JPH0945369A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JPH0945369A
JPH0945369A JP8150254A JP15025496A JPH0945369A JP H0945369 A JPH0945369 A JP H0945369A JP 8150254 A JP8150254 A JP 8150254A JP 15025496 A JP15025496 A JP 15025496A JP H0945369 A JPH0945369 A JP H0945369A
Authority
JP
Japan
Prior art keywords
aqueous electrolyte
secondary battery
electrolyte secondary
heat
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8150254A
Other languages
Japanese (ja)
Other versions
JP3536534B2 (en
Inventor
Kyohei Usami
恭平 宇佐美
Miho Kawai
みほ 川合
Yutaka Maeda
豊 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP15025496A priority Critical patent/JP3536534B2/en
Publication of JPH0945369A publication Critical patent/JPH0945369A/en
Application granted granted Critical
Publication of JP3536534B2 publication Critical patent/JP3536534B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a safe nonaqueous electrolyte secondary battery in which repture or the like is not caused at overcharge, overdischarge and abnormal temperature rise time. SOLUTION: A nonaqueous electrolyte secondary battery is provided with a positive electrode 11 capable of storing and releasing lithim, a negative electrode 12 composed of a material capable of storing and releasing lithium metal, lithium alloy and lithim or a conductive material, a separator 13, nonaqueous electrolyte 14 and a battery vessel 15. The nonaqueous electrolyte 14 is composed of a thermally denaturant high polymer or a electrolytically polymerized monomer hardened by at least either one of overcharge, overdischarge and a temperature rise, an organic solvent and electrolyte salt, and the thermally denaturant high polymer or the electrolytically polymerized monomer is sealed in a microcapsule.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【技術分野】本発明は,過充電時等の異常時においても
安全な非水電解液二次電池に関する。
TECHNICAL FIELD The present invention relates to a non-aqueous electrolyte secondary battery that is safe even during abnormal conditions such as overcharging.

【0002】[0002]

【従来技術】従来,リチウムを吸蔵,放出できる正極
と,リチウム金属,リチウム合金,リチウムを吸蔵,放
出できる物質または導電性物質からなる負極と,セパレ
ータと,非水電解液と,電池容器とよりなる非水電解液
二次電池が広く使用されている。上記非水電解液二次電
池は,自己放電が少なく,保存性に優れている。また,
上記非水電解液二次電池は,小型化,軽量化が容易であ
る。このため,コードレス電話,電気自動車等の電源と
して有望視されている。
2. Description of the Related Art Conventionally, a positive electrode capable of occluding and releasing lithium, a negative electrode comprising a lithium metal, a lithium alloy, a substance capable of occluding and releasing lithium or a conductive substance, a separator, a non-aqueous electrolyte solution, and a battery container have been used. The non-aqueous electrolyte secondary battery is widely used. The non-aqueous electrolyte secondary battery described above has little self-discharge and is excellent in storage stability. Also,
The above non-aqueous electrolyte secondary battery is easy to reduce in size and weight. For this reason, it is considered as a promising power source for cordless telephones, electric vehicles and the like.

【0003】[0003]

【解決しようとする課題】しかしながら,上記非水電解
液二次電池は,過充電及び過放電,または短絡等の異常
事態において,電池内部の化学反応が暴走し,電池内部
が高温となる場合がある。また,電池内部の圧力が異常
に上昇する場合がある。かかる異常現象が生じたとき,
最悪の場合には,電池が破断してしまうおそれがある。
However, in the above non-aqueous electrolyte secondary battery, in an abnormal situation such as overcharging and overdischarging, or a short circuit, a chemical reaction inside the battery may run away, resulting in a high temperature inside the battery. is there. In addition, the pressure inside the battery may rise abnormally. When such an abnormal phenomenon occurs,
In the worst case, the battery may break.

【0004】本発明は,かかる問題点に鑑み,過充電,
過放電,異常な温度上昇に際して,破断等が生じない,
安全な,非水電解液二次電池を提供しようとするもので
ある。
In view of the above problems, the present invention provides overcharge,
No breakage, etc. does not occur when over-discharged or abnormal temperature rise
It aims to provide a safe, non-aqueous electrolyte secondary battery.

【0005】[0005]

【課題の解決手段】請求項1の発明は,リチウムを吸
蔵,放出できる正極と,リチウム金属,リチウム合金,
リチウムを吸蔵,放出できる物質または導電性物質から
なる負極と,セパレータと,非水電解液と,電池容器と
を有する非水電解液二次電池において,上記非水電解液
は,過充電,過放電,温度上昇の少なくともいずれか1
つにより硬化する熱変性高分子又は電解重合性モノマー
と,有機溶媒と,電解質塩とよりなることを特徴とする
非水電解液二次電池である。
According to the invention of claim 1, a positive electrode capable of inserting and extracting lithium, a lithium metal, a lithium alloy,
In a non-aqueous electrolyte secondary battery having a negative electrode composed of a substance capable of inserting and extracting lithium or a conductive substance, a separator, a non-aqueous electrolyte, and a battery container, the non-aqueous electrolyte is overcharged, over-charged. At least one of discharge and temperature rise 1
A non-aqueous electrolyte secondary battery comprising a heat-modified polymer or an electropolymerizable monomer that is cured by two, an organic solvent, and an electrolyte salt.

【0006】本発明において最も注目すべきことは,上
記非水電解液は,過充電,過放電,温度上昇の少なくと
もいずれか1つの異常現象が非水電解液二次電池に発生
したとき,それにより熱変性高分子又は電解重合性モノ
マーと,有機溶媒と,電解質塩とよりなることである。
What is most noticeable in the present invention is that when the non-aqueous electrolyte secondary battery has at least one abnormal phenomenon of overcharge, over-discharge and temperature rise, Is composed of a heat-modified polymer or an electropolymerizable monomer, an organic solvent, and an electrolyte salt.

【0007】上記熱変性高分子は,電池電解液としての
非水電解液中に添加することにより,上記異常現象にお
いて電池内部の温度が異常上昇した際に,上記熱変性高
分子が非水電解液を含有しつつ,非水電解液を硬化させ
る。これにより,非水電解液のイオン導電率は急速に低
下し,非水電解液二次電池が電池特性を失う。
The heat-denatured polymer is added to a non-aqueous electrolyte as a battery electrolyte so that when the temperature inside the battery abnormally rises due to the abnormal phenomenon, the heat-denatured polymer becomes non-aqueous electrolyte. While containing the liquid, it cures the non-aqueous electrolyte. As a result, the ionic conductivity of the non-aqueous electrolyte rapidly decreases, and the battery characteristics of the non-aqueous electrolyte secondary battery are lost.

【0008】従って,非水電解液二次電池の内部におけ
る,温度の異常上昇の原因となった化学反応も停止し,
よって,電池の破断等が防止できる。なお,上記非水電
解液の硬化は,80℃以上において,発生することが好
ましい。
Therefore, the chemical reaction that causes the abnormal temperature rise inside the non-aqueous electrolyte secondary battery also stops,
Therefore, breakage of the battery can be prevented. In addition, it is preferable that the curing of the nonaqueous electrolytic solution occurs at 80 ° C. or higher.

