value Vb = N / 2 sampled at the timing of the switch S6 in the period T7.
At this timing, differential noise having a polarity opposite to that of the period T7 is differentially sampled and Vb =
N. This value Vb is held in the capacitor C4 at the timing of the switch S8 and becomes the output Vb 0 of the amplifier 63 having the amplification factor of 1.
【0026】以上によりサンプリングの大周期の1回T
1+T2+…+T14を終る。なお、上記前半の期間T
aと後半の期間Tbは、大周期Ta+Tbのいわば前半
周期Taと後半周期Tbを構成している。From the above, one time T of the large sampling cycle
End 1 + T2 + ... + T14. In the first half of the above period T
The period a and the latter half period Tb constitute a so-called first half period Ta and second half period Tb of the large period Ta + Tb.
【0027】図2(C)に点線で示したサンプルホール
ド回路5の出力Va0は流量比例信号E1sと微分ノイ
ズE1mの和E1をサンプリングした値であるため、差
動増幅器10で微分ノイズだけのサンプル値であるサン
プルホールド回路6の出力Vb0を引算している。The output Va0 of the sample and hold circuit 5 shown by the dotted line in FIG. 2C is a value obtained by sampling the sum E1 of the flow rate proportional signal E1s and the differential noise E1m. The value of the output Vb0 of the sample hold circuit 6 is subtracted.
【0028】 ただし Va1=Va4=2E+(3/2)N Va2=Va3=Va5=Va6=2E+2N であるため、サンプルホールド回路6の出力Vb0は増
幅器11を通して、差動アンプ10のマイナス入力にく
わえている。However, since Va1 = Va4 = 2E + (3/2) N Va2 = Va3 = Va5 = Va6 = 2E + 2N, the output Vb0 of the sample hold circuit 6 is passed through the amplifier 11 to the negative input of the differential amplifier 10. There is.
【0029】可変増幅器11の増幅度はタイミング回路
8の信号S9がHレベルの場合3/2倍、Lレベルの場
合2倍となるように構成してあるため、差動アンプ10
の出力V0は微分ノイズが相殺除去されて流量比例信号
だけの値 V0=2E となる。The amplification degree of the variable amplifier 11 is 3/2 times when the signal S9 of the timing circuit 8 is at the H level and is doubled when the signal S9 of the timing circuit 8 is at the L level.
The differential noise is offset and removed from the output V0 of the output V0 of the output V0 of V0 = 2E.
【0030】なおこの値V0は各小周期T1+T2,T
3+T4,T5+T6,T8+T9,T10+T11,
T12+T13,…ごとに出力されるもので、周知の2
値励磁の電磁流量計と同じ応答スピードを持つものであ
る。This value V0 corresponds to each small cycle T1 + T2, T
3 + T4, T5 + T6, T8 + T9, T10 + T11,
It is output for every T12 + T13, ...
It has the same response speed as an electromagnetic flowmeter with value excitation.
【0031】また図2のタイミング図では特に記さなか
ったが、電極2a−2b間に発生する電気化学的な直流
ノイズはサンプルホールド回路5のサンプル値Va1,
Va2,…Va6…を半周期ごとの差、例えば期間T1
とT2のときの差動増幅器4の各出力E1の差などから
求めるため、小周期ごとに互いに打消し合って除去され
る。サンプルホールド回路6のサンプル値Vb0 を求め
る場合も同様に電気化学的直流ノイズは除去される。Although not specifically shown in the timing chart of FIG. 2, the electrochemical direct current noise generated between the electrodes 2a and 2b is the sample value Va1 of the sample hold circuit 5.
Va2, ..., Va6 ... by a difference for each half cycle, for example, a period T1
And T2 are obtained from the difference between the outputs E1 of the differential amplifier 4 and the like, so that they are canceled and eliminated at every small cycle. Similarly, when the sample value Vb 0 of the sample hold circuit 6 is obtained, the electrochemical direct current noise is removed.
【0032】[第2実施例]図3は本発明の第2実施例
のブロック図でサンプリング回路5Aは、図1における
サンプルホールド回路5からスイッチS4、コンデンサ
C2及び増幅度1の増幅器53より成るホールド部分を
除去したもので、これの出力V01をA/D変換器20
でデジタル量に変換した後、MPU(マイクロプロセッ
サ)21で微分ノイズを演算処理するものである。[Second Embodiment] FIG. 3 is a block diagram of a second embodiment of the present invention. A sampling circuit 5A comprises the sample-hold circuit 5 in FIG. 1 including a switch S4, a capacitor C2 and an amplifier 53 having an amplification factor of 1. The hold portion is removed, and the output V01 of this is removed from the A / D converter 20.
After being converted into a digital amount by, the differential noise is arithmetically processed by the MPU (microprocessor) 21.
【0033】このMPU20は、励磁回路7、スイッチ
S1,S2及びS3にそれぞれ操作信号を出すととも
に、サンプリング回路5Aのアナログ出力V01をA/
D変換器20でディジタル量に変換してMPU21に取
り込む制御信号P1を出力する。またMPUは、A/D
変換器20から取り込んだデジタル量のうち、微分ノイ
ズを相殺・除去して流量比例信号だけを演算する。The MPU 20 outputs operation signals to the excitation circuit 7 and the switches S1, S2 and S3, respectively, and outputs the analog output V01 of the sampling circuit 5A to A /
The D converter 20 outputs a control signal P1 which is converted into a digital amount and is taken into the MPU 21. In addition, MPU is A / D
Of the digital amount taken in from the converter 20, the differential noise is canceled and removed, and only the flow rate proportional signal is calculated.
【0034】図4は図3の第2実施例の動作を示すタイ
ミングと各部の波形を示す線図で、図4(a),(b)
は図2(a),(b)とまったく同一で、図4(e)は
サンプリング回路5Aの出力V01である。スイッチS
1,S2のタイミングで差動増幅器4の出力E1をサン
プリングした後、スイッチS1,S2,S3が全てオフ
するホールド期間に、制御信号P1のタイミングでサン
プリング回路5Aの出力V01をA/D変換器20でA
/D変換する。FIG. 4 is a diagram showing the timing and the waveform of each part of the operation of the second embodiment of FIG. 3, and FIGS. 4 (a) and 4 (b).
Is exactly the same as in FIGS. 2A and 2B, and FIG. 4E shows the output V01 of the sampling circuit 5A. Switch S
After the output E1 of the differential amplifier 4 is sampled at the timings of S1 and S2, the output V01 of the sampling circuit 5A is converted to an A / D converter at the timing of the control signal P1 during the hold period in which all the switches S1, S2 and S3 are turned off. 20 in A
/ D conversion.
【0035】この結果大周期の前半周期Taのうち小周
期T1+T2におけるサンプリング回路5Aの出力がV
a1、小周期T3+T4におけるサンプリング回路5A
の出力がVa2、小周期T5+T6におけるサンプリン
グ回路5Aの出力がVa3となる。As a result, the output of the sampling circuit 5A in the short cycle T1 + T2 of the first half cycle Ta of the large cycle is V
a1, sampling circuit 5A in short cycle T3 + T4
Output is Va2, and the output of the sampling circuit 5A in the short cycle T5 + T6 is Va3.
【0036】大周期の後半周期Tbでも同様にサンプリ
ング値Va4,Va5,Va6が各小周期T8+T9,
T10+T11,T12+T13におけるサンプリング
回路5Aの出力としてA/D変換されデジタル量に変換
される。これらは流量比例信号と微分ノイズを含んだも
のである。Similarly, in the latter half period Tb of the large period, the sampling values Va4, Va5 and Va6 are set to the small periods T8 + T9,
The output of the sampling circuit 5A at T10 + T11 and T12 + T13 is A / D converted and converted into a digital amount. These include the flow rate proportional signal and differential noise.
【0037】これらの各値は実施例1と同じで、サンプ
リング値Va1とVa4は Va1=Va4=2E+(3/2)N であり、サンプリング値Va2,Va3,Va5,Va
6は Va2=Va3=Va5=Va6=2E+2N である。また期間T7,T14におけるサンプリング回
路5Aの出力のA/D変換値Vb1,Vb2はVb1=
Vb2=N/2である。このためMPU21内では次の
演算を行ない無励磁期間の微分ノイズを除いた流量比例
信号だけの出力E01,E02,…,E06を取り出
す。These respective values are the same as in the first embodiment, the sampling values Va1 and Va4 are Va1 = Va4 = 2E + (3/2) N, and the sampling values Va2, Va3, Va5, Va.
6 is Va2 = Va3 = Va5 = Va6 = 2E + 2N. Further, the A / D converted values Vb1 and Vb2 of the output of the sampling circuit 5A in the periods T7 and T14 are Vb1 =
Vb2 = N / 2. Therefore, the following calculation is performed in the MPU 21, and the outputs E01, E02, ..., E06 of only the flow rate proportional signals excluding the differential noise in the non-excitation period are extracted.
【0038】第1小周期T1+T2の出力は E01=Va1−(3/2)(Vb′1+Vb′2) 第2小周期T3+T4の出力は E02=Va2−2(Vb′1+Vb′2) 第3小周期T5+T6の出力は E03=Va3−2(Vb′1+Vb′2) 第4小周期T8+T9の出力は E04=Va4−(3/2)・(Vb′1+Vb′2) 第5小周期T10+T11の出力は E05=Va5−2(Vb′1+Vb′2) 第6小周期T12+T13の出力は E06=Va6−2(Vb′1+Vb′2) となる。The output of the first small cycle T1 + T2 is E01 = Va1- (3/2) (Vb'1 + Vb'2) The output of the second small cycle T3 + T4 is E02 = Va2-2 (Vb'1 + Vb'2) The third small The output of the cycle T5 + T6 is E03 = Va3-2 (Vb′1 + Vb′2) The output of the fourth short cycle T8 + T9 is E04 = Va4- (3/2) · (Vb′1 + Vb′2) The output of the fifth short cycle T10 + T11 is E05 = Va5-2 (Vb'1 + Vb'2) The output of the sixth short cycle T12 + T13 is E06 = Va6-2 (Vb'1 + Vb'2).
【0039】なおVb′1,Vb′2は大周期Ta+T
bの1つ前の大周期における前半周期と後半周期の無励
磁期間のサンプリング回路5Aの出力値で、出力Vb
1,Vb2に相当し、これらが無励磁期の微分ノイズに
対応する。図4(e)にはVb′2のみがあらわされ、
Vb′1はあらわされていない。It should be noted that Vb'1 and Vb'2 have a large cycle Ta + T.
The output value of the sampling circuit 5A during the non-excitation period of the first half cycle and the second half cycle of the large cycle immediately before b is the output Vb.
1 and Vb2, and these correspond to differential noise in the non-excitation period. Only Vb'2 is shown in FIG. 4 (e),
Vb'1 is not represented.
【0040】E01〜E06は微分ノイズを除去した流
量比例信号である。これらの値は各小周期の1周期T1
+T2,T3+T4,T5+T6,T8+T9,T10
+T11,T12+T13,…ごとに出力されてD/A
変換器22でアナログ量に変換されて4〜20mAなど
の流量出力とされたり、デジタル値のままMPU21で
演算されて積算流量値又は瞬間流量値として図示されて
ない液晶表示器などで表示される・ [第3実施例]図5は本発明の第3実施例で、図3の第
2実施例のA/D変換器20をコンパレータ30に置換
え、サンプリング回路5Bの積分器52Bに基準電圧V
eを抵抗ReとスイッチSeを通じて逆積分する2重積
分機能を持たせたものである。E01 to E06 are flow rate proportional signals from which differential noise is removed. These values are one cycle T1 of each small cycle.
+ T2, T3 + T4, T5 + T6, T8 + T9, T10
+ T11, T12 + T13, ... Is output for each D / A
It is converted into an analog amount by the converter 22 and output as a flow rate of 4 to 20 mA, or is calculated as it is by the MPU 21 and displayed as an integrated flow rate value or an instantaneous flow rate value on a liquid crystal display or the like not shown. [Third Embodiment] FIG. 5 is a third embodiment of the present invention, in which the A / D converter 20 of the second embodiment of FIG. 3 is replaced with a comparator 30 and a reference voltage V is applied to the integrator 52B of the sampling circuit 5B.
A double integration function of inversely integrating e through a resistor Re and a switch Se is provided.
【0041】この実施例では前記第2実施例のように一
般的に消費電力が大きいA/D変換器20を使用せず、
全ての電子回路の能動部分を低消費電力化が可能な素子
例えばC−MOS素子で構成してある。MPU31は4
ビット又は8ビットの低消費電力タイプのC−MOS
ICを用いている。This embodiment does not use the A / D converter 20 which generally consumes a large amount of power as in the second embodiment,
The active parts of all electronic circuits are composed of elements capable of reducing power consumption, such as C-MOS elements. 4 for MPU31
Bit or 8-bit low power consumption type C-MOS
IC is used.
【0042】スイッチS1,S2,S3及びSeもC−
MOS ICを使用すれば実質的にこれらの消費電力は
零にできる。また、増幅器51,52Bやコンパレータ
30を構成するUPアンプも2〜10μA程度で動作さ
せることができる。The switches S1, S2, S3 and Se are also C-
By using a MOS IC, these power consumptions can be reduced to substantially zero. Further, the UP amplifiers constituting the amplifiers 51 and 52B and the comparator 30 can also be operated at about 2 to 10 μA.
【0043】この実施例は省電力化を要求される2線式
電磁流量計又は電池駆動の電磁流量計を実現可能にする
ためのもので、図5の説明では一般の励磁方式で説明し
てあるが、残留磁気励磁方式と組合わせると最も省電力
効果を発揮する実施例である。This embodiment is intended to realize a two-wire type electromagnetic flowmeter or a battery-driven electromagnetic flowmeter which is required to save power. In the explanation of FIG. 5, a general excitation method is used. However, this is an embodiment that exhibits the most power saving effect when combined with the residual magnetic excitation method.
【0044】残留磁気励磁方式で無励磁期間を作る方法
は特開昭60−242318号公報に記載してあるので
省略する。図5の第3実施例で、スイッチS1,S2の
タイミングは図4のタイミング図の場合と全く同様であ
るので、図6のタイミング図ではA/D変換に関連する
動作のうち1小周期間だけを示している。The method for creating a non-excitation period by the residual magnetic excitation method is described in Japanese Patent Laid-Open No. 60-242318 and will not be described. In the third embodiment of FIG. 5, the timings of the switches S1 and S2 are exactly the same as those of the timing chart of FIG. 4, so that in the timing chart of FIG. Only showing.
【0045】スイッチSeはサンプリング終了後、MP
U31が出すタイミング信号によってオンし、積分器5
2Bの出力信号即ちサンプリング回路5Bの出力V02
の値が零になってコンパレータ30が反転すると、これ
をMPU31が検知してオフするものである。The switch Se is set to MP after the sampling is completed.
It is turned on by the timing signal output from U31, and the integrator 5
2B output signal, that is, the output V02 of the sampling circuit 5B
When the value of becomes zero and the comparator 30 is inverted, the MPU 31 detects this and turns off.
【0046】このスイッチSeがオンしている期間τを
MPU31内蔵のカウンタでクロックをカウントするこ
とにより、サンプリング回路5Bでのサンプル値をデジ
タル量に変換する。By counting the clock with the counter built in the MPU 31 during the period τ during which the switch Se is on, the sample value in the sampling circuit 5B is converted into a digital value.
【0047】なお、このカウンタはMPU31の外部に
外付けして構成してもよい。スイッチS3は積分器52
BのコンデンサC1に充電された電荷を放電するための
スイッチである。The counter may be externally attached to the MPU 31. The switch S3 is an integrator 52
This is a switch for discharging the electric charge charged in the B capacitor C1.
【0048】低消費電力タイプのコンパレータ30を使
用した場合、積分器52Bの出力が零になってからスイ
ッチSeがオフするまでに時間を要するため、A/D変
換終了後の積分器の出力を零とするのにスイッチS3が
有用である。When the low power consumption type comparator 30 is used, since it takes time for the switch Se to turn off after the output of the integrator 52B becomes zero, the output of the integrator after the A / D conversion is completed. Switch S3 is useful for zeroing.
【0049】特に入力が過大となり、逆積分の最大時間
以上になった場合、スイッチS3でリセットして次の小
周期でのサンプリング動作を零からスタートするのにこ
のスイッチS3が不可欠である。In particular, when the input becomes too large and the maximum time of inverse integration is exceeded, the switch S3 is indispensable for resetting with the switch S3 and starting the sampling operation in the next small cycle from zero.
【0050】図7の(f),Se,S3は期間T7又は
T14の無励磁期間における図5の第3実施例のA/D
変換動作だけを示したもので、図6の(f),Se,S
3と類似である。7 (f), Se and S3 are A / D of the third embodiment of FIG. 5 in the non-excitation period of the period T7 or T14.
Only the conversion operation is shown in (f), Se, and S of FIG.
Similar to 3.
【0051】なお、図6と図7におけるA/D変換動作
は図6(g)に示すようにMPU31に内蔵又は外付け
のカウンタで計数することでデイジタル値に変換され、
図3の第2実施例のような省費電力の大きい一般的なA
/D変換器20は用いていない。The A / D conversion operation in FIGS. 6 and 7 is converted into a digital value by counting with an internal or external counter in the MPU 31, as shown in FIG.
A general A with large power saving as in the second embodiment of FIG.
The / D converter 20 is not used.
【0052】A/D変換された各小周期の値は、前記第
2実施例の場合とまったく同様にMPU31で演算処理
されて、微分ノイズを除いた流量比例信号だけが取り出
される。図5の第3実施例は電池動作を目的としたもの
であるため、出力のデジタル量は省費電力の大きい図3
のD/A変換器22でD/A変換されることはなく、液
晶表示器などで瞬間流量値や積算流量値として表示され
る。The A / D-converted values of each small period are arithmetically processed by the MPU 31 just as in the case of the second embodiment, and only the flow rate proportional signal excluding the differential noise is extracted. Since the third embodiment of FIG. 5 is intended for battery operation, the digital amount of output is large in power saving.
No D / A conversion is performed by the D / A converter 22 and the liquid crystal display or the like displays the instantaneous flow rate value or the integrated flow rate value.
【0053】上記実施例ではサンプリングした微分ノイ
ズを含む積算値Va1〜Va6から微分ノイズVbを引
算して、流量比例信号だけを取り出しているが、微分ノ
イズVbの値は各大周期に1回測定した値をそれぞれ用
いてもよいし、各大周期以前に求めた10回程度の移動
平均値を測定した値をそれぞれ用いてもよい。In the above embodiment, the differential noise Vb is subtracted from the integrated values Va1 to Va6 including the sampled differential noise to extract only the flow rate proportional signal. However, the value of the differential noise Vb is once in each large cycle. The measured values may be used, or the moving average values of about 10 times obtained before each large cycle may be used.
【0054】微分ノイズVbの値としてこのように複数
回の移動平均値を使用すると、励磁期間の数よりも無励
磁期間の数が少ない本発明において、微分ノイズVbの
値を求める無励磁期間の数を増やして前記移動平均値の
精度を上げることができるため、結果的に流量計の計測
精度を向上できる利点がある(請求項2の発明)。When the moving average value is used as the value of the differential noise Vb a plurality of times in this way, in the present invention in which the number of non-excitation periods is smaller than the number of excitation periods, in the non-excitation period for which the value of the differential noise Vb is obtained. Since the accuracy of the moving average value can be increased by increasing the number, there is an advantage that the measurement accuracy of the flowmeter can be improved as a result (the invention of claim 2).
【0055】また上記各実施例では、大周期の前半と後
半における小周期の数をいずれも3回としたが、2回以
上の複数回とすることが可能である。微分ノイズの大き
さの変動は、電極への付着物の程度又は流体の組成の変
動や薬液注入による濃度の変動で発生するが、これらの
変動は時間的に緩やかであり、励磁の小周期ごと毎回無
励磁期間を作って補償する必要がないためである。Further, in each of the above embodiments, the number of small cycles in the first half and the latter half of the large cycle is three, but it is possible to set it to two or more times. Fluctuations in the magnitude of the differential noise occur due to fluctuations in the degree of deposits on the electrodes, fluctuations in the composition of the fluid, and fluctuations in the concentration due to chemical injection, but these fluctuations are gradual in time, and every small cycle of excitation. This is because it is not necessary to make a non-excitation period each time to compensate.
【0056】特に残留磁気励磁方式を本発明と組合わせ
た場合(請求項3の発明)、通常の安定した状態では流
量の急激な変化がなく、かつ流体の導電度がほぼ一定に
保たれ、導電度の急変がないので、微分ノイズの変化は
時間的にゆっくりと生じるため、無励磁期間を置く間隔
は長くてよく、10〜100回の小周期に1度でよい
が、微分ノイズの変化が急速に生じる場合には2〜5回
の小周期に1回の無励磁期間を置くように前記間隔を可
変にすることが好ましい。In particular, when the residual magnetic excitation method is combined with the present invention (the invention of claim 3), there is no sudden change in the flow rate in a normal stable state, and the conductivity of the fluid is kept substantially constant, Since there is no sudden change in conductivity, the change in differential noise occurs slowly in time, so the interval for placing the non-excitation period may be long, and only once in a small cycle of 10 to 100 times is required. In the case where occurs rapidly, it is preferable to make the interval variable so that one non-excitation period is placed every 2 to 5 small cycles.
【0057】このように2値励磁期間の連続した長さを
適値に決める判断方法として、微分ノイズVbの毎回の
値を過去10〜100回程度マイコン内のメモリに記憶
しておき、最新の微分ノイズVbの値と比較して時間的
変化の程度から判断することができる。As a method of determining the continuous length of the binary excitation period as an appropriate value, the value of the differential noise Vb for each time is stored in the memory in the microcomputer about 10 to 100 times in the past, and the latest value is stored. It can be judged from the degree of temporal change in comparison with the value of the differential noise Vb.
【0058】この時間的変化の程度の判断も、最新の微
分ノイズVbの1回だけの値とそれ以前の値とから判断
するのでなく、最近の5回程度の微分ノイズVbの移動
平均値を、それ以前の過去数10〜数100回の移動平
均値と比較すればより安定な判断が精度良く可能とな
る。The judgment of the degree of this temporal change is not made based on the value of the latest differential noise Vb only once and the value before that, but the moving average value of the differential noise Vb of the latest 5 times is calculated. By comparing with the moving average value of the past several tens to several hundreds of times before that, more stable judgment can be performed with high accuracy.
【0059】また1大周期間内の小周期の数を液体や使
用条件に合わせてあらかじめ設定しておいてもよい。た
とえば水道水では多く、導電度の変動の大きいような薬
液では少なく設定しておくことができる。Further, the number of small cycles within one large cycle may be set in advance according to the liquid and the usage conditions. For example, it can be set to be large for tap water and small for chemical liquids having large fluctuations in conductivity.
【0060】[0060]
(1)電気化学的直流ノイズを従来どうり除去でき、さ
らに無励磁期間の微分ノイズを引き算することによっ
て、小周期の励磁を繰り返す通常の間は正負2値の励磁
で微分ノイズが除去できるため、出力応答を従来技術の
3値励磁のように犠牲にすることなく零点の安定性を向
上できる。(1) Electrochemical direct current noise can be removed as usual, and by subtracting the differential noise during the non-excitation period, the differential noise can be removed by positive and negative binary excitation during normal repetition of small-cycle excitation. , The stability of the zero point can be improved without sacrificing the output response unlike the conventional three-valued excitation.
【0061】(2)小周期の2値励磁を繰り返す間は従
来の2値励磁方式と同一の動作であるため、従来技術の
3値励磁方式の1/2の励磁周波数となり、1/f特性
を持つフローノイズに対する特性を従来技術の3値励磁
方式の場合のように犠牲にする必要がない。このため電
池駆動などの低消費電力タイプの電磁流量計のような微
小信号の電磁流量計でもフローノイズ特性が低下しな
い。(2) Since the operation is the same as that of the conventional binary excitation method while the small-cycle binary excitation is repeated, the excitation frequency is 1/2 of that of the conventional three-valued excitation method, and the 1 / f characteristic is obtained. It is not necessary to sacrifice the characteristics against flow noise having a noise as in the case of the conventional three-valued excitation method. Therefore, the flow noise characteristic does not deteriorate even in the case of an electromagnetic flowmeter with a small signal such as a battery-driven low power consumption type electromagnetic flowmeter.
【0062】(3)また請求項2の発明では、上記
(1)(2)の効果に加えて、補償に使う微分ノイズの
値の実質的な精度が向上でき、そのぶん流量計測の精度
が良くなる。(3) In the invention of claim 2, in addition to the effects of (1) and (2) above, the substantial accuracy of the value of the differential noise used for compensation can be improved, and the accuracy of flow rate measurement can be improved accordingly. Get better.
【0063】(4)無励磁期間を除く小周期の繰り返し
の間の通常の動作は2値励磁方式であるため、特に請求
項3の発明では請求項1又は2の発明の効果に加えて残
留磁気励磁の省電力効果を最大限に発揮でき省費電力が
極小の電池駆動電磁流量計が実現可能となる。(4) Since the normal operation during the repetition of the small period excluding the non-excitation period is the binary excitation method, the invention of claim 3 particularly has the effect of the invention of claim 1 or 2 It is possible to maximize the power saving effect of magnetic excitation and realize a battery-operated electromagnetic flowmeter with minimal power consumption.
【図1】本発明の第1実施例のブロック図である。FIG. 1 is a block diagram of a first embodiment of the present invention.
【図2】図1の第1実施例のタイミングと波形を示す線
図で、(a)は励磁電流と差動増幅器4の出力E1のう
ちの流量比例信号E1s、(b)は差増幅器4の出力E
1のうちの微分ノイズE1n、(c)はサンプリング回
路52の出力Vaとホールド回路の出力Va0、(d)
は無励磁期間の微分ノイズのサンプリング出力Vbとホ
ールド出力Vb0、S1,…,S9はそれぞれスイッチ
S1,…S9のオン・オフタイミングを示す線図であ
る。2 is a diagram showing the timing and waveforms of the first embodiment of FIG. 1, where (a) is the flow rate proportional signal E1s of the exciting current and the output E1 of the differential amplifier 4, and (b) is the difference amplifier 4; Output E
The differential noise E1n, (c) of 1 is the output Va of the sampling circuit 52 and the output Va0 of the hold circuit, (d).
Is a diagram showing the differential noise sampling output Vb and hold outputs Vb0, S1, ..., S9 during the non-excitation period, showing the on / off timings of the switches S1 ,.
【図3】本発明の第2実施例のブロック図である。FIG. 3 is a block diagram of a second embodiment of the present invention.
【図4】図3の第2実施例のタイミングと波形を示す線
図で、(a)は励磁電流と差動増幅器4の出力E1のう
ちの流量比例信号E1s、(b)は差動増幅器4の出力
E1のうちの微分ノイズE1n、(e)はサンプリング
回路5Aの出力V01、S1,S2,S3はスイッチS
1,S2,S3のオン・オフタイミングを示す線図、P
1はMPU21からの制御信号P1のタイミングを示す
線図である。FIG. 4 is a diagram showing the timing and waveforms of the second embodiment of FIG. 3, where (a) is the flow rate proportional signal E1s of the exciting current and the output E1 of the differential amplifier 4, and (b) is the differential amplifier. The differential noise E1n and (e) of the output E1 of FIG. 4 are the outputs V01 of the sampling circuit 5A, and S1, S2 and S3 are the switches S.
A diagram showing the on / off timing of 1, S2, S3, P
1 is a diagram showing the timing of the control signal P1 from the MPU 21.
【図5】本発明の第3実施例のブロック図である。FIG. 5 is a block diagram of a third embodiment of the present invention.
【図6】図5の第3実施例の励磁の小周期におけるタイ
ミングと波形を示す線図で、(f)は積分器52Bの出
力V02、Se,S3はスイッチSe,S3のオン・オ
フタイミング、(g)はMPU31の内部でカウントさ
れるクロックを示す線図である。FIG. 6 is a diagram showing timings and waveforms in a short period of excitation of the third embodiment of FIG. 5, (f) is an output V02 of the integrator 52B, Se and S3 are on / off timings of switches Se and S3. , (G) are diagrams showing clocks counted inside the MPU 31.
【図7】図5の第3実施例の無励磁期間におけるタイミ
ングと波形を示す線図で、(f)、Se、S3はそれぞ
れ図6の(f)、Se、S3に相当する。7 is a diagram showing timings and waveforms in the non-excitation period of the third embodiment of FIG. 5, where (f), Se, and S3 correspond to (f), Se, and S3 of FIG. 6, respectively.
1 流管 2a、2b 電極 3 励磁コイル 4 差動増幅器 5 サンプルホールド回路 5A、5B サンプリング回路 6 サンプルホールド回路 7 励磁回路 8 タイミング回路 10 差動増幅器 11 可変増幅器 20 A/D変換器 21、31 MPU 30 コンパレータ 52,52A,52B,62 積分器 T1,T2,T3,T4,T5,T6,T8,T9,T
10,T11,T12,T13, 励磁期間 T1+T2,T3+T4,T5+T6,T8+T9,T
10+T11,T12+T13 小周期 T7,T14,T14′ 無励磁期間 Ta 前半周期 Tb 後半周期 Ta+Tb 大周期 Va1,Va2,Va3,Va4,Va5,Va6
微分ノイズを含む流量信号 Vb,Vb′ 微分ノイズに対応した信号DESCRIPTION OF SYMBOLS 1 Flow tube 2a, 2b Electrode 3 Excitation coil 4 Differential amplifier 5 Sample hold circuit 5A, 5B Sampling circuit 6 Sample hold circuit 7 Excitation circuit 8 Timing circuit 10 Differential amplifier 11 Variable amplifier 20 A / D converter 21, 31 MPU 30 Comparators 52, 52A, 52B, 62 Integrators T1, T2, T3, T4, T5, T6, T8, T9, T
10, T11, T12, T13, excitation period T1 + T2, T3 + T4, T5 + T6, T8 + T9, T
10 + T11, T12 + T13 Small cycle T7, T14, T14 'Non-excitation period Ta First half cycle Tb Second half cycle Ta + Tb Large cycle Va1, Va2, Va3, Va4, Va5, Va6
Flow rate signal including differential noise Vb, Vb 'Signal corresponding to differential noise
【手続補正書】[Procedure amendment]
【提出日】平成7年9月8日[Submission date] September 8, 1995
【手続補正1】[Procedure amendment 1]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】特許請求の範囲[Correction target item name] Claims
【補正方法】変更[Correction method] Change
【補正内容】[Correction contents]
【特許請求の範囲】[Claims]
【手続補正2】[Procedure amendment 2]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0008[Correction target item name] 0008
【補正方法】変更[Correction method] Change
【補正内容】[Correction contents]
【0008】[0008]
【課題を解決するための手段】前記目的を達成するため
に、請求項1の発明は、矩形波励磁方式の電磁流量計に
おいて、正の励磁期間(T1,T3,T5,)と負の励
磁期間(T2、T4、T6)の一つずつを隣接した期間
(T1+T2、T3+T4、T5+T6)を正・負2値
励磁の小周期(T1+T2、T3+T4、T5+T6)
として、この小周期を複数回くり返した後、前記小周期
の半周期に相当する無励磁期間(T7)を設けて、前記
小周期(T1+T2、T3+T4、T5+T6)の複数
回と前記無励磁期間(T7)の合計をその前半周期(T
a)とするとともに、負の励磁期間(T8,T10,T
12)と正の励磁期間(T9,T11,T13)の一つ
ずつを隣接した期間(T8+T9、T10+T11、T
12+T13)を負・正2値励磁の小周期(T8+T
9、T10+T11、T12+T13)として、この小
周期を複数回くり返した後、前記小周期の半周期に相当
する無励磁期間(T14)を設けて、前記小周期(T8
+T9、T10+T11、T12+T13)の複数回と
前記無励磁期間(T14)の合計をその後半周期(T
b)として、前記前半周期(Ta)と後半周期(Tb)
の合計期間(Ta+Tb)を励磁の大周期(Ta+T
b)となし、前記大周期の前半周期(Ta)と後半周期
(Tb)における2値励磁の小周期毎に微分ノイズを含
む流量信号(Va1,Va2,Va3,Va4,Va
5,Va6)を取り出すとともに、前記無励磁期間(T
7)(T14)毎又は前記大周期以前の無励磁期間(T
14’)毎に微分ノイズに対応した信号(Vb)(V
b’)を取り出して、前記微分ノイズを含む流量信号
(Va1,Va2,Va3,Va4,Va5,Va6)
と前記無励磁期間(T7)(T14)(T14’)毎の
微分ノイズに対応した信号(Vb)(Vb’)に基いて
微分ノイズを除いた流量信号を取り出すことを特徴とす
る電磁流量計である。In order to achieve the above object, the invention of claim 1 provides a positive excitation period (T1, T3, T5) and a negative excitation in a rectangular wave type electromagnetic flow meter. Short period of positive / negative binary excitation (T1 + T2, T3 + T4, T5 + T6) for adjacent periods (T1 + T2, T3 + T4, T5 + T6) adjacent to each one of the periods (T2, T4, T6)
As described above, after repeating this small cycle a plurality of times, a non-excitation period (T7) corresponding to a half cycle of the small cycle is provided, and a plurality of the small cycles (T1 + T2, T3 + T4, T5 + T6) and the non-excitation period ( The total of T7) is the first half period (T
a) and the negative excitation period (T8, T10, T
12) and one of the positive excitation periods (T9, T11, T13) adjacent to each other (T8 + T9, T10 + T11, T).
12 + T13) is a short cycle of negative / positive binary excitation (T8 + T)
9, T10 + T11, T12 + T13), after repeating this small cycle a plurality of times, a non-excitation period (T14) corresponding to a half cycle of the small cycle is provided, and the small cycle (T8
+ T9, T10 + T11, T12 + T13) a plurality of times and the non-excitation period (T14), the total of the latter half period (T).
As b), a half cycle after a first half period (Ta) (Tb)
Of the total period (Ta + Tb) of the exciting period (Ta + T
b), and the flow rate signals (Va1, Va2, Va3, Va4, Va) including differential noise for each small cycle of binary excitation in the first half cycle (Ta) and the second half cycle (Tb) of the large cycle.
5, Va6), and the non-excitation period (T
7) Every non-excitation period (T14) or before the large cycle (T14)
14 ') signal (Vb) (V) corresponding to the differential noise
b ′) is taken out and the flow rate signal (Va1, Va2, Va3, Va4, Va5, Va6) including the differential noise is taken out.
And an electromagnetic flowmeter which extracts a flow rate signal from which differential noise is removed based on the signals (Vb) and (Vb ') corresponding to the differential noise for each non-excitation period (T7) (T14) (T14'). Is.
【手続補正3】[Procedure 3]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0015[Correction target item name] 0015
【補正方法】変更[Correction method] Change
【補正内容】[Correction contents]
【0015】[0015]
【発明の実施の形態】 [第1実施例]図1は本発明の第1実施例を示すブロッ
ク図で、図2はその動作を示すタイミングと各部の波形
を示す線図である。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS [First Embodiment] FIG. 1 is a block diagram showing a first embodiment of the present invention, and FIG. 2 is a diagram showing the timing of its operation and the waveform of each part.
Claims (3)
(T2、T4、T6)の一つずつを隣接した期間(T1
+T2、T3+T4、T5+T6)を正・負2値励磁の
小周期(T1+T2、T3+T4、T5+T6)とし
て、この小周期を複数回くり返した後、前記小周期の半
周期に相当する無励磁期間(T7)を設けて、前記小周
期(T1+T2、T3+T4、T5+T6)の複数回と
前記無励磁期間(T7)の合計をその前半周期(Ta)
とするとともに、 負の励磁期間(T8,T10,T12)と正の励磁期間
(T9,T11,T13)の一つずつを隣接した期間
(T8+T9、T10+T11、T12+T13)を負
・正2値励磁の小周期(T8+T9、T10+T11、
T12+T13)として、この小周期を複数回くり返し
た後、前記小周期の半周期に相当する無励磁期間(T1
4)を設けて、前記小周期(T8+T9、T10+T1
1、T12+T13)の複数回と前記無励磁期間(T1
4)の合計をその後半周期(Tb)として、 前記前半周期(Ta)と項半周期(Tb)の合計期間
(Ta+Tb)を励磁の大周期(Ta+Tb)となし、 前記大周期の前半周期(Ta)と後半周期(Tb)にお
ける2値励磁の小周期毎に微分ノイズを含む流量信号
(Va1,Va2,Va3,Va4,Va5,Va6)
を取り出すとともに、 前記無励磁期間(T7)(T14)毎又は前記大周期以
前の無励磁期間(T14’)毎に微分ノイズに対応した
信号(Vb)(Vb’)を取り出して、 前記微分ノイズを含む流量信号(Va1,Va2,Va
3,Va4,Va5,Va6)と前記無励磁期間(T
7)(T14)(T14’)毎の微分ノイズに対応した
信号(Vb)(Vb’)に基いて微分ノイズを除いた流
量信号を取り出すことを特徴とする電磁流量計。1. A rectangular wave excitation type electromagnetic flow meter, wherein a positive excitation period (T1, T3, T5) and a negative excitation period (T2, T4, T6) are adjacent to each other (T1).
+ T2, T3 + T4, T5 + T6) is defined as a small cycle (T1 + T2, T3 + T4, T5 + T6) of positive / negative binary excitation, and after this small cycle is repeated a plurality of times, a non-excitation period (T7) corresponding to a half cycle of the small cycle. By providing a plurality of small cycles (T1 + T2, T3 + T4, T5 + T6) and the non-excitation period (T7), the first half cycle (Ta)
In addition, the negative excitation period (T8, T10, T12) and the positive excitation period (T9, T11, T13) are adjacent to each other (T8 + T9, T10 + T11, T12 + T13) for negative / positive binary excitation. Small cycle (T8 + T9, T10 + T11,
T12 + T13), after repeating this small cycle a plurality of times, the non-excitation period (T1) corresponding to a half cycle of the small cycle.
4) is provided, and the small cycles (T8 + T9, T10 + T1) are provided.
1, T12 + T13) and the non-excitation period (T1
4) The total of the latter half period (Tb) is defined as the latter half period (Tb), and the total period (Ta + Tb) of the first half period (Ta) and the term half period (Tb) is defined as a large period of excitation (Ta + Tb). Ta) and flow rate signals (Va1, Va2, Va3, Va4, Va5, Va6) including differential noise for each small period of binary excitation in the second half period (Tb).
And the signals (Vb) and (Vb ′) corresponding to the differential noise are extracted for each non-excitation period (T7) (T14) or for each non-excitation period (T14 ′) before the large cycle, and the differential noise Flow rate signal (Va1, Va2, Va
3, Va4, Va5, Va6) and the non-excitation period (T
7) An electromagnetic flow meter, which extracts a flow rate signal from which differential noise is removed based on signals (Vb) and (Vb ') corresponding to differential noise for each of (T14) and (T14').
ノイズの移動平均値を前記小周期毎の流量信号(Va
1,Va2,Va3,Va4,Va5,Va6)から引
き算して微分ノイズを除いた流量信号を取り出すことを
特徴とする請求溝1記載の電磁流量計。2. A moving average value of the differential noise extracted for each of a plurality of non-excitation periods is used as a flow rate signal (Va) for each small period.
1, Va2, Va3, Va4, Va4, Va5, Va6) to extract a flow rate signal from which differential noise has been removed to obtain an electromagnetic flowmeter.
する請求溝1又は2記載の電磁流量計。3. The electromagnetic flowmeter according to claim 1 or 2, wherein a residual magnetic excitation method is used.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20015995A JP3589507B2 (en) | 1995-08-07 | 1995-08-07 | Electromagnetic flow meter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20015995A JP3589507B2 (en) | 1995-08-07 | 1995-08-07 | Electromagnetic flow meter |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0949749A true JPH0949749A (en) | 1997-02-18 |
JP3589507B2 JP3589507B2 (en) | 2004-11-17 |
Family
ID=16419776
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20015995A Expired - Lifetime JP3589507B2 (en) | 1995-08-07 | 1995-08-07 | Electromagnetic flow meter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3589507B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19938160A1 (en) * | 1999-08-16 | 2001-04-12 | Krohne Messtechnik Kg | Magnetic-inductive flow measurement method |
JP2016206053A (en) * | 2015-04-24 | 2016-12-08 | 横河電機株式会社 | Field apparatus |
CN109506742A (en) * | 2017-09-14 | 2019-03-22 | 阿自倍尔株式会社 | Error detection circuit, error detection method and the electromagnetic flowmeter of electromagnetic flowmeter |
-
1995
- 1995-08-07 JP JP20015995A patent/JP3589507B2/en not_active Expired - Lifetime
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19938160A1 (en) * | 1999-08-16 | 2001-04-12 | Krohne Messtechnik Kg | Magnetic-inductive flow measurement method |
DE19938160C2 (en) * | 1999-08-16 | 2003-11-20 | Krohne Messtechnik Kg | Magnetic-inductive flow measuring method and flow meter |
JP2016206053A (en) * | 2015-04-24 | 2016-12-08 | 横河電機株式会社 | Field apparatus |
CN109506742A (en) * | 2017-09-14 | 2019-03-22 | 阿自倍尔株式会社 | Error detection circuit, error detection method and the electromagnetic flowmeter of electromagnetic flowmeter |
Also Published As
Publication number | Publication date |
---|---|
JP3589507B2 (en) | 2004-11-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5998971A (en) | Apparatus and method for coulometric metering of battery state of charge | |
KR100318177B1 (en) | Means for detecting the integrated value of current flow, means for detecting the value of current flow and battery pack using the same | |
US4704908A (en) | Method for compensating interference voltages in the electrode circuit in magnetic-inductive flow measurement | |
JPH0816622B2 (en) | Magnetic induction type flow meter | |
EP0730139A2 (en) | Electromagnetic flowmeter | |
KR100845323B1 (en) | Analog-digital converter | |
JP3602636B2 (en) | Electromagnetic flow meter | |
CN111585244B (en) | Leakage protection circuit, integrated circuit, electronic device, and method | |
JP2001320250A (en) | Offset correcting circuit, offset correction voltage generating circuit and integration circuit | |
JPH0949749A (en) | Electromagnetic flowmeter | |
JPH09126848A (en) | Electromagnetic flowmeter | |
JPH0727580A (en) | Preamplifier for electromagnetic flow meter | |
JP2660694B2 (en) | Integrating circuit | |
JPH0611370A (en) | Electromagnetic flowmeter | |
JP3045664B2 (en) | Electric conductivity measuring device | |
JPH09205367A (en) | Integration a/d conversion method | |
SU1624352A1 (en) | Resistance meter | |
KR100335136B1 (en) | Apparatus of signal transformation | |
CN118214420A (en) | Synchronous analog-to-digital conversion system based on electromagnetic water meter and electromagnetic flowmeter excitation time sequence | |
JPH04288728A (en) | A/d converter | |
JPH0791994A (en) | Method for eliminating noise in electromagnetic flowmeter and converter | |
JPS5830623A (en) | Electromagnetic flowmeter | |
JPS58180955A (en) | A/d converter | |
JPS63133071A (en) | Current-frequency converter | |
JPS5967720A (en) | Lsi for analog-digital conversion |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040210 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040224 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040426 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040426 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040727 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040817 |
|
R150 | Certificate of patent (=grant) or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080827 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090827 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100827 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110827 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120827 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130827 Year of fee payment: 9 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |