JPH0945858A - Semiconductor integrated circuit and manufacture thereof - Google Patents

Semiconductor integrated circuit and manufacture thereof

Info

Publication number
JPH0945858A
JPH0945858A JP7214087A JP21408795A JPH0945858A JP H0945858 A JPH0945858 A JP H0945858A JP 7214087 A JP7214087 A JP 7214087A JP 21408795 A JP21408795 A JP 21408795A JP H0945858 A JPH0945858 A JP H0945858A
Authority
JP
Japan
Prior art keywords
film
lower electrode
electrode film
integrated circuit
semiconductor integrated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7214087A
Other languages
Japanese (ja)
Inventor
Sadayoshi Yoshida
貞義 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP7214087A priority Critical patent/JPH0945858A/en
Publication of JPH0945858A publication Critical patent/JPH0945858A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Integrated Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To lessen a capacitors area to decrease a chip size by a method wherein a viahole is provided to a substrate just under a lower electrode, and a viahole metal film is connected to the lower electrode film. SOLUTION: An MIM capacitor C is composed of a lower electrode film 2, a dielectric film 4, and an upper electrode film 5, wherein the upper electrode film 5 is electrically connected to the source of an FET 10. The lower electrode film 2 is directly connected to the viahole metal film 7 and grounded for the formation of a circuit. Therefore, an additional wiring structure for grounding the lower electrode film 2 is not required, so that a semiconductor integrated circuit of this constitution can be simplified. In this case, the region of the viahole 6 and the region of the MIM capacitor C are formed overlapping each other on a plane, so that the MIM capacitor C can be lessened in area in a semiconductor integrated circuit as compared with a case where a viahole and an MIM capacitor C are separately formed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はキャパシタを一体に
有する半導体集積回路に関し、特にMIM(Metal
−Insulator−Metal)キャパシタを備え
る半導体集積回路及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor integrated circuit integrally having a capacitor, and more particularly to a MIM (Metal).
-Insulator-Metal) A semiconductor integrated circuit including a capacitor and a method for manufacturing the same.

【0002】[0002]

【従来の技術】半導体集積回路で所要の回路を構成する
場合、受動素子としてのキャパシタを構成することが要
求されることがあり、従来では半導体基板の表面に導電
膜−絶縁膜−導電膜を積層形成したスタック構成のMI
Mキャパシタが提案されている。このようなMIMキャ
パシタを用いて図3に示すような回路を構成する場合、
FET10のソースに接続したMIMキャパシタの他端
を接地する必要がある。このような回路が構成されるマ
イクロ波半導体集積回路では、接地は半導体基板の裏面
側に設けた金属膜で構成されるため、MIMキャパシタ
の他端をこの裏面金属に接続する必要があり、このため
従来のMIMキャパシタは図4に示す構造がとられてい
る。
2. Description of the Related Art When a required circuit is formed by a semiconductor integrated circuit, it is sometimes required to form a capacitor as a passive element. Conventionally, a conductive film-insulating film-conductive film is formed on the surface of a semiconductor substrate. MI with a stacked structure formed by stacking
M capacitors have been proposed. When a circuit as shown in FIG. 3 is constructed using such an MIM capacitor,
The other end of the MIM capacitor connected to the source of the FET 10 needs to be grounded. In a microwave semiconductor integrated circuit having such a circuit, the ground is composed of a metal film provided on the back surface side of the semiconductor substrate, and therefore it is necessary to connect the other end of the MIM capacitor to this back surface metal. Therefore, the conventional MIM capacitor has the structure shown in FIG.