【0009】次に,上記電解重合性モノマーは,ある値
以上の電位差を加えることにより重合することができ
る。このため,過充電等により非水電解液二次電池にお
ける正極が高電位となった場合,正極上には,上記電解
重合性モノマーが重合し,高分子化することにより生成
した酸化重合膜が析出する。
Next, the electropolymerizable monomer can be polymerized by applying a potential difference of a certain value or more. Therefore, when the positive electrode in the non-aqueous electrolyte secondary battery becomes high potential due to overcharging or the like, the above-mentioned electrolytically polymerized monomer is polymerized to form an oxidative polymerized film formed by polymerization. To deposit.

【0010】例えば,4.5V以上の電位差で重合する
電解重合性モノマーが非水電解液中に含まれていた場
合,過充電により正極が4.5V以上の高電位となるこ
とにより,正極上に,上記電解重合性モノマーが重合
し,高分子化することにより生成した酸化重合膜が析出
する。
For example, when the non-aqueous electrolytic solution contains an electropolymerizable monomer that is polymerized at a potential difference of 4.5 V or more, the positive electrode becomes a high potential of 4.5 V or more due to overcharge, and Then, the above-mentioned electrolytically polymerizable monomer is polymerized, and an oxidatively polymerized film formed by polymerizing is polymerized.

【0011】これにより,非水電解液のイオン導電率は
急速に低下し,非水電解液二次電池が電池特性を失う。
従って,非水電解液二次電池の内部における,過剰の発
熱も停止し,よって,電池の破断等が防止できる。
As a result, the ionic conductivity of the non-aqueous electrolytic solution is rapidly reduced, and the non-aqueous electrolytic solution secondary battery loses its battery characteristics.
Therefore, excessive heat generation inside the non-aqueous electrolyte secondary battery is also stopped, and thus breakage of the battery can be prevented.

【0012】以上のごとく,本発明の非水電解液二次電
池において,非水電解液は,過充電,過放電,温度上昇
の少なくともいずれか1つの異常現象により硬化する熱
変性高分子又は電解重合性モノマーと,有機溶媒と,電
解質塩とよりなる。
As described above, in the non-aqueous electrolyte secondary battery of the present invention, the non-aqueous electrolyte is a heat-denatured polymer or an electrolyte that is cured by at least one abnormal phenomenon of overcharge, overdischarge, and temperature rise. It consists of a polymerizable monomer, an organic solvent, and an electrolyte salt.

【0013】これにより,上述の異常事態に際して,電
池内部において,上記熱変性高分子又は電解重合性モノ
マーにより,化学反応が生じる。上記化学反応により,
非水電解液の内部抵抗は上昇する。この結果,上記非水
電解二次電池は電池特性を失い,電池特性をもたらして
いた化学反応が止み,現状以上の温度上昇も,内圧上昇
も生じなくなる。従って,非水電解液二次電池の破断等
を防止することができる。
As a result, in the case of the above-mentioned abnormal situation, a chemical reaction occurs inside the battery due to the heat-modified polymer or the electropolymerizable monomer. Due to the above chemical reaction,
The internal resistance of the non-aqueous electrolyte increases. As a result, the non-aqueous electrolytic secondary battery loses its battery characteristics, the chemical reaction that brought the battery characteristics to a halt, and neither the temperature rise nor the internal pressure rise than the current situation occurs. Therefore, breakage of the non-aqueous electrolyte secondary battery can be prevented.

【0014】上記のごとく,本発明によれば,過充電,
過放電,異常な温度上昇に際して,破断等が生じない,
安全な,非水電解液二次電池を提供することができる。
As described above, according to the present invention, overcharge,
No breakage, etc. does not occur when over-discharged or abnormal temperature rise
It is possible to provide a safe non-aqueous electrolyte secondary battery.

【0015】次に,請求項2の発明のように,上記熱変
性高分子又は電解重合性モノマーは,マイクロカプセル
の中に封入されていることが好ましい。これにより,非
水電解液二次電池が異常温度に達したときに,マイクロ
カプセルが崩壊又は溶融して,マイクロカプセルの中に
含有されていた熱変性高分子又は電解重合性モノマー
が,非水電解液へと放出される。これにより,上述のご
とく温度の異常上昇を抑制して,電池の破断等を防止で
きる。また,電池が正常温度である場合には,熱変性高
分子又は電解重合性モノマーはマイクロカプセルの中で
安定して保存される。このため,長期間の使用後におい
ても,熱変性高分子又は電解重合性モノマーは上記の効
果を有効に発揮することができる。
Next, as in the invention of claim 2, it is preferable that the heat-modified polymer or the electropolymerizable monomer is encapsulated in a microcapsule. As a result, when the non-aqueous electrolyte secondary battery reaches an abnormal temperature, the microcapsules collapse or melt, and the heat-modified polymer or electropolymerizable monomer contained in the microcapsules becomes non-aqueous. It is released into the electrolyte. As a result, it is possible to prevent the temperature from rising abnormally and prevent the battery from breaking. Further, when the battery is at a normal temperature, the heat-denatured polymer or the electropolymerizable monomer is stably stored in the microcapsules. Therefore, the heat-modified polymer or the electropolymerizable monomer can effectively exhibit the above effects even after long-term use.

【0016】上記マイクロカプセルには,電池が異常温
度に達したときに,マイクロカプセルが崩壊或いは溶融
して,マイクロカプセルの中に含有されている熱変性高
分子又は電解重合性モノマーを放出できる材料を用い
る。また,マイクロカプセルの壁膜物質の融点は,内容
物である熱変性高分子又は電解重合性モノマーが硬化を
開始する温度より僅かに低い温度であることが好まし
い。これにより,熱変性高分子又は電解重合性モノマー
が硬化する前にマイクロカプセルが崩壊又は溶融して,
熱変性高分子または電解重合性モノマーが非水電解液へ
放出される。そのため,熱変性高分子又は電解重合性モ
ノマーが非水電解液の中で硬化して,上記の効果を有効
に発揮することができる。
The above-mentioned microcapsule is a material capable of disintegrating or melting the microcapsule and releasing the heat-modified polymer or the electropolymerizable monomer contained in the microcapsule when the battery reaches an abnormal temperature. To use. Further, the melting point of the wall film material of the microcapsules is preferably a temperature slightly lower than the temperature at which the heat-modified polymer or the electropolymerizable monomer as the content starts to cure. This allows the microcapsules to collapse or melt before the heat-modified polymer or electropolymerizable monomer is cured,
The heat-modified polymer or the electropolymerizable monomer is released into the non-aqueous electrolytic solution. Therefore, the heat-modified polymer or the electropolymerizable monomer is cured in the nonaqueous electrolytic solution, and the above effect can be effectively exhibited.

【0017】マイクロカプセルの壁膜物質の融点は,具
体的には,90℃〜120℃の範囲であることが更に好
ましい。90℃未満の場合には,電池の通常使用状態に
おいて,マイクロカプセルが崩壊又は溶融するおそれが
ある。逆に,120℃を越える場合には,電池が異常な
高温状態に達したときに,マイクロカプセルが崩壊又は
溶融せず,熱変性高分子又は電解重合性モノマーを非水
電解液へ放出することができないおそれがある。
More specifically, the melting point of the wall film material of the microcapsules is more preferably in the range of 90 ° C to 120 ° C. If the temperature is lower than 90 ° C., the microcapsules may be disintegrated or melted in the normal use condition of the battery. On the other hand, when the temperature exceeds 120 ° C, the microcapsules do not collapse or melt when the battery reaches an abnormally high temperature, and the heat-modified polymer or electropolymerizable monomer is released to the non-aqueous electrolyte. May not be possible.

【0018】マイクロカプセルの中に熱変性高分子又は
電解重合性モノマーを封入する一般的方法は,まず,熱
変性高分子又は電解重合性モノマーを微粒子状に分散し
た状態に調製し,これにカプセル化剤,即ち壁膜になる
物質を添加し,硬化,固定することによって,熱変性高
分子又は電解重合性モノマーを包み込んでカプセル化を
行なう。
A general method for encapsulating a heat-modified polymer or an electropolymerizable monomer in a microcapsule is to first prepare the heat-modified polymer or the electropolymerizable monomer in the form of fine particles, and then encapsulate the capsule. By adding a curing agent, that is, a substance that forms a wall film, and curing and fixing, a heat-modified polymer or an electropolymerizable monomer is wrapped and encapsulated.

【0019】マイクロカプセルの壁膜物質には,例え
ば,高分子材料を用いる。即ち,高分子材料を,熱変性
高分子又は電解重合性モノマーの周囲に析出させる。析
出方法は,壁膜となる高分子の溶液に高分子が溶けない
非溶媒を添加する,又は溶媒を乾燥させる。
For the wall film substance of the microcapsule, for example, a polymer material is used. That is, the polymer material is deposited around the heat-modified polymer or the electropolymerizable monomer. As the precipitation method, a non-solvent in which the polymer is insoluble is added to the solution of the polymer forming the wall film, or the solvent is dried.

【0020】上記カプセル化剤としては,例えば,ポリ
エチレンを用いる。更に,電池の安全性を向上させるた
めにマイクロカプセルの中には上記熱変性高分子又は電
解重合性モノマーに加えて難燃剤を含有させることによ
り,電池の異常発熱時の発火を防止できる。
Polyethylene, for example, is used as the encapsulating agent. Further, in order to improve the safety of the battery, a flame retardant is contained in the microcapsule in addition to the heat-modified polymer or the electrolytically polymerizable monomer, so that the ignition of the battery during abnormal heat generation can be prevented.

【0021】次に,請求項3の発明のように,マイクロ
カプセルは,セパレータ又は非水電解液の一方或いは双
方に含有されていることが好ましい。これにより,マイ
クロカプセルが崩壊又は溶融したとき,マイクロカプセ
ルの中の熱変性高分子又は電解重合性モノマーが,非水
電解液へと放出される。
Next, as in the third aspect of the invention, it is preferable that the microcapsules are contained in one or both of the separator and the non-aqueous electrolytic solution. As a result, when the microcapsules collapse or melt, the heat-modified polymer or the electropolymerizable monomer in the microcapsules is released into the non-aqueous electrolyte.

【0022】次に,請求項4の発明のように,請求項1
の熱変性高分子又は電解重合性モノマーに代えて,鎖状
カーボネートを用いるとともに,該鎖状カーボネートは
マイクロカプセルの中に封入されていることが好まし
い。上記鎖状カーボネートを,非水電解液中に添加する
ことにより,電池内部の温度が異常上昇した際に,リチ
ウムとの反応によりリチウム炭酸アルキル化合物を生成
し,これが,電解液中に含まれる微量水分と反応して電
解液/電極界面に安定な不働態皮膜である炭酸リチウム
を形成する。従って,非水電解液二次電池の内部におけ
る,温度の異常上昇の原因となった化学反応も停止し,
よって,電池の破断等が防止できる。
Next, as in the invention of claim 4, claim 1
It is preferable that a chain carbonate is used in place of the heat-modified polymer or the electrolytically polymerizable monomer, and the chain carbonate is encapsulated in microcapsules. When the above chain carbonate is added to the non-aqueous electrolyte solution, when the temperature inside the battery abnormally rises, a lithium alkyl carbonate compound is generated by the reaction with lithium, which is a trace amount contained in the electrolyte solution. It reacts with water to form a stable passive film, lithium carbonate, at the electrolyte / electrode interface. Therefore, the chemical reaction that caused the abnormal temperature rise inside the non-aqueous electrolyte secondary battery also stops,
Therefore, breakage of the battery can be prevented.

【0023】また,鎖状カーボネートはマイクロカプセ
ルの中に封入されているため,上記熱変性高分子又は電
解重合性モノマーをマイクロカプセルの中に封入する場
合と同様に,電池を長期間使用した後においても,マイ
クロカプセル内の鎖状カーボネートは上記の効果を有効
に発揮できる。
Since the chain carbonate is encapsulated in the microcapsule, after the battery is used for a long period of time, as in the case of encapsulating the heat-modified polymer or the electropolymerizable monomer in the microcapsule. Also in the above, the chain carbonate in the microcapsule can effectively exhibit the above effect.

【0024】次に,請求項5の発明のように,上記熱変
性高分子は,蛋白質であることが好ましい。上記蛋白質
は,無触媒,硬化剤を必要としない単一成分系,硬化時
間が短いという理由により優れている。そして,請求項
6の発明のように,上記蛋白質は,アルブミン,カゼイ
ン,アクチン,ミオシン,ケラチン,及びコラーゲンの
グループより選ばれる1種または2種以上であることが
好ましい。
Next, as in the invention of claim 5, the heat-denatured polymer is preferably a protein. The above proteins are excellent because they are catalyst-free, a single component system that does not require a curing agent, and have a short curing time. Further, as in the invention of claim 6, the protein is preferably one or more selected from the group consisting of albumin, casein, actin, myosin, keratin, and collagen.

【0025】次に,請求項7の発明のように,上記鎖状
カーボネートは,一般式,R1−O−(C=O)−O−
R2(ここにR1,R2はアルキル基である)により表
される化合物が好ましい。上記一般式により表される化
合物は高温時におけるリチウムとの反応性が高く,不働
態皮膜を形成しやすいという理由により優れている。
Next, according to the invention of claim 7, the chain carbonate has the general formula R1-O- (C = O) -O-
A compound represented by R2 (wherein R1 and R2 are alkyl groups) is preferable. The compound represented by the above general formula is excellent in that it has high reactivity with lithium at high temperatures and easily forms a passive film.

【0026】また,請求項8の発明のように,上記鎖状
カーボネートは,ジメチルカーボネート,ジエチルカー
ボネート,ジイソプロピルカーボネート,エチルメチル
カーボネートのグループより選ばれる1種または2種以
上の物質であることが好ましい。これらは,特に,高温
時におけるリチウムとの反応性において優れている。
Further, as in the invention of claim 8, it is preferable that the chain carbonate is one or more substances selected from the group consisting of dimethyl carbonate, diethyl carbonate, diisopropyl carbonate and ethyl methyl carbonate. . These are particularly excellent in reactivity with lithium at high temperatures.

【0027】また,請求項9の発明のように,上記電解
重合性モノマーは,ナフタレン誘導体,アントラセン誘
導体,ポリフルオレン誘導体,ピロール誘導体,チオフ
ェン誘導体,及びアニリン誘導体のグループより選ばれ
る1種または2種以上の物質であることが好ましい。上
記物質はイオン導電率が低い重合膜を生成するという理
由により,優れている。
Further, as in the invention of claim 9, the electropolymerizable monomer is one or two selected from the group of naphthalene derivative, anthracene derivative, polyfluorene derivative, pyrrole derivative, thiophene derivative and aniline derivative. The above substances are preferable. The above substances are excellent because they form polymerized films with low ionic conductivity.

【0028】上記の熱変性高分子,又は鎖状カーボネー
トは,これらのうちの1種だけを用いることもできる
が,2種類以上を組み合わせて用いてもよい。
The above heat-modified polymer or chain carbonate may be used alone, or two or more kinds may be used in combination.

【0029】また,請求項10の発明のように,上記非
水電解液中における熱変性高分子,電解重合性モノマー
又は鎖状カーボネートの含有量は,1重量%〜50重量
%であることが好ましい。上記重量混合比が1重量%未
満である場合には,過充電,過放電,温度上昇の際に,
熱変性高分子,電解重合性モノマー又は鎖状カーボネー
トの固有の硬化反応が生じ難く,よって非水電解液の内
部抵抗が上昇しない。そのため,電池内部を流れる電流
を低下させ,温度上昇を抑制する効果を得ることが困難
である。一方,上記重量混合比が50重量%を越えた場
合には,通常の電池特性を低下させ,非水電解液二次電
池の性能を低下させるおそれがある。
Further, as in the invention of claim 10, the content of the heat-modified polymer, the electropolymerizable monomer or the chain carbonate in the non-aqueous electrolytic solution is 1% by weight to 50% by weight. preferable. When the above weight mixing ratio is less than 1% by weight, when overcharge, overdischarge, or temperature rise,
The inherent curing reaction of the heat-modified polymer, the electropolymerizable monomer or the chain carbonate is unlikely to occur, so that the internal resistance of the non-aqueous electrolyte does not increase. Therefore, it is difficult to obtain the effect of reducing the current flowing inside the battery and suppressing the temperature rise. On the other hand, if the weight mixing ratio exceeds 50% by weight, normal battery characteristics may be deteriorated and the performance of the non-aqueous electrolyte secondary battery may be deteriorated.

【0030】次に,請求項11の発明のように,マイク
ロカプセルは,少なくとも難燃剤を有していることが好
ましい。これにより,電池の異常発熱時の発火を防止で
きる。次に,請求項12の発明のように,難燃剤は,リ
ン化合物,ハロゲン化合物,及びリンとハロゲン元素と
を含有する化合物のグループから選ばれる1種又は2種
以上であることが好ましい。これにより,電池の発火を
確実に防止できる。
Next, it is preferable that the microcapsules have at least a flame retardant. As a result, it is possible to prevent ignition when the battery heats up abnormally. Next, as in the invention of claim 12, the flame retardant is preferably one or more selected from the group consisting of phosphorus compounds, halogen compounds, and compounds containing phosphorus and a halogen element. As a result, the ignition of the battery can be reliably prevented.

【0031】なお,上記有機溶媒は,電解質塩の非水溶
媒として用いるものである。また電解質塩は,非水電解
液二次電池の電解質として用いるものである。
The organic solvent is used as a non-aqueous solvent for the electrolyte salt. The electrolyte salt is used as an electrolyte for the non-aqueous electrolyte secondary battery.

【0032】[0032]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

実施形態例1 本発明の実施形態例にかかる非水電解液二次電池につ
き,図1を用いて説明する。図1に示すごとく,本例の
非水電解液二次電池1は,リチウムを吸蔵,放出できる
正極11と,リチウム金属,リチウム合金,リチウムを
吸蔵,放出できる物質または導電性物質からなる負極1
2と,セパレータ13と,非水電解液14と,電池容器
15とよりなる。上記非水電解液14は,異常な温度上
昇により硬化する熱変性高分子と,有機溶媒と,電解質
塩とよりなる。
Embodiment 1 A non-aqueous electrolyte secondary battery according to an embodiment of the present invention will be described with reference to FIG. As shown in FIG. 1, the non-aqueous electrolyte secondary battery 1 of the present embodiment comprises a positive electrode 11 capable of occluding and releasing lithium and a negative electrode 1 made of a lithium metal, a lithium alloy, a substance capable of occluding and releasing lithium, or a conductive substance.
2, a separator 13, a non-aqueous electrolyte solution 14, and a battery container 15. The non-aqueous electrolyte solution 14 is composed of a heat-denatured polymer that hardens due to an abnormal temperature rise, an organic solvent, and an electrolyte salt.

【0033】上記非水電解液14は,有機溶媒であるプ
ロピレンカーボネートとジメトキシエタンとの等体積混
合溶媒に,電解質塩であるLiPF6 を,1M(mol
/リットル)の割合で溶解させた溶液90重量%と,熱
変性高分子としての卵白蛋白質10重量%とを混合する
ことにより構成されている。
The non-aqueous electrolyte 14 is prepared by adding 1 M (mol) of LiPF 6 as an electrolyte salt to an equal volume mixed solvent of propylene carbonate and dimethoxyethane as an organic solvent.
90% by weight of a solution dissolved at a ratio of 1 / liter) and 10% by weight of egg white protein as a heat-denatured polymer.

【0034】上記正極11は,正極活物質であるLiM
24 を90重量%と,導電剤であるケッチェンブラ
ックを6重量%と,ポリテトラフルオロエチレン4重量
%とを混合した混合物を,正極集電体110であるステ
ンレスメッシュに加圧成形し,その後200℃の熱処理
を施すことにより構成されている。
The positive electrode 11 is made of LiM, which is a positive electrode active material.
A mixture obtained by mixing 90% by weight of n 2 O 4 , 6% by weight of Ketjen black as a conductive agent, and 4% by weight of polytetrafluoroethylene was pressed into a stainless steel mesh as the positive electrode current collector 110. Then, a heat treatment at 200 ° C. is performed thereafter.

【0035】上記負極12は,乾燥アルゴンガス雰囲気
中において,リチウム金属箔を負極集電体120である
ニッケルエキスパンドメタルメッシュに圧着することに
より構成されている。
The negative electrode 12 is formed by pressing a lithium metal foil onto a nickel expanded metal mesh, which is the negative electrode current collector 120, in a dry argon gas atmosphere.

【0036】上記セパレータ13は,ポリプロピレン不
織布により構成されている。以上の正極11,負極1
2,セパレータ13及び非水電解液14を,正極ケース
151,負極ケース152及び両者を固定するガスケッ
ト16よりなる電池容器15に組付け,コイン型の非水
電解液二次電池1を得る。なお,上記被水電解液14
は,予めセパレータ13に含浸されてある。
The separator 13 is made of polypropylene nonwoven fabric. Positive electrode 11 and negative electrode 1
2, the separator 13 and the non-aqueous electrolyte solution 14 are assembled into the battery case 15 made up of the positive electrode case 151, the negative electrode case 152 and the gasket 16 for fixing them to obtain the coin type non-aqueous electrolyte secondary battery 1. In addition, the above-mentioned electrolyte 14
Have been impregnated in the separator 13 in advance.

【0037】次に,本例における作用効果につき説明す
る。本例の非水電解液二次電池1における非水電解液1
4は,異常な温度上昇により硬化する卵白蛋白質と,有
機溶媒と,電解質塩とよりなる。
Next, the operation and effect of this embodiment will be described. Nonaqueous Electrolyte 1 in Nonaqueous Electrolyte Secondary Battery 1 of this Example
4 is composed of egg white protein which is hardened by an abnormal temperature rise, an organic solvent, and an electrolyte salt.

【0038】上記卵白蛋白質は,異常現象として非水電
解液の温度が70℃を越えた時,有機溶媒であるプロピ
レンカーボネートとジメトキシエタンとを含有しつつ硬
化するという性質を有している。これにより,非水電解
液のイオン導電率が急速に低下するため,非水電解液二
次電池1は電池特性を失う。そのため,温度の異常上昇
の原因となった,化学反応も低下し,非水電解液二次電
池1の破断を防止することができる。
As an abnormal phenomenon, the above egg white protein has a property that it hardens while containing the organic solvents propylene carbonate and dimethoxyethane when the temperature of the non-aqueous electrolyte exceeds 70 ° C. As a result, the ionic conductivity of the non-aqueous electrolyte solution rapidly decreases, and the non-aqueous electrolyte secondary battery 1 loses its battery characteristics. Therefore, the chemical reaction that causes the abnormal temperature rise is reduced, and the breakage of the non-aqueous electrolyte secondary battery 1 can be prevented.

【0039】従って,本例によれば,過充電,過放電,
異常な温度上昇に際して,破断等が生じない,安全な,
非水電解液二次電池を提供することができる。
Therefore, according to this example, overcharge, overdischarge,
It is safe and does not break when an abnormal temperature rises.
A non-aqueous electrolyte secondary battery can be provided.

【0040】なお,本例においては有機溶媒として,プ
ロピレンカーボネートとジメトキシエタンとの等体積混
合溶媒を,電解質塩としてLiPF6 を使用したが,こ
れ以外にも,例えば有機溶媒としてエチレンカーボネー
ト,プロピレンカーボネート,ジメチルスルホキシド,
γ−ブチロラクトン,スルホランジメチルホルムアミ
ド,1,2−ジメトキシエタン,テトラヒドロフラン,
2−メチルテトラヒドロフラン等,及びこれらの混合液
を,また例えば,電解質塩として,LiBF4 或いはL
iAsF6 を用いた場合でも,本例と同様に安全な非水
電解液二次電池を得ることができる。
In this example, an equal volume mixed solvent of propylene carbonate and dimethoxyethane was used as the organic solvent, and LiPF 6 was used as the electrolyte salt. However, other than this, for example, ethylene carbonate or propylene carbonate may be used as the organic solvent. , Dimethyl sulfoxide,
γ-butyrolactone, sulfolane dimethylformamide, 1,2-dimethoxyethane, tetrahydrofuran,
2-Methyltetrahydrofuran, etc., and a mixed solution thereof may be used as, for example, an electrolyte salt such as LiBF 4 or L
Even when iAsF 6 is used, a safe non-aqueous electrolyte secondary battery can be obtained as in this example.

【0041】実施形態例2 本例においては,本発明にかかる試料1〜3及び比較試
料に対し,いくつかの試験を行い,その安全性について
調べた。まず,試料1〜3及び比較試料は,いずれも実
施形態例1に示す構成のコイン型非水電解液二次電池で
ある。
Embodiment 2 In this example, several tests were conducted on Samples 1 to 3 according to the present invention and a comparative sample to examine the safety. First, the samples 1 to 3 and the comparative sample are all coin type non-aqueous electrolyte secondary batteries having the configuration shown in the first embodiment.

【0042】試料1における非水電解液は,実施形態例
1に示す,電解質塩を有機溶媒に溶解させた溶液90重
量%に,熱変性高分子である卵白蛋白質を10重量%混
合したものである。
The non-aqueous electrolytic solution in Sample 1 is a mixture of 90% by weight of a solution obtained by dissolving an electrolyte salt in an organic solvent shown in Embodiment 1 and 10% by weight of egg white protein which is a heat-denatured polymer. is there.

【0043】試料2における非水電解液は,試料1の卵
白蛋白質をマイクロカプセルに含有させたものを混合し
たものである。上記マイクロカプセルは以下のように作
製した。カプセルの壁膜剤にポリエチレンを用いた。ポ
リエチレンをキシレンに溶解させたのち,この溶媒に卵
白蛋白質を加えてよく分散させた。この間攪拌を続け
た。これにエタノールを加え相分離させた。この溶液か
らマイクロカプセルをろ過によって分離し,その後減圧
乾燥した。
The non-aqueous electrolytic solution in sample 2 is a mixture of sample 1 containing egg white protein in microcapsules. The above microcapsules were produced as follows. Polyethylene was used as the wall film agent of the capsule. After polyethylene was dissolved in xylene, egg white protein was added to this solvent and well dispersed. During this time, stirring was continued. Ethanol was added to this and the phases were separated. Microcapsules were separated from this solution by filtration and then dried under reduced pressure.

【0044】試料3における非水電解液は,電解重合性
モノマーである2−ナフチルアミンを20重量%,上述
の溶液80重量%に混合したものである。試料4におけ
る非水電解液は,試料3の2−ナフチルアミンをマイク
ロカプセルに含有させたものを混合したものである。マ
イクロカプセルは上記試料2と同様にして作製した。
The non-aqueous electrolytic solution in Sample 3 is a mixture of 20% by weight of 2-naphthylamine, which is an electropolymerizable monomer, and 80% by weight of the above solution. The non-aqueous electrolyte in sample 4 is a mixture of sample 3 containing 2-naphthylamine in microcapsules. Microcapsules were produced in the same manner as in Sample 2 above.

【0045】試料5における非水電解液は,鎖状カーボ
ネートであるジメチルカーボネートをマイクロカプセル
に含有させたものを30重量%,上述の溶液70重量%
に混合したものである。マイクロカプセルは上記試料2
と同様にして作製した。比較試料は,試料1〜5と同様
の構成を有するコイン型非水電解液二次電池である。た
だし,非水電解液には硬化性有機物として作用する物質
が混合されていない。
The non-aqueous electrolyte in Sample 5 contained 30% by weight of microcapsules containing dimethyl carbonate, which is a chain carbonate, and 70% by weight of the above solution.
It is a mixture of. Microcapsule is sample 2 above
Was prepared in the same manner as in. The comparative sample is a coin type non-aqueous electrolyte secondary battery having the same configuration as Samples 1 to 5. However, the non-aqueous electrolyte does not contain a substance that acts as a curable organic substance.

【0046】次に,上記各試験について説明する。まず
第1は,高温貯蔵試験である。上記試験においては,各
試料を温度80℃に保持された恒温槽に24時間放置す
る。第2は,過充電試験である。上記試験においては,
各試料を過電圧4.5Vにおいて,24時間充電する。
Next, each of the above tests will be described. The first is the high temperature storage test. In the above test, each sample is left for 24 hours in a constant temperature bath maintained at a temperature of 80 ° C. The second is an overcharge test. In the above test,
Each sample is charged at an overvoltage of 4.5V for 24 hours.

【0047】第3は,短絡試験である。上記試験におい
ては,各試料の正極と負極とを導線で接続し,放置す
る。これらの試験の終了後,破断等の現象を生じなけれ
ば,その試料は安全性に優れた非水電解液二次電池であ
ると結論できる。
The third is a short circuit test. In the above test, the positive electrode and the negative electrode of each sample are connected with a conducting wire and left to stand. After the completion of these tests, if no phenomenon such as breakage occurs, it can be concluded that the sample is a non-aqueous electrolyte secondary battery with excellent safety.

【0048】上記試験の結果について説明する。本発明
にかかる試料1〜5は,高温貯蔵試験において,自己発
熱温度が120℃を越えない。また,試験終了後,破裂
等していない。
The results of the above test will be described. In Samples 1 to 5 according to the present invention, the self-heating temperature does not exceed 120 ° C. in the high temperature storage test. Moreover, after the test was completed, there was no rupture.

【0049】また,上記各試料1〜5は,過充電試験及
び短絡試験において,電池温度がある程度上昇する。し
かし,破断等は生じない。一方,比較試料は,高温貯蔵
試験及び過充電試験において,電池容器の膨張変形及び
破裂が確認され,短絡試験においては,電池内部での異
常な温度上昇が認められた。以上より,本発明にかかる
試料1〜5は,比較試料に比べて,安全性の高い非水電
解液二次電池であることがわかる。
In each of the samples 1 to 5, the battery temperature rises to some extent in the overcharge test and the short circuit test. However, it does not break. On the other hand, in the comparative sample, expansion deformation and rupture of the battery container were confirmed in the high temperature storage test and overcharge test, and an abnormal temperature rise inside the battery was observed in the short circuit test. From the above, it can be seen that Samples 1 to 5 according to the present invention are highly safe non-aqueous electrolyte secondary batteries as compared with the comparative sample.

【0050】更に,各試料1〜5の非水電解液のイオン
導電率について,上記高温貯蔵試験を行なう前と後にお
いて測定した。このイオン導電率は,各試料1〜5の非
水電解液が25℃の温度であるときに,交流インピーダ
ンス法により測定した。その結果,高温貯蔵試験を行な
う前の,試料1〜5の非水電解液イオン導電率は,15
mS/cmであった。一方,上記高温貯蔵試験後には,
各試料の上記イオン導電率は1mS/cmであった。
Further, the ionic conductivity of each of the nonaqueous electrolytic solutions of Samples 1 to 5 was measured before and after the above high temperature storage test. This ionic conductivity was measured by the AC impedance method when the nonaqueous electrolytic solution of each sample 1 to 5 was at a temperature of 25 ° C. As a result, the non-aqueous electrolyte ionic conductivity of Samples 1 to 5 before the high temperature storage test was 15
It was mS / cm. On the other hand, after the high temperature storage test,
The ionic conductivity of each sample was 1 mS / cm.

【0051】このことから,本発明にかかる試料1〜5
は,電池の温度上昇に際して,前述した熱変性高分子,
電解重合性モノマー又は鎖状カーボネートにより,高温
の際には,非水電解液のイオン導電率が低下し,その結
果,電池特性を失い,電池の破断が生じないことが判
る。従って,試料1〜5の非水電解液二次電池は,安全
性が高いといえる。
From these facts, Samples 1 to 5 according to the present invention
Is the above-mentioned heat-denatured polymer when the temperature of the battery rises,
It can be seen that, due to the electrolytically polymerizable monomer or the chain carbonate, the ionic conductivity of the non-aqueous electrolytic solution decreases at high temperature, resulting in loss of battery characteristics and no battery breakage. Therefore, it can be said that the nonaqueous electrolyte secondary batteries of Samples 1 to 5 have high safety.

【0052】実施形態例3 本例においては,非水電解液二次電池の充放電サイクル
特性評価を行なった。充放電サイクル特性評価は,20
℃で充放電サイクルを20回行ない,そのときの非水電
解液二次電池の充放電効率を測定することにより行なっ
た。非水電解液二次電池としては,実施形態例2の試料
1,2のコイン型非水電解液二次電池を用いた。その結
果,マイクロカプセルを使用していない試料1の場合は
82%であるのに対し,マイクロカプセルを使用した試
料2の場合は95%であった。
Embodiment 3 In this example, the charge / discharge cycle characteristics of the non-aqueous electrolyte secondary battery were evaluated. Charge / discharge cycle characteristic evaluation is 20
The charging / discharging cycle was performed 20 times at 0 ° C., and the charging / discharging efficiency of the non-aqueous electrolyte secondary battery at that time was measured. As the non-aqueous electrolyte secondary battery, the coin-type non-aqueous electrolyte secondary batteries of Samples 1 and 2 of Embodiment 2 were used. As a result, it was 82% in the case of Sample 1 not using microcapsules, whereas it was 95% in the case of Sample 2 using microcapsules.

【0053】また,マイクロカプセルを使用しない試料
1,マイクロカプセルを使用した試料2は実施形態例2
に示すように,いずれも安全性の向上が認められた。こ
のことは,試料2では,安全性向上に加え,卵白蛋白質
のマイクロカプセル化により電池性能の低下をも抑制で
きたものと考えられる。
Further, the sample 1 not using the microcapsule 1 and the sample 2 using the microcapsule are the second embodiment.
As shown in Fig. 5, the improvement of safety was confirmed in all cases. This is considered to be because in Sample 2, in addition to improving safety, deterioration of battery performance could be suppressed by microencapsulation of egg white protein.

【0054】次に,試料5の非水電解液二次電池の充放
電サイクル特性評価を行なった。試料5の非水電解液二
次電池は,上記のように,マイクロカプセルの中に封入
されたジメチルカーボネートを用いた。充放電サイクル
特性評価は,60℃で充放電サイクルを20回行ない,
そのときの非水電解液二次電池の充放電効率を測定する
ことにより行なった。
Next, the charge / discharge cycle characteristics of the non-aqueous electrolyte secondary battery of Sample 5 were evaluated. The non-aqueous electrolyte secondary battery of Sample 5 used dimethyl carbonate encapsulated in microcapsules as described above. Charge / discharge cycle characteristics evaluation was performed by performing 20 charge / discharge cycles at 60 ° C.
The charging / discharging efficiency of the non-aqueous electrolyte secondary battery at that time was measured.

【0055】なお,比較のために,マイクロカプセルの
中に封入されているジメチルカーボネートの代わりに,
マイクロカプセルの中に封入されていないジメチルカー
ボネートを非水電解液に添加して,非水電解液二次電池
を製造し,これを比較例1とした。この比較例1につい
ても,試料5と同様の充放電サイクル特性評価を行なっ
た。
For comparison, instead of dimethyl carbonate encapsulated in microcapsules,
Dimethyl carbonate not enclosed in microcapsules was added to the non-aqueous electrolytic solution to manufacture a non-aqueous electrolytic solution secondary battery, which was set as Comparative Example 1. With respect to this Comparative Example 1, the same charge / discharge cycle characteristic evaluation as in Sample 5 was performed.

【0056】その結果,マイクロカプセルを使用した試
料5の場合は,95%であるのに対し,マイクロカプセ
ルを使用しない比較例1の場合は20%であり,電池性
能の大幅な低下が確認された。このことから,鎖状カー
ボネートは通常はマイクロカプセル中に封入したほうが
よいといえる。
As a result, in the case of the sample 5 using the microcapsules, it was 95%, whereas in the case of the comparative example 1 not using the microcapsules, it was 20%, and it was confirmed that the battery performance was significantly lowered. It was From this, it can be said that it is usually better to encapsulate the chain carbonate in microcapsules.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施形態例1における,非水電解液二次電池の
断面図。
FIG. 1 is a cross-sectional view of a non-aqueous electrolyte secondary battery according to a first exemplary embodiment.

【符号の説明】[Explanation of symbols]

1...非水電解液二次電池, 11...正極, 12...負極, 13...セパレータ, 14...非水電解液, 15...電池容器, 1. . . Non-aqueous electrolyte secondary battery, 11. . . Positive electrode, 12 . . Negative electrode, 13. . . Separator, 14. . . Non-aqueous electrolyte solution, 15. . . Battery case,

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 リチウムを吸蔵,放出できる正極と,リ
チウム金属,リチウム合金,リチウムを吸蔵,放出でき
る物質または導電性物質からなる負極と,セパレータ
と,非水電解液と,電池容器とを有する非水電解液二次
電池において,上記非水電解液は,過充電,過放電,温
度上昇の少なくともいずれか1つにより硬化する熱変性
高分子又は電解重合性モノマーと,有機溶媒と,電解質
塩とよりなることを特徴とする非水電解液二次電池。
1. A positive electrode capable of occluding and releasing lithium, a negative electrode comprising a lithium metal, a lithium alloy, a substance capable of occluding and releasing lithium or a conductive substance, a separator, a non-aqueous electrolytic solution, and a battery container. In the non-aqueous electrolyte secondary battery, the non-aqueous electrolyte comprises a heat-modified polymer or an electropolymerizable monomer that is cured by at least one of overcharge, overdischarge, and temperature rise, an organic solvent, and an electrolyte salt. A non-aqueous electrolyte secondary battery comprising:
【請求項2】 請求項1において,上記熱変性高分子又
は電解重合性モノマーは,マイクロカプセルの中に封入
されていることを特徴とする非水電解液二次電池。
2. The non-aqueous electrolyte secondary battery according to claim 1, wherein the heat-modified polymer or the electropolymerizable monomer is encapsulated in microcapsules.
【請求項3】 請求項2において,上記マイクロカプセ
ルは,セパレータ又は非水電解液の一方或いは双方に含
有されていることを特徴とする非水電解液二次電池。
3. The non-aqueous electrolyte secondary battery according to claim 2, wherein the microcapsules are contained in one or both of the separator and the non-aqueous electrolyte.
【請求項4】 請求項1の熱変性高分子又は電解重合性
モノマーに代えて,鎖状カーボネートを用いるととも
に,該鎖状カーボネートはマイクロカプセルの中に封入
されていることを特徴とする非水電解液二次電池。
4. A non-aqueous solution characterized in that a chain carbonate is used in place of the heat-modified polymer or the electropolymerizable monomer according to claim 1, and the chain carbonate is encapsulated in microcapsules. Electrolyte secondary battery.
【請求項5】 請求項1において,上記熱変性高分子
は,蛋白質であることを特徴とする非水電解液二次電
池。
5. The non-aqueous electrolyte secondary battery according to claim 1, wherein the heat-denatured polymer is a protein.
【請求項6】 請求項5において,上記蛋白質は,アル
ブミン,カゼイン,アクチン,ミオシン,ケラチン,及
びコラーゲンのグループより選ばれる1種または2種以
上であることを特徴とする非水電解液二次電池。
6. The non-aqueous electrolyte secondary solution according to claim 5, wherein the protein is one or more selected from the group consisting of albumin, casein, actin, myosin, keratin, and collagen. battery.
【請求項7】 請求項4のいずれか一項において,上記
鎖状カーボネートは,一般式,R1−O−(C=O)−
O−R2(ここにR1,R2はアルキル基である)によ
り表される化合物であることを特徴とする非水電解液二
次電池。
7. The chain carbonate according to claim 4, wherein the chain carbonate has the general formula R1-O- (C = O)-.
A non-aqueous electrolyte secondary battery, which is a compound represented by O-R2 (wherein R1 and R2 are alkyl groups).
【請求項8】 請求項7において,上記鎖状カーボネー
トは,ジメチルカーボネート,ジエチルカーボネート,
ジイソプロピルカーボネート,及びエチルメチルカーボ
ネートのグループより選ばれる1種または2種以上であ
ることを特徴とする非水電解液二次電池。
8. The chain carbonate according to claim 7, wherein the chain carbonate is dimethyl carbonate, diethyl carbonate,
A non-aqueous electrolyte secondary battery comprising one or more selected from the group consisting of diisopropyl carbonate and ethyl methyl carbonate.
【請求項9】 請求項1において,上記電解重合性モノ
マーは,ナフタレン誘導体,アントラセン誘導体,ポリ
フルオレン誘導体,ピロール誘導体,チオフェン誘導
体,及びアニリン誘導体のグループより選ばれる1種ま
たは2種以上であることを特徴とする非水電解液二次電
池。
9. The electropolymerizable monomer according to claim 1, which is one or more selected from the group consisting of naphthalene derivatives, anthracene derivatives, polyfluorene derivatives, pyrrole derivatives, thiophene derivatives, and aniline derivatives. A non-aqueous electrolyte secondary battery characterized by:
【請求項10】 請求項1又は4において,上記非水電
解液中における熱変性高分子,電解重合性モノマー又は
鎖状カーボネートの含有量は,1〜50重量%であるこ
とを特徴とする非水電解液二次電池。
10. The non-aqueous electrolyte solution according to claim 1, wherein the content of the heat-modified polymer, the electropolymerizable monomer or the chain carbonate is 1 to 50% by weight. Water electrolyte secondary battery.
【請求項11】 請求項2〜4のいずれか一項におい
て,上記マイクロカプセルは,少なくとも難燃剤を有し
ていることを特徴とする非水電解液二次電池。
11. The non-aqueous electrolyte secondary battery according to claim 2, wherein the microcapsule contains at least a flame retardant.
【請求項12】 請求項11において,上記難燃剤は,
リン化合物,ハロゲン化合物,及びリンとハロゲン元素
とを含有する化合物のグループから選ばれる1種又は2
種以上であることを特徴とする非水電解液二次電池。
12. The flame retardant according to claim 11,
One or two selected from the group of phosphorus compounds, halogen compounds, and compounds containing phosphorus and a halogen element
A non-aqueous electrolyte secondary battery, characterized in that it is at least one kind.
JP15025496A 1995-05-23 1996-05-21 Non-aqueous electrolyte secondary battery Expired - Lifetime JP3536534B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15025496A JP3536534B2 (en) 1995-05-23 1996-05-21 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP14963195 1995-05-23
JP7-149631 1995-05-23
JP15025496A JP3536534B2 (en) 1995-05-23 1996-05-21 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH0945369A true JPH0945369A (en) 1997-02-14
JP3536534B2 JP3536534B2 (en) 2004-06-14

Family

ID=26479462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15025496A Expired - Lifetime JP3536534B2 (en) 1995-05-23 1996-05-21 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP3536534B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999004447A1 (en) * 1997-07-15 1999-01-28 Valence Technology, Inc. Electrolyte solvent for lithium ion electrochemical cells
EP0944126A1 (en) * 1998-03-18 1999-09-22 Hitachi, Ltd. Lithium secondary battery, its electrolyte, and electric apparatus using the same
WO1999065101A1 (en) * 1998-06-08 1999-12-16 Moltech Corporation Multifunctional reactive monomers for safety protection of nonaqueous electrochemical cells
JP2000195551A (en) * 1998-12-28 2000-07-14 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JP2001076759A (en) * 1999-08-31 2001-03-23 Sanyo Electronic Components Co Ltd Electrochemical device
JP2001093571A (en) * 1999-09-22 2001-04-06 Sony Corp Non-aqueous electrolyte battery
JP2001332245A (en) * 2000-05-22 2001-11-30 Kureha Chem Ind Co Ltd Electrode and nonaqueous-based battery using the same
JP2002117895A (en) * 2000-10-12 2002-04-19 Matsushita Electric Ind Co Ltd Electrolysis liquid for non-aqueous system battery and non-aqueous system secondary battery
JP2004213971A (en) * 2002-12-27 2004-07-29 Nissan Motor Co Ltd Laminate type battery and its manufacturing method
KR20070008084A (en) * 2005-07-13 2007-01-17 주식회사 엘지화학 Lithium secondary battery employing thermally degradable capsule containing reactive compounds
EP1905118A1 (en) * 2005-07-13 2008-04-02 LG Chem, Ltd. Lithium secondary battery containing capsule for controlled-release of additives
US20130143076A1 (en) * 2011-12-02 2013-06-06 GM Global Technology Operations LLC Materials and methods for retarding or preventing thermal runaway in batteries
JP2014013808A (en) * 2012-07-04 2014-01-23 Mitsubishi Electric Corp Semiconductor device
JP2014524114A (en) * 2011-08-25 2014-09-18 エルジー・ケム・リミテッド Separator with microcapsules and electrochemical device with the same
JP2015028866A (en) * 2013-07-30 2015-02-12 積水化学工業株式会社 Method for manufacturing battery, electrolytic solution, and lithium ion secondary battery
WO2019198530A1 (en) * 2018-04-09 2019-10-17 日産化学株式会社 Lithium ion secondary battery

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999004447A1 (en) * 1997-07-15 1999-01-28 Valence Technology, Inc. Electrolyte solvent for lithium ion electrochemical cells
EP0944126A1 (en) * 1998-03-18 1999-09-22 Hitachi, Ltd. Lithium secondary battery, its electrolyte, and electric apparatus using the same
US6482545B1 (en) 1998-06-08 2002-11-19 Moltech Corporation Multifunctional reactive monomers for safety protection of nonaqueous electrochemical cells
WO1999065101A1 (en) * 1998-06-08 1999-12-16 Moltech Corporation Multifunctional reactive monomers for safety protection of nonaqueous electrochemical cells
JP2000195551A (en) * 1998-12-28 2000-07-14 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JP2001076759A (en) * 1999-08-31 2001-03-23 Sanyo Electronic Components Co Ltd Electrochemical device
JP2001093571A (en) * 1999-09-22 2001-04-06 Sony Corp Non-aqueous electrolyte battery
JP2001332245A (en) * 2000-05-22 2001-11-30 Kureha Chem Ind Co Ltd Electrode and nonaqueous-based battery using the same
JP2002117895A (en) * 2000-10-12 2002-04-19 Matsushita Electric Ind Co Ltd Electrolysis liquid for non-aqueous system battery and non-aqueous system secondary battery
JP4695748B2 (en) * 2000-10-12 2011-06-08 パナソニック株式会社 Nonaqueous battery electrolyte and nonaqueous secondary battery
US7867657B2 (en) 2000-10-12 2011-01-11 Panasonic Corporation Electrolyte for non-aqueous cell and non-aqueous secondary cell
US7824809B2 (en) 2000-10-12 2010-11-02 Panasonic Corporation Electrolyte for non-aqueous cell and non-aqueous secondary cell
JP2004213971A (en) * 2002-12-27 2004-07-29 Nissan Motor Co Ltd Laminate type battery and its manufacturing method
US7867650B2 (en) 2002-12-27 2011-01-11 Nissan Motor Co., Ltd. Laminate type battery and method for manufacturing the same
US7364816B2 (en) 2002-12-27 2008-04-29 Nissan Motor Co., Ltd. Laminate type battery and method for manufacturing the same
JP4581326B2 (en) * 2002-12-27 2010-11-17 日産自動車株式会社 Multilayer battery manufacturing equipment
JP2009501419A (en) * 2005-07-13 2009-01-15 エルジー・ケム・リミテッド Lithium secondary battery containing capsules for sustained release of additives
EP1905118A1 (en) * 2005-07-13 2008-04-02 LG Chem, Ltd. Lithium secondary battery containing capsule for controlled-release of additives
KR20070008084A (en) * 2005-07-13 2007-01-17 주식회사 엘지화학 Lithium secondary battery employing thermally degradable capsule containing reactive compounds
EP1905118A4 (en) * 2005-07-13 2008-08-20 Lg Chemical Ltd Lithium secondary battery containing capsule for controlled-release of additives
JP2014524114A (en) * 2011-08-25 2014-09-18 エルジー・ケム・リミテッド Separator with microcapsules and electrochemical device with the same
US8951654B2 (en) * 2011-12-02 2015-02-10 GM Global Technology Operations LLC Materials and methods for retarding or preventing thermal runaway in batteries
US20130143076A1 (en) * 2011-12-02 2013-06-06 GM Global Technology Operations LLC Materials and methods for retarding or preventing thermal runaway in batteries
JP2014013808A (en) * 2012-07-04 2014-01-23 Mitsubishi Electric Corp Semiconductor device
JP2015028866A (en) * 2013-07-30 2015-02-12 積水化学工業株式会社 Method for manufacturing battery, electrolytic solution, and lithium ion secondary battery
WO2019198530A1 (en) * 2018-04-09 2019-10-17 日産化学株式会社 Lithium ion secondary battery
CN112020788A (en) * 2018-04-09 2020-12-01 日产化学株式会社 Lithium ion secondary battery
JPWO2019198530A1 (en) * 2018-04-09 2021-04-15 日産化学株式会社 Lithium ion secondary battery
EP3780228A4 (en) * 2018-04-09 2021-12-29 Nissan Chemical Corporation Lithium ion secondary battery
US11961968B2 (en) 2018-04-09 2024-04-16 Nissan Chemical Corporation Lithium ion secondary battery

Also Published As

Publication number Publication date
JP3536534B2 (en) 2004-06-14

Similar Documents

Publication Publication Date Title
US6942949B2 (en) Rechargeable lithium electrochemical cell
CA2163187C (en) Aromatic monomer gassing agents for protecting non-aqueous lithium batteries against overcharge
CA2196493C (en) Additives for improving cycle life of non-aqueous rechargeable lithium batteries
US6074777A (en) Additives for overcharge protection in non-aqueous rechargeable lithium batteries
JP4056346B2 (en) Nonaqueous electrolyte secondary battery
US6074776A (en) Polymerizable additives for making non-aqueous rechargeable lithium batteries safe after overcharge
JP2983205B1 (en) Non-aqueous secondary battery
JP3536534B2 (en) Non-aqueous electrolyte secondary battery
JP2939469B1 (en) Electrolyte for non-aqueous battery and secondary battery using this electrolyte
EP2304837B1 (en) Cylindrical lithium secondary battery
US7402360B2 (en) Non-aqueous electrolyte battery
JP2000058115A (en) Nonaqueous battery electrolyte and secondary battery using the same
JPH1040956A (en) Usage of boron oxide additive in rechargeable non-aqueous lithium battery
CN110311138A (en) A kind of lithium ion secondary battery with the dynamic defencive function of heat
US20030148183A1 (en) Non-aqueous electrolyte battery
JP2003036884A (en) Nonaqueous electrolyte and nonaqueous electrolyte battery
JP2000348767A (en) Electrolytic solution for lithium secondary battery
US20070259259A1 (en) Lithium Battery Which is Protected in Case of Inappropriate Use
JP3631185B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP2928779B1 (en) Electrolyte for non-aqueous battery and secondary battery using this electrolyte
JP4967195B2 (en) Nonaqueous electrolyte secondary battery
JP2004227931A (en) Nonaqueous electrolyte rechargeable battery
KR100471968B1 (en) Electrolytes and lithium secondary batteries
JP2004303474A (en) Nonaqueous electrolyte battery
JP4878758B2 (en) Non-aqueous secondary battery and manufacturing method thereof

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20031125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040308

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100326

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110326

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120326

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120326

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 9