【0003】図4(a),(b)はこのようなMIMキ
ャパシタの平面配置図とそのBB線断面図である。ま
た、図5はその製造方法を工程順に示す断面図である。
まず、図5(a)のように、半絶縁性基板21上に金属
膜31を形成し、この金属膜31をドライエッチング技
術によりキャパシタの容量値に対応した面積に形成し、
キャパシタ下部電極膜22を形成する。このとき、バイ
アホールを形成する領域では下部電極膜22の一部を除
去しておく。ついで、図5(b)のように、全面にSi
2 等の絶縁膜23を全面に形成する。そして、前記下
部電極膜22に対応した領域を覆っている絶縁膜23を
除去し、下部電極膜22を露呈させた後、図5(c)の
ように、全面にキャパシタの誘電体膜となる絶縁膜32
を形成し、かつ下部電極膜22に対応した領域の絶縁膜
32を残してその他は取り除き、キャパシタ誘電体膜2
4を形成する。
4 (a) and 4 (b) are a plan layout view of such an MIM capacitor and a cross-sectional view taken along line BB thereof. Further, FIG. 5 is a sectional view showing the manufacturing method in order of steps.
First, as shown in FIG. 5A, a metal film 31 is formed on the semi-insulating substrate 21, and this metal film 31 is formed in an area corresponding to the capacitance value of the capacitor by a dry etching technique.
The capacitor lower electrode film 22 is formed. At this time, part of the lower electrode film 22 is removed in the region where the via hole is formed. Then, as shown in FIG.
An insulating film 23 such as O 2 is formed on the entire surface. Then, after removing the insulating film 23 covering the region corresponding to the lower electrode film 22 and exposing the lower electrode film 22, a dielectric film of a capacitor is formed on the entire surface as shown in FIG. 5C. Insulation film 32
Is formed, and the insulating film 32 in the region corresponding to the lower electrode film 22 is left, and the others are removed to remove the capacitor dielectric film 2
4 is formed.

【0004】さらに、図5(d)のように、バイアホー
ル形成領域の周辺に沿って前記絶縁膜23にスルーホー
ル29を形成して前記下部電極膜22をスルーホール2
9により電気接続した状態とし、その上から金属膜33
を形成する。そして、図5(e)のように、この金属膜
33をドライエッチング技術により選択除去すること
で、前記誘電体膜24の上に上部電極膜25を形成し、
前記スルーホール29を含むバイアホール形成領域に表
面金属膜28を形成する。その後、図5(f)のよう
に、半絶縁性基板21の厚さを薄くした後、裏面から選
択的にエッチングしてバイアホール26を開口し、かつ
この開口内面を含む半絶縁性基板21の裏面に金属膜を
形成することでバイアホール金属膜27を形成する。
Further, as shown in FIG. 5D, a through hole 29 is formed in the insulating film 23 along the periphery of the via hole forming region to form the lower electrode film 22 through the through hole 2.
9 and the metal film 33 from above.
To form Then, as shown in FIG. 5E, the metal film 33 is selectively removed by a dry etching technique to form an upper electrode film 25 on the dielectric film 24.
A surface metal film 28 is formed in the via hole formation region including the through hole 29. After that, as shown in FIG. 5F, after the thickness of the semi-insulating substrate 21 is reduced, the back surface is selectively etched to open the via hole 26, and the semi-insulating substrate 21 including the inner surface of the opening is formed. A via hole metal film 27 is formed by forming a metal film on the back surface of the.

【0005】このMIMキャパシタでは、図4のよう
に、上部電極膜25、誘電体膜24、及び下部電極膜2
2によりMIMキャパシタCが構成される。そして、下
部電極膜22はスルーホール29を介して表面金属膜2
8に接続され、さらにバイアホール金属膜27に電気接
続されることになる。したがって、MIMキャパシタC
の一端はFET10のソースに接続され、他端は接地さ
れることになる。
In this MIM capacitor, as shown in FIG. 4, the upper electrode film 25, the dielectric film 24, and the lower electrode film 2 are formed.
2 constitutes the MIM capacitor C. The lower electrode film 22 is formed on the surface metal film 2 through the through hole 29.
8 and further electrically connected to the via hole metal film 27. Therefore, the MIM capacitor C
Will be connected to the source of the FET 10 and the other end will be grounded.

【0006】[0006]

【発明が解決しようとする課題】この従来のMIMキャ
パシタの構成では、バイアホールの領域とMIMキャパ
シタの領域が個別にチップ基板内に形成されるため、M
IMキャパシタの下部電極膜の接地配線とバイアホール
の接地配線がそれぞれ必要となり、半導体集積回路のチ
ップサイズが大きくなるという問題がある。特に、FE
Tのソースに直接キャパシタを接続するようなマイクロ
波回路においては、FETのソースに低周波を十分に接
地するために大きな容量が必要であるため、キャパシタ
の専有面積は大きく、チップサイズが大きくなるという
問題がある。
In this conventional MIM capacitor structure, since the via hole region and the MIM capacitor region are separately formed in the chip substrate, M
There is a problem that the ground wiring of the lower electrode film of the IM capacitor and the ground wiring of the via hole are required respectively, which increases the chip size of the semiconductor integrated circuit. In particular, FE
In a microwave circuit in which a capacitor is directly connected to the source of T, a large capacitance is required to sufficiently ground the low frequency to the source of the FET, so that the area occupied by the capacitor is large and the chip size is large. There is a problem.

【0007】また、従来のMIMキャパシタの構成で
は、バイアホール金属膜とMIMキャパシタとを電気接
続するためにスルーホールを形成する必要があり、その
ための製造工数が独立して必要であり、製造工程数が増
加する原因となっている。本発明は、キャパシタの専有
面積を低減してチップの小型化を可能とし、かつ製造工
数を削減して製造の容易化を可能にした半導体集積回路
及びその製造方法を提供することを目的とする。
Further, in the conventional MIM capacitor structure, it is necessary to form a through hole for electrically connecting the via-hole metal film and the MIM capacitor, and the number of manufacturing steps for that is required independently. This is the cause of the increase in the number. SUMMARY OF THE INVENTION It is an object of the present invention to provide a semiconductor integrated circuit and a method of manufacturing the same that can reduce the area occupied by a capacitor to reduce the size of a chip and reduce the number of manufacturing steps to facilitate the manufacturing. .

【0008】[0008]

【課題を解決するための手段】本発明の半導体集積回路
は、基板上に下部電極膜、誘電体膜、上部電極膜の積層
構造からなるMIMキャパシタが形成され、かつ基板に
は下部電極膜の直下にバイアホールが形成され、バイア
ホール金属膜が下部電極膜に接続されている構成とされ
る。この場合、バイアホール金属膜は基板の裏面に形成
され、半導体集積回路の接地電極として構成される。
In a semiconductor integrated circuit of the present invention, an MIM capacitor having a laminated structure of a lower electrode film, a dielectric film, and an upper electrode film is formed on a substrate, and the substrate has a lower electrode film. A via hole is formed immediately below, and the via hole metal film is connected to the lower electrode film. In this case, the via-hole metal film is formed on the back surface of the substrate and serves as the ground electrode of the semiconductor integrated circuit.

【0009】また、本発明の製造方法は、半導体集積回
路の基板の表面に設けた下地の絶縁膜上に所要パターン
の金属膜からなる下部電極膜を形成し、この下部電極膜
上を含む基板の表面上に絶縁膜を形成し、この絶縁膜を
選択エッチングして下部電極膜の所要領域を開口し、全
面に誘電体膜を形成し、この誘電体膜上に金属膜を形成
し、誘電体膜と金属膜を個々に或いは同時に選択エッチ
ングして誘電体膜と上部電極膜を形成し、下部電極の直
下の基板に下部電極膜に達するまでの開口を基板の裏面
側から形成し、この開口を含む基板の裏面側に金属膜を
形成してバイアホールを形成する工程とを含んでいる。
Further, according to the manufacturing method of the present invention, a lower electrode film made of a metal film having a desired pattern is formed on an underlying insulating film provided on the surface of a substrate of a semiconductor integrated circuit, and the substrate including the lower electrode film is formed. An insulating film is formed on the surface of the, the insulating film is selectively etched to open a required region of the lower electrode film, a dielectric film is formed on the entire surface, a metal film is formed on the dielectric film, and a dielectric film is formed. The body film and the metal film are selectively etched individually or simultaneously to form the dielectric film and the upper electrode film, and an opening is formed in the substrate immediately below the lower electrode until the lower electrode film is reached. Forming a via hole by forming a metal film on the back surface side of the substrate including the opening.

【0010】[0010]

【発明の実施の形態】次に、本発明の実施形態を図面を
参照して説明する。図1(a),(b)は本発明のMI
Mキャパシタの平面配置図とそのAA線断面図であり、
図3に示した回路を構成した例である。また、図2はこ
のMIMキャパシタの製造方法を工程順に示す断面図で
ある。以下、製造工程に従ってMIMキャパシタの構成
を説明する。先ず、図2(a)のように、半絶縁性基板
1上に金属膜11を形成し、ドライエッチング技術によ
りこの金属膜11をキャパシタの容量値に対応した面積
に選択エッチングし、キャパシタの下部電極膜2を形成
する。このとき、下部電極膜2は後工程で形成するバイ
アホールの直上を含む領域に矩形または円形等に形成す
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, embodiments of the present invention will be described with reference to the drawings. 1A and 1B show the MI of the present invention.
FIG. 2 is a plan view of the M capacitor and a cross-sectional view taken along the line AA,
It is an example which constituted the circuit shown in FIG. 2A to 2D are sectional views showing a method of manufacturing this MIM capacitor in the order of steps. The configuration of the MIM capacitor will be described below according to the manufacturing process. First, as shown in FIG. 2A, a metal film 11 is formed on the semi-insulating substrate 1, and the metal film 11 is selectively etched by a dry etching technique to have an area corresponding to the capacitance value of the capacitor. The electrode film 2 is formed. At this time, the lower electrode film 2 is formed in a rectangular shape, a circular shape, or the like in a region including immediately above a via hole formed in a later step.

【0011】次いで、図2(b)のように、SiO2
の絶縁膜3を全面に形成する。さらに、MIMキャパシ
タの下部電極膜2に対応した領域を覆っている絶縁膜3
を除去し、下部電極膜2を必要とされる面積だけ露呈さ
せる。その後、図2(c)のように、キャパシタの誘電
体膜となる絶縁膜12を形成する。さらに、図2(d)
のように、その上に金属膜13を形成し、これらの絶縁
膜12と金属膜13とを選択エッチングにより下部電極
膜2に対応した領域だけ残し、不要部を取り除くこと
で、所要面積の誘電体膜4と上部電極膜5とが形成さ
れ、これらでMIMキャパシタCが形成される。
Next, as shown in FIG. 2B, an insulating film 3 of SiO 2 or the like is formed on the entire surface. Further, the insulating film 3 covering the region corresponding to the lower electrode film 2 of the MIM capacitor
Are removed to expose the lower electrode film 2 in a required area. After that, as shown in FIG. 2C, the insulating film 12 which becomes the dielectric film of the capacitor is formed. Furthermore, FIG. 2 (d)
As described above, the metal film 13 is formed thereon, and the insulating film 12 and the metal film 13 are selectively etched to leave only a region corresponding to the lower electrode film 2, and unnecessary portions are removed. The body film 4 and the upper electrode film 5 are formed, and these form the MIM capacitor C.

【0012】しかる後、図2(e)のように、全面半絶
縁性基板1の厚さを薄くした後、裏面にバイアホール6
を開口し、この開口内に前記下部電極膜2を裏面側から
露呈させる。ついで、この開口を含む半絶縁性基板1の
裏面に金属膜を形成し、バイアホール金属膜7を形成す
る。なお、前記誘電体膜4と上部電極膜5とはそれぞれ
独立したエッチング工程で選択エッチングしてもよい。
After that, as shown in FIG. 2E, after the thickness of the whole semi-insulating substrate 1 is reduced, the via hole 6 is formed on the back surface.
Is opened, and the lower electrode film 2 is exposed in the opening from the back surface side. Then, a metal film is formed on the back surface of the semi-insulating substrate 1 including the opening, and a via hole metal film 7 is formed. The dielectric film 4 and the upper electrode film 5 may be selectively etched in independent etching steps.

【0013】このように形成されたMIMキャパシタC
では、下部電極膜2、誘電体膜4、上部電極膜5により
MIMキャパシタCが形成され、かつ上部電極膜5はF
ET10のソースに電気接続される。また、下部電極膜
2はバイアホール金属膜7に直接接続されて接地され、
これにより図3の回路が構成される。したがって、MI
MキャパシタCの下部電極膜2を接地するための配線構
造を別個に設ける必要がなく、構造の簡略化が実現でき
る。また、このMIMキャパシタCでは、バイアホール
6の領域とMIMキャパシタCの領域とが平面上で重ね
られた状態で形成されるため、従来のように両者を個別
に形成した場合に比較して、半導体集積回路に占める面
積を低減することができる。換言すれば、同一平面面積
において、より大面積のMIMキャパシタを形成するこ
とが可能となる。
The MIM capacitor C thus formed
Then, the MIM capacitor C is formed by the lower electrode film 2, the dielectric film 4, and the upper electrode film 5, and the upper electrode film 5 is F
Electrically connected to the source of ET10. Further, the lower electrode film 2 is directly connected to the via-hole metal film 7 and grounded,
This constitutes the circuit of FIG. Therefore, MI
Since it is not necessary to separately provide a wiring structure for grounding the lower electrode film 2 of the M capacitor C, the structure can be simplified. Further, in this MIM capacitor C, the region of the via hole 6 and the region of the MIM capacitor C are formed in a state of being overlapped with each other on a plane, and therefore, as compared with the conventional case where the both are individually formed, The area occupied by the semiconductor integrated circuit can be reduced. In other words, it is possible to form a larger area MIM capacitor in the same plane area.

【0014】すなわち、図1のMIMキャパシタを、図
4の従来構成と同じ平面面積に形成した場合、図4に示
されるバイアホール26及びスルーホール29の面積の
和が図1のキャパシタの容量面積として利用できる。一
般に、バイアホールに100μm角程度の面積が必要さ
れるとすると、スルーホールを含め150μm角程度の
面積がバイアホール形成に必要となり、誘電体膜の誘電
率5、厚さ2500Åとしたとき、C=5.6〔pF〕
程度のキャパシタ面積に等しくなる。したがって、キャ
パシタの容量として10〔pF〕必要とされる場合に
は、本発明のキャパシタ面積が40000μm2 に対
し、従来のキャパシタ面積は62500μm 2 となり、
約1.6倍であることが理解できる。
That is, the MIM capacitor of FIG.
4 is formed in the same plane area as the conventional configuration of No. 4 shown in FIG.
Of the area of the via hole 26 and the through hole 29
The sum can be used as the capacitance area of the capacitor of FIG. one
Generally, a via hole requires an area of about 100 μm square.
If it is about 150 μm square including through holes,
Area is required to form via holes, and the dielectric
When the rate is 5 and the thickness is 2500 Å, C = 5.6 [pF]
Equal to the capacitor area. Therefore,
When 10 [pF] is required as the capacity of Pashita
Has a capacitor area of 40,000 μm of the present invention.2Against
However, the conventional capacitor area is 62500 μm. 2Becomes
It can be seen that it is about 1.6 times.

【0015】したがって、これから同じ容量のキャパシ
タを構成する場合、従来構成に比較して本実施形態では
その平面専有面積を縮小することが可能となる。すなわ
ち、前記した10〔pF〕のMIMキャパシタを構成す
るとした場合、本実施形態ではキャパシタの面積を従来
に比較して60%に低減でき、半導体集積回路の小型化
が実現できる。
Therefore, when capacitors having the same capacitance are to be constructed, the area occupied by the plane can be reduced in this embodiment as compared with the conventional configuration. That is, when the above-mentioned 10 [pF] MIM capacitor is configured, in the present embodiment, the area of the capacitor can be reduced to 60% as compared with the conventional case, and the semiconductor integrated circuit can be downsized.

【0016】また、本実施形態の製造方法では、工程の
途中でスルーホールを形成する工程が不要であるため、
このスルーホールの形成に必要とされる開口のエッチン
グ、開口内への導電材の充填等の工程が不要となり、製
造工程数を削減して製造の容易化が可能となる。
Further, in the manufacturing method of this embodiment, the step of forming the through hole is not required during the process,
The steps of etching the openings and filling the openings with a conductive material, which are necessary for forming the through holes, are not necessary, and the number of manufacturing steps can be reduced to facilitate the manufacturing.

【0017】[0017]

【発明の効果】以上説明したように本発明は、MIMキ
ャパシタの直下にバイアホールを配置しており、MIM
の下部電極膜をバイアホール金属膜に電気接続して接地
回路を構成しているため、所定の容量を得るためのMI
Mキャパシタの専有面積を低減でき、半導体集積回路の
小型化が実現できる。また、MIMキャパシタの下部電
極膜をバイアホール金属膜に直接接続して接地すること
ができるため、MIMキャパシタに対する接地配線を独
立して形成する必要がなく、構造の簡略化が実現でき
る。
As described above, according to the present invention, the via hole is arranged immediately below the MIM capacitor.
Since the lower electrode film of is electrically connected to the via-hole metal film to form a ground circuit, MI for obtaining a predetermined capacitance is required.
The area occupied by the M capacitor can be reduced, and the semiconductor integrated circuit can be downsized. Further, since the lower electrode film of the MIM capacitor can be directly connected to the via-hole metal film and grounded, it is not necessary to separately form the ground wiring for the MIM capacitor, and the structure can be simplified.

【0018】また、本発明の製造方法では、MIMキャ
パシタの下部電極膜とバイアホール金属膜とを電気接続
するためのスルーホールの製造工程が不要となり、製造
工程数を削減し、製造を容易に行うことができる。
Further, according to the manufacturing method of the present invention, the manufacturing process of the through hole for electrically connecting the lower electrode film of the MIM capacitor and the via-hole metal film is unnecessary, the number of manufacturing processes is reduced, and the manufacturing is facilitated. It can be carried out.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のMIMキャパシタの一実施形態の平面
配置図とそのAA線断面図である。
FIG. 1 is a plan layout view and an AA line sectional view of one embodiment of an MIM capacitor of the present invention.

【図2】図1のMIMキャパシタの製造方法を工程順に
示す断面図である。
2A to 2D are cross-sectional views showing a method of manufacturing the MIM capacitor of FIG. 1 in process order.

【図3】図1のMIMキャパシタを含む半導体集積回路
の等価回路図である。
FIG. 3 is an equivalent circuit diagram of a semiconductor integrated circuit including the MIM capacitor of FIG.

【図4】従来のMIMキャパシタの一例の平面配置図と
そのBB線断面図である。
FIG. 4 is a plan layout view of an example of a conventional MIM capacitor and a cross-sectional view taken along line BB thereof.

【図5】図4のMIMキャパシタの製造方法を工程順に
示す断面図である。
FIG. 5 is a cross-sectional view showing the method of manufacturing the MIM capacitor of FIG. 4 in order of steps.

【符号の説明】[Explanation of symbols]

1 半絶縁性基板 2 下部電極膜 4 誘電体膜 5 上部電極膜 6 バイアホール 7 バイアホール金属膜 10 FET 1 semi-insulating substrate 2 lower electrode film 4 dielectric film 5 upper electrode film 6 via hole 7 via hole metal film 10 FET

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 半導体集積回路の基板上に形成された下
部電極膜、誘電体膜、上部電極膜の積層構造からなるM
IMキャパシタを備える半導体集積回路において、前記
基板には前記下部電極膜の直下にバイアホールが形成さ
れ、バイアホール金属膜が前記下部電極膜に接続されて
いることを特徴とする半導体集積回路。
1. An M having a laminated structure of a lower electrode film, a dielectric film and an upper electrode film formed on a substrate of a semiconductor integrated circuit.
A semiconductor integrated circuit comprising an IM capacitor, wherein a via hole is formed in the substrate immediately below the lower electrode film, and a via hole metal film is connected to the lower electrode film.
【請求項2】 バイアホール金属膜は前記基板の裏面に
形成され、半導体集積回路の接地電極として構成される
請求項1の半導体集積回路。
2. The semiconductor integrated circuit according to claim 1, wherein the via-hole metal film is formed on the back surface of the substrate and serves as a ground electrode of the semiconductor integrated circuit.
【請求項3】 MIMキャパシタは半導体集積回路に形
成または搭載された素子の接地端との間に介挿され、上
部電極膜は前記素子に接続され、下部電極膜がバイアホ
ールに接続される請求項2の半導体集積回路。
3. The MIM capacitor is inserted between a ground end of an element formed or mounted on a semiconductor integrated circuit, the upper electrode film is connected to the element, and the lower electrode film is connected to a via hole. Item 2. The semiconductor integrated circuit of item 2.
【請求項4】 半導体集積回路の基板の表面に設けた下
地の絶縁膜上に所要パターンの金属膜からなる下部電極
膜を形成する工程と、この下部電極膜上を含む前記基板
の表面上に絶縁膜を形成する工程と、この絶縁膜を選択
エッチングして前記下部電極膜の所要領域を開口する工
程と、全面に誘電体膜を形成する工程と、この誘電体膜
上に金属膜を形成する工程と、前記誘電体膜と金属膜を
個々に或いは同時に選択エッチングして誘電体膜と上部
電極膜を形成する工程と、前記下部電極の直下の前記基
板に下部電極膜に達するまでの開口を基板の裏面側から
形成する工程と、この開口を含む基板の裏面側に金属膜
を形成してバイアホールを形成する工程とを含むことを
特徴とする半導体集積回路の製造方法。
4. A step of forming a lower electrode film made of a metal film having a required pattern on an underlying insulating film provided on the surface of a substrate of a semiconductor integrated circuit, and on the surface of the substrate including the lower electrode film. Forming an insulating film, selectively etching the insulating film to open a required region of the lower electrode film, forming a dielectric film on the entire surface, and forming a metal film on the dielectric film And a step of selectively etching the dielectric film and the metal film individually or simultaneously to form a dielectric film and an upper electrode film, and an opening in the substrate immediately below the lower electrode until reaching the lower electrode film. And a step of forming a metal film on the back surface side of the substrate including the opening to form a via hole, a method of manufacturing a semiconductor integrated circuit.
JP7214087A 1995-07-31 1995-07-31 Semiconductor integrated circuit and manufacture thereof Pending JPH0945858A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7214087A JPH0945858A (en) 1995-07-31 1995-07-31 Semiconductor integrated circuit and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7214087A JPH0945858A (en) 1995-07-31 1995-07-31 Semiconductor integrated circuit and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH0945858A true JPH0945858A (en) 1997-02-14

Family

ID=16650022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7214087A Pending JPH0945858A (en) 1995-07-31 1995-07-31 Semiconductor integrated circuit and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH0945858A (en)

Similar Documents

Publication Publication Date Title
US5478773A (en) Method of making an electronic device having an integrated inductor
JPH03179763A (en) Anti-fuse structure and formation thereof
JPH0786523A (en) Integrated circuit and forming method thereof
JPH08241958A (en) On-chip decoupling capacitor and forming method
US8080854B2 (en) Electronic device on substrate with cavity and mitigated parasitic leakage path
KR20010006086A (en) Capacitors in integrated circuits
JPH0936312A (en) Inductance element and its manufacture
US5915188A (en) Integrated inductor and capacitor on a substrate and method for fabricating same
US5550068A (en) Process of fabricating a circuit element for transmitting microwave signals
US6417556B1 (en) High K dielectric de-coupling capacitor embedded in backend interconnect
JP3578644B2 (en) Semiconductor device
JPH0963847A (en) Inductor element and fabrication thereof
JPH0945858A (en) Semiconductor integrated circuit and manufacture thereof
KR100641536B1 (en) method of fabricating the MIM capacitor having high capacitance
US5210599A (en) Semiconductor device having a built-in capacitor and manufacturing method thereof
JPH07221266A (en) Mim capacitor, its manufacture and manufacture of semiconductor device
EP1128435A2 (en) Microwave electric elements using porous silicon dioxide layer and forming method of same
JPH05206286A (en) Semiconductor integrated circuit
JP3719774B2 (en) Monolithic integrated circuit
JP2001339048A (en) Semiconductor device and its manufacturing method
JP2564916B2 (en) Semiconductor device and manufacturing method thereof
JPH0653414A (en) Microwave integrated circuit
JPS6056306B2 (en) Microwave IC device and its manufacturing method
JP2965638B2 (en) Semiconductor device
JPH07106514A (en) Semiconductor integrated circuit device

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313118

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees