JPH0945223A - Electron emitting element, and electron beam generator, and image forming device - Google Patents

Electron emitting element, and electron beam generator, and image forming device

Info

Publication number
JPH0945223A
JPH0945223A JP21293595A JP21293595A JPH0945223A JP H0945223 A JPH0945223 A JP H0945223A JP 21293595 A JP21293595 A JP 21293595A JP 21293595 A JP21293595 A JP 21293595A JP H0945223 A JPH0945223 A JP H0945223A
Authority
JP
Japan
Prior art keywords
electron
electrode
electrodes
fine particle
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21293595A
Other languages
Japanese (ja)
Inventor
Hisami Nakamura
久美 中村
Ryoji Fujiwara
良治 藤原
Yoshikazu Sakano
嘉和 坂野
Kazuhiro Mitsumichi
和宏 三道
Shinichi Kawate
信一 河手
Toshihiko Takeda
俊彦 武田
Ichiro Nomura
一郎 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP21293595A priority Critical patent/JPH0945223A/en
Publication of JPH0945223A publication Critical patent/JPH0945223A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2201/00Electrodes common to discharge tubes
    • H01J2201/30Cold cathodes
    • H01J2201/316Cold cathodes having an electric field parallel to the surface thereof, e.g. thin film cathodes
    • H01J2201/3165Surface conduction emission type cathodes

Landscapes

  • Cathode-Ray Tubes And Fluorescent Screens For Display (AREA)
  • Cold Cathode And The Manufacture (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electron emitting element which can perform stable forming with low voltage. SOLUTION: An electron emitting element has a pair of electrodes 2 and 3 on an insulating substrate 1, and a fine particle film 5 electrically connects that electrodes 2 and 3 in a pair in the gap L between those electrodes. At this time, the angle Φ between the end faces of the electrodes 2 and 3 facing that gap and the insulating substrate 1 is 0 <ϕ<=80 deg..

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、電子放出素子、特
に電子放出源として用いられる表面伝導形電子放出素
子、更には該電子放出素子を用いた電子線発生装置並び
に画像表示装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electron-emitting device, particularly a surface conduction electron-emitting device used as an electron-emitting source, and an electron beam generator and an image display device using the electron-emitting device.

【0002】[0002]

【従来の技術】従来、簡単な構造で電子の放出が得られ
る素子として、例えば、エム アイエリンソン(M.
I.Elinson)等によって発表された冷陰極素子
が知られている〔ラジオ エンジニアリング エレクト
ロン フィジックス(Radio Eng. Elec
tron Phys.)第10巻、1290〜1296
頁、1965年〕。
2. Description of the Related Art Conventionally, as a device capable of emitting electrons with a simple structure, for example, MI Elinson (M.
I. A cold cathode device announced by Elinson et al. Is known [Radio Engineering Electron Physics (Radio Eng.
Tron Phys. ) Volume 10, 1290-1296
P. 1965].

【0003】かかる素子は、基板上に形成された小面積
の薄膜に、膜内に平行に電流を流すことにより、電子放
出が生ずる現象を利用するもので、一般には表面伝導形
電子放出素子と呼ばれている。
Such an element utilizes a phenomenon in which an electron emission occurs when a current is applied in parallel to a thin film having a small area formed on a substrate, and is generally called a surface conduction electron-emitting element. being called.

【0004】この表面伝導形電子放出素子としては、前
記エリンソン等により開発された、SnO2 (Sb)薄
膜を用いたもの、Au薄膜によるもの〔ジー ディトマ
ー“スイン ソリッド フィルムズ”(G.Dittm
er:“Thin Solid Films”)第9
巻、317頁、1972年)、ITO薄膜によるもの
〔エム ハートウェル アンド シー ジー フォンス
タット“アイイーイーイートランス イーディー コン
ファレンス”(M.Hartwell and C.
G.Fonstad:“IEEE Trans ED
Conf.”)519頁、1975年〕、カーボン薄膜
によるもの〔荒木久,他:“真空”第26巻、第1号、
22頁(1983年)〕などが報告されている。
As the surface conduction electron-emitting device, one using a SnO 2 (Sb) thin film developed by Elinson et al., One using an Au thin film [G Didtomer "Sin Solid Films" (G. Dittm) is used.
er: “Thin Solid Films”) No. 9
Vol. 317, 1972), by ITO thin film [M. Hartwell and C. G. von Stat "IEE Trans Edie Conference" (M. Hartwell and C.
G. FIG. Fonstad: “IEEE Trans ED
Conf. ") 519, 1975], by carbon thin film [Hiraki Araki, et al .:" Vacuum ", Vol. 26, No. 1,
22 (1983)] and the like are reported.

【0005】これらの表面伝導形電子放出素子の典型的
な素子構成を図5に示す。同図において、2および3は
電気的接続を得るための電極、15は電子放出材料で形
成される薄膜、1は基板、4は電子放出部を示す。
FIG. 5 shows a typical device configuration of these surface conduction electron-emitting devices. In the figure, 2 and 3 are electrodes for obtaining electrical connection, 15 is a thin film formed of an electron emitting material, 1 is a substrate, and 4 is an electron emitting portion.

【0006】従来、これらの表面伝導形電子放出素子に
おいては、電子放出を行なう前に予めフォーミングと呼
ばれる通電加熱処理によって電子放出部4を形成する。
即ち、電極2と電極3の間に電圧を印加する事により、
薄膜15に通電し、これにより発生するジュール熱で薄
膜15を局所的に破壊、変形もしくは変質せしめ、電気
的に高抵抗な状態にした電子放出部4を形成することに
より電子放出機能を得ている。
Conventionally, in these surface conduction electron-emitting devices, the electron-emitting portion 4 is formed in advance by an electric heating process called forming before the electron emission.
That is, by applying a voltage between the electrodes 2 and 3,
The thin film 15 is energized, and the thin film 15 is locally destroyed, deformed or altered by the Joule heat generated thereby, and the electron emitting portion 4 in an electrically high resistance state is formed to obtain an electron emitting function. There is.

【0007】なお、電気的に高抵抗な状態とは、薄膜1
5の一部に0.5〜5μmの亀裂を有し、かつ亀裂内が
いわゆる島構造を有する不連続状態膜を言う。島構造と
は一般に数十Åから数μm径の微粒子が基板1にあり、
各微粒子は空間的に不連続で電気的には連続な膜をい
う。
The electrically high resistance state means the thin film 1
A discontinuous state film having a crack of 0.5 to 5 μm in part of 5 and having a so-called island structure inside the crack. The island structure generally has fine particles with a diameter of several tens to several μm on the substrate 1,
Each fine particle is a film that is spatially discontinuous and electrically continuous.

【0008】従来、表面伝導形電子放出素子は上述の高
抵抗不連続膜に電極2、3により電圧を印加し、素子表
面に電流を流すことにより、上述の微粒子より電子を放
出せしめるものである。
Conventionally, in the surface conduction electron-emitting device, a voltage is applied to the high resistance discontinuous film by the electrodes 2 and 3 and a current is caused to flow on the surface of the device so that electrons are emitted from the fine particles. .

【0009】しかしながら、上記の様な従来の通電加熱
によるフォーミング処理によって製造された電子放出素
子には、次のような問題点がある。即ち、 電子放出部となる島構造の設計が不可能なため、素子
の改良が難しく、素子間のばらつきも生じやすい、 島構造の寿命が短く且つ安定性が悪く、また外界の電
磁波ノイズにより素子破壊も生じやすい、 電気的に高抵抗な状態にするために必要とする最小電
圧であるフォーミング電圧が大きく、フォーミング工程
の際に生じるジュール熱が大きいため、基板が破壊しや
すくマルチ化が難しい、 島構造の材料が金、銀、SnO2 、ITO等に限定さ
れ、仕事関数の小さい材料が使えないため、大電流を得
る事ができない、 等の問題である。
However, the above-described conventional electron-emitting device manufactured by the forming process by electric heating has the following problems. That is, since it is impossible to design an island structure that will serve as an electron-emitting portion, it is difficult to improve the elements, and variations among the elements are likely to occur. The island structure has a short life and is poor in stability. Since the forming voltage, which is the minimum voltage required to make an electrically high resistance state, is large, and the Joule heat generated during the forming process is large, it is easy to break the substrate and it is difficult to make multiple substrates. The material of the island structure is limited to gold, silver, SnO 2 , ITO and the like, and materials having a small work function cannot be used, so that a large current cannot be obtained.

【0010】このため、表面伝導形電子放出素子は、素
子構造が簡単であるという利点があるにもかかわらず、
産業上積極的に応用されるには至っていない。そこで本
発明者等は、特開平2−56822号公報において、電
極間に微粒子膜を配置し、これに通電処理を施すことに
より電子放出部を設ける新規な表面伝導形電子放出素子
を提案している。
Therefore, the surface conduction electron-emitting device has the advantage that the device structure is simple,
It has not been applied positively in industry. Therefore, the inventors of the present invention proposed a new surface conduction electron-emitting device in Japanese Patent Laid-Open No. 2-56822 in which a fine particle film is arranged between electrodes and an electron-emitting portion is provided by applying an electric current to the fine particle film. There is.

【0011】この電子放出素子の特徴としては次のよう
なことが挙げられる。即ち、フォーミング時の熱量を
少なくすることができるため膜割れや基板割れを防止す
ることができ、そして島材の選択が可能で、且つ電子
放出材に微粒子膜を用いることによりフォーミング工程
に要する電圧(フォーミング電圧)が小さくて済む。
The characteristics of this electron-emitting device are as follows. That is, since it is possible to reduce the amount of heat at the time of forming, it is possible to prevent film cracking and substrate cracking, and it is possible to select an island material, and by using a fine particle film as an electron emitting material, the voltage required for the forming step (Forming voltage) can be small.

【0012】上記微粒子膜の製造方法としては、ガスデ
ィポジション法や分散塗布法等が用いられ、それらの中
でも所望材料の微粒子の分散液を回転塗布、あるいはデ
ィッピッング等の手法により基板に塗布し、その後加熱
処理で溶剤、バインダー等を除去する分散塗布法が最も
簡便である。
As a method for producing the above-mentioned fine particle film, a gas deposition method, a dispersion coating method, or the like is used. Among them, a dispersion liquid of fine particles of a desired material is spin-coated or is coated on a substrate by a technique such as dipping. The dispersion coating method in which the solvent, binder, etc. are then removed by heat treatment is the simplest.

【0013】この素子を電子放出素子として用いる際に
は、電子ビームを飛翔させるために1×10-5〜1×1
-7Torrの真空度が適当である。すなわち、前記表
面伝導形電子放出素子を真空容器内におき、素子の鉛直
上にフェースプレートを設けて電子放出装置とし、電極
間に電圧を印加せしめ、電子放出部から得られた電子線
を蛍光体に照射することにより発光させるものである。
When this device is used as an electron-emitting device, in order to fly an electron beam, 1 × 10 -5 to 1 × 1
A vacuum of 0 -7 Torr is suitable. That is, the surface conduction electron-emitting device is placed in a vacuum container, a face plate is provided vertically above the device to form an electron-emitting device, a voltage is applied between the electrodes, and an electron beam obtained from the electron-emitting portion is fluorescent. It emits light by irradiating the body.

【0014】かかる電子放出装置の作製にあたっては、
上記素子を容器内に設け、真空にして、その後封着フリ
ットを約450度以上という高温にて溶かし封着するこ
とで、上記真空容器を形成している。
When manufacturing such an electron-emitting device,
The above-mentioned element is provided in a container, a vacuum is applied, and then the sealing frit is melted and sealed at a high temperature of about 450 ° C. or higher to form the vacuum container.

【0015】[0015]

【発明が解決しようとする課題】しかしながら、上記電
子放出素子を真空容器内部に置き、約450℃以上に加
熱し、封着フリットガラスによって封着を行い、真空容
器を形成した場合、内部の電子放出素子の素子抵抗が、
高抵抗化するものがあった。
However, when the electron-emitting device is placed inside a vacuum container, heated to about 450 ° C. or higher, and sealed by a sealing frit glass to form a vacuum container, the electrons inside the vacuum container are formed. The element resistance of the emission element is
There was something that increased the resistance.

【0016】図2はこの従来の電子放出素子を示す概略
図であり、図2(a)はその電子放出素子の斜視図、図
2(b)はBB線断面図を示す。そこで図2(a)に示
すような電極−電極ギャップ−電極部分の断面を、電解
放射型走査電子顕微鏡(FE−SEM)で観察したとこ
ろ、高抵抗化した素子では図2(b)に示すように、電
子放出材である微粒子膜5が電極端部の表面である電極
端面15をカバレージし切れていない事がわかった。
FIG. 2 is a schematic view showing this conventional electron-emitting device, FIG. 2 (a) is a perspective view of the electron-emitting device, and FIG. 2 (b) is a sectional view taken along the line BB. Therefore, when a cross section of the electrode-electrode gap-electrode portion as shown in FIG. 2A is observed with a field emission scanning electron microscope (FE-SEM), a high resistance element is shown in FIG. 2B. As described above, it was found that the fine particle film 5 which is the electron emitting material does not completely cover the electrode end surface 15 which is the surface of the electrode end portion.

【0017】更に、高抵抗化した素子の電極ギャップに
面する素子電極の端面と絶縁性基板の表面とのなす角度
θは、θ=90°であった。即ち、素子電極端面と基板
の表面とのなす角度θがほぼ垂直であるために、電子放
出材が、電極端面をおおい切れず、そのため電極端面の
一部が封着時に酸化され素子が高抵抗化し、フォーミン
グに必要な電圧(フォーミング電圧)が高くなるという
問題があった。
Further, the angle θ formed by the end face of the device electrode facing the electrode gap of the device having high resistance and the surface of the insulating substrate was θ = 90 °. That is, since the angle θ formed between the device electrode end surface and the surface of the substrate is substantially vertical, the electron emitting material cannot cover the electrode end surface, so that part of the electrode end surface is oxidized during sealing and the device has high resistance. However, there is a problem that the voltage required for forming (forming voltage) increases.

【0018】例えば、図2(b)で示したような電子放
出材が、電極端面15をおおい切れなかった電子放出素
子において、封着加熱工程を経ない場合はフォーミング
電圧が約4Vであったのに対し、封着加熱工程を経た場
合は約10Vまで上昇し、2倍以上の電力を必要とし
た。このフォーミング電圧の上昇により、電子放出素子
を多数個、同一配線上に配列した場合、配列した電子放
出素子の数が増すほど、より大電力が必要となりマルチ
電子放出素子を用いた画像表示装置等の製造時に大きな
問題となる。即ち、大電力電源が必要になり、同一線上
に配列する電子放出素子の数が電源性能限界に限定され
てしまうことと、大電力が素子基板に投入されて、ジュ
ール熱による局部加熱が発生し基板の割れが発生すると
いう問題である。
For example, in an electron-emitting device in which the electron-emitting material as shown in FIG. 2B could not cover the electrode end surface 15, the forming voltage was about 4 V when the sealing heating step was not performed. On the other hand, in the case of passing through the sealing and heating step, the voltage increased to about 10 V and required twice or more electric power. Due to this increase in the forming voltage, when a large number of electron-emitting devices are arranged on the same wiring, the larger the number of arranged electron-emitting devices, the more power is required, and the image display device using the multi-electron-emitting devices, etc. It becomes a big problem at the time of manufacturing. That is, a large power supply is required, the number of electron-emitting devices arranged on the same line is limited to the power supply performance limit, and a large amount of power is applied to the device substrate, causing local heating due to Joule heat. The problem is that the substrate cracks.

【0019】また、上記封着加熱工程による通電加熱処
理電圧の上昇を低減するために、封着加熱工程の加熱温
度の低温化や加熱時間の短縮化等の精密制御が行なわれ
るが、生産性を考慮した場合、より簡易な対応策が要求
される。
Further, in order to reduce the rise in the energization heat treatment voltage in the sealing heating step, precise control such as lowering the heating temperature in the sealing heating step or shortening the heating time is performed, but the productivity is improved. Considering the above, a simpler countermeasure is required.

【0020】本発明は、このような問題点に鑑みてなさ
れたものであり、表面導電形電子放出素子を真空容器の
内部において、真空容器を高温下でフリット封着形成す
る際において、素子が高抵抗化するのを防ぎ、より低電
圧での安定したフォーミングを可能とすることによっ
て、均一な輝度の電子放出素子及び該素子を複数並べた
電子線発生装置、画像表示装置を提供する事を目的とす
る。
The present invention has been made in view of the above problems, and when the surface-conduction type electron-emitting device is formed inside the vacuum container and the frit seal is formed at a high temperature in the vacuum container, the device is It is possible to provide an electron-emitting device having uniform brightness, an electron beam generator in which a plurality of the devices are arranged, and an image display device by preventing the resistance from becoming high and enabling stable forming at a lower voltage. To aim.

【0021】[0021]

【課題を解決するための手段】本発明者等は、特に電極
ギャップ部分において、微粒子膜が素子電極を完全に覆
うために、素子電極の断面形状と微粒子膜のカバレージ
性との関係に着目し鋭意検討した結果以下の本発明に至
ったのである。
The present inventors have paid attention to the relationship between the cross-sectional shape of the element electrode and the coverage of the fine particle film so that the fine particle film completely covers the element electrode particularly in the electrode gap portion. As a result of intensive studies, the present invention has been achieved as follows.

【0022】即ち、本発明は、絶縁性基板上に一対の電
極と、該電極間の電極ギャップに該一対の電極を電気的
に接続する微粒子膜とを有する電子放出素子において、
該電極ギャップに面する電極の端面と絶縁性基板とのな
す角度θが0<θ≦80°であることを特徴とする電子
放出素子である。
That is, the present invention provides an electron-emitting device having a pair of electrodes on an insulating substrate and a fine particle film for electrically connecting the pair of electrodes to an electrode gap between the electrodes.
The electron emitting device is characterized in that an angle θ formed by the end face of the electrode facing the electrode gap and the insulating substrate is 0 <θ ≦ 80 °.

【0023】また、本発明は、少なくとも上記の本発明
の電子放出素子を複数配置した電子源と、該電子源から
放出される電子線を変調する変調手段とを具備する事を
特徴とする電子線発生装置である。
Further, the present invention is characterized by comprising at least an electron source in which a plurality of the above-mentioned electron-emitting devices of the present invention are arranged, and a modulation means for modulating an electron beam emitted from the electron source. It is a line generator.

【0024】更にまた、本発明は、少なくとも上記の本
発明の電子放出素子を複数配置した電子源と、該電子源
から放出される電子線を変調する変調手段と、電子線の
照射により画像を形成する画像形成部材とを具備するこ
とを特徴とする画像表示装置である。
Furthermore, the present invention provides an electron source in which at least a plurality of the above-mentioned electron-emitting devices of the present invention are arranged, a modulating means for modulating an electron beam emitted from the electron source, and an image by irradiating the electron beam. An image display device comprising an image forming member to be formed.

【0025】[0025]

【発明の実施の形態】以下、図面を用いて本発明を詳細
に説明する。図1は本発明の電子放出素子の一例を示す
概略図であり、図1(a)はその電子放出素子の斜視
図、図1(b)はAA線断面図を示す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to the drawings. FIG. 1 is a schematic view showing an example of the electron-emitting device of the present invention, FIG. 1 (a) is a perspective view of the electron-emitting device, and FIG. 1 (b) is a sectional view taken along the line AA.

【0026】これらの図中、1は絶縁性基板、2および
3は電極、4は電子放出部、5は微粒子膜、Lは電極間
隔である電極ギャップであり、θは該電極2,3の端面
と絶縁性基板1がなす角度である。
In these figures, 1 is an insulating substrate, 2 and 3 are electrodes, 4 is an electron emitting portion, 5 is a fine particle film, L is an electrode gap which is an electrode interval, and θ is the electrodes 2 and 3. It is an angle formed by the end face and the insulating substrate 1.

【0027】本発明において、微粒子膜の材料として
は、LaB6 ,C86 ,YB4 ,GdB4 などの硼化
物、TiC,ZrC,HfC,TaC,SiC,WCな
との炭化物、TiN,ZrN,HfNなどの窒化物、N
b,Mo,Rh,Hf,Ta,W,Re,Ir,Pt,
Ti,Au,Ag,Cu,Cr,Al,Co,Ni,F
e,Pb,Pd,Ca,Baなどの金属、In23
SnO2 ,Sb23 などの金属酸化物、Si,Geな
どの半導体、カーボン、AgMgなどを用いることがで
きるがこれに限定されない。
In the present invention, as the material of the fine particle film, borides such as LaB 6 , C 8 B 6 , YB 4 and GdB 4 , carbides such as TiC, ZrC, HfC, TaC, SiC and WC, TiN, Nitride such as ZrN, HfN, N
b, Mo, Rh, Hf, Ta, W, Re, Ir, Pt,
Ti, Au, Ag, Cu, Cr, Al, Co, Ni, F
e, Pb, Pd, Ca, Ba and other metals, In 2 O 3 ,
Metal oxides such as SnO 2 and Sb 2 O 3 , semiconductors such as Si and Ge, carbon, AgMg, and the like can be used, but are not limited thereto.

【0028】電極材料としては、一般的な導電材料、A
u,Ag,Pt等の金属の他、SnO2 ,ITO等の酸
化物導電性材料のものを使用できる。電極の幅は数μm
〜数mmが適当である。電極間の最小間隔である電極ギ
ャップ(図1中のL)は数μm〜数100μmが適当で
あり、少なくとも微粒子膜と電気的導通を得られるよう
に配置して形成される。
As the electrode material, a general conductive material, A
In addition to metals such as u, Ag and Pt, oxide conductive materials such as SnO 2 and ITO can be used. The width of the electrode is several μm
〜Several mm is suitable. The electrode gap (L in FIG. 1) which is the minimum distance between the electrodes is suitably several μm to several hundred μm, and is formed so as to be electrically connected to at least the fine particle film.

【0029】微粒子膜の形成方法としては、ガスディポ
ジション法等も用いることができるが、本発明の電子放
出素子の製造方法においては、特に、最も簡便な形成方
法である分散塗布法を用いている。
As a method for forming the fine particle film, a gas deposition method or the like can be used, but in the method for producing the electron-emitting device of the present invention, the dispersion coating method, which is the simplest forming method, is used. There is.

【0030】この分散塗布法は、前述したような材料の
微粒子の分散液を回転塗布、ディッピング等の手法で基
板等に塗布し、加熱処理で溶剤、バインダー等を除去す
るものである。
In this dispersion coating method, a dispersion liquid of fine particles of the above-mentioned material is applied to a substrate or the like by a method such as spin coating or dipping, and a solvent, a binder and the like are removed by heat treatment.

【0031】分散液としては、酢酸ブチルやアルコール
等から成る有機溶媒に微粒子及び微粒子の分散を促進す
る添加剤を加えたものを用いることができ、撹拌等によ
り微粒子の分散液を調整する。
As the dispersion liquid, it is possible to use fine particles and an additive for promoting dispersion of the fine particles added to an organic solvent such as butyl acetate or alcohol, and the dispersion liquid of fine particles is prepared by stirring or the like.

【0032】また、微粒子を分散して形成させるのに化
学的な方法として有機金属化合物の溶媒を基板上に塗布
した後、熱分解によって半導体の金属酸化物や金属の微
粒子を形成する手法も用いることができる。一例として
は、カプリル酸スズ(C715COO)2 Sn、ジイソ
アシロキシエトキシアンチモンC25 O(C5
11O)2 Sbの熱分解によって、それぞれSnO2 ,S
23 の微粒子を形成したり、有機パラジウム化合物
からPd微粒子を形成する例などを挙げることができ
る。
Further, as a chemical method for dispersing and forming fine particles, there is also used a method in which a solvent of an organometallic compound is applied on a substrate, and then metal oxide of a semiconductor or fine particles of metal is formed by thermal decomposition. be able to. As an example, tin caprylate (C 7 H 15 COO) 2 Sn, diisoacyloxyethoxyantimony C 2 H 5 O (C 5 H
By thermal decomposition of 11 O) 2 Sb, SnO 2 and S
Examples include forming fine particles of b 2 O 3 and forming Pd fine particles from an organopalladium compound.

【0033】尚、このようにして微粒子膜を形成する
際、微粒子膜のシート抵抗は5×103 〜1×107 Ω
/□となるようにするのが好ましい。
When the fine particle film is formed in this manner, the sheet resistance of the fine particle film is 5 × 10 3 to 1 × 10 7 Ω.
It is preferable that it be / □.

【0034】このような素子を真空容器内部におき、上
方にフェースプレートを設けて450℃,30分間程度
の焼成を行い、封着して電子源もしくは画像表示装置と
するのであるが、ここで、電極2,3の端面と絶縁性基
板1がなす角度θによる影響について説明する。
Such an element is placed inside a vacuum container, a face plate is provided above the element, baking is performed at 450 ° C. for about 30 minutes, and the element is sealed and used as an electron source or an image display device. The influence of the angle θ between the end faces of the electrodes 2 and 3 and the insulating substrate 1 will be described.

【0035】0<θ≦80℃のとき、 図1(b)に示される通り、電極2,3の端面は、微粒
子膜5で上部まで全く覆われ、微粒子膜5と電極2,3
の電気的コンタクトが完全にとれているため、封着加熱
過程後も素子の高抵抗化がおこらず、たとえばθ=50
°とした時には封着加熱前は500Ωであった抵抗値が
封着加熱後に520Ωとほとんど高抵抗化しなかった。
また、フォーミング電圧も封着加熱前4Vであったもの
が、加熱後は4.5Vと低電圧でフォーミングできた。
When 0 <θ ≦ 80 ° C., as shown in FIG. 1 (b), the end faces of the electrodes 2 and 3 are completely covered with the fine particle film 5, and the fine particle film 5 and the electrodes 2 and 3 are completely covered.
Since the electrical contact of the element is completely removed, the resistance of the element does not increase even after the sealing heating process, and for example, θ = 50.
When the temperature was set to 0, the resistance value was 500 Ω before the heating for sealing and was 520 Ω after the heating for sealing, showing almost no increase in resistance.
Further, the forming voltage was 4 V before the sealing and heating, but it could be formed at a low voltage of 4.5 V after the heating.

【0036】更に、少なくとも本条件を満たす素子を複
数並べて変調電極フェースプレートを加えて封着、封止
を行った画像表示装置を作製し、電子放出させたところ
複数の素子間で均一な輝度が得られた。
Furthermore, when at least a plurality of elements satisfying the above conditions are arranged and a modulation electrode face plate is added and sealed and sealed to produce an image display device, when electrons are emitted, a uniform luminance is obtained among the plurality of elements. Was obtained.

【0037】80°<θ≦100°のとき 図2は本条件の実施態様を示すものであり、図2(b)
はそのB−B断面図である。1は絶縁性基板であり、
2,3は電極、4は電子放出部、5は微粒子膜、Lは電
極ギャップ、θは電極2,3の電極端面16と基板1の
表面とのなす角度である。
When 80 ° <θ ≦ 100 ° FIG. 2 shows an embodiment of this condition, and FIG.
Is a sectional view taken along the line BB. 1 is an insulating substrate,
Reference numerals 2 and 3 are electrodes, 4 is an electron emission portion, 5 is a fine particle film, L is an electrode gap, and θ is an angle formed between the electrode end surface 16 of the electrodes 2 and 3 and the surface of the substrate 1.

【0038】θが80°<θ≦100°を満たす場合、
図2(b)に示される通り、微粒子膜5は電極2,3の
端部を完全には覆いきれていなかった。このため、封着
加熱過程後に、素子が高抵抗化してしまった。例えば、
θ=90°の時は封着加熱前に450Ωであった抵抗値
が封着加熱後に20KΩまで高抵抗化し、フォーミング
電圧も12Vに上昇した。
When θ satisfies 80 ° <θ ≦ 100 °,
As shown in FIG. 2B, the fine particle film 5 did not completely cover the ends of the electrodes 2 and 3. For this reason, the resistance of the element was increased after the sealing and heating process. For example,
When θ = 90 °, the resistance value which was 450Ω before the sealing heating was increased to 20 KΩ after the sealing heating, and the forming voltage was also increased to 12V.

【0039】で電極2,3の端部が完全に微粒子膜5
で覆われていたのに、の条件で覆いきれなかった事に
ついては本発明者等は次のように考えている。即ち、0
<θ≦80°というの条件では、図1(b)のように
電極端部の上部の方が出っぱった形状になっているた
め、分散塗布法を用いて微粒子膜5を形成した場合、電
極ギャップ内に分散液がたまりやすい構造であり、更に
電極材との界面における張力により界面近傍の分散液面
が、界面近傍以外のそれよりも上昇しやすい事からカバ
レージが良くなったと考えられる。
Then, the end portions of the electrodes 2 and 3 are completely covered with the fine particle film 5.
The present inventors believe that the above-mentioned condition that the film was not covered with the above condition was not covered with the following condition. That is, 0
Under the condition of &thgr; ≤80 °, the upper part of the electrode end has a protruding shape as shown in FIG. 1 (b). Therefore, when the fine particle film 5 is formed by the dispersion coating method. , The structure is such that the dispersion liquid is likely to accumulate in the electrode gap, and the tension at the interface with the electrode material further causes the dispersion liquid surface near the interface to rise more easily than that outside the interface, so it is considered that the coverage is improved. .

【0040】一方、80°<θ≦100°というの条
件では、電極断面がほぼ垂直であるため、分散液が比較
的電極ギャップ内にたまりにくく、更にステップカバレ
ージが悪くなってしまうため段切れをおこしているもの
と推測される。
On the other hand, under the condition of 80 ° <θ ≦ 100 °, since the cross section of the electrode is almost vertical, the dispersion liquid is relatively hard to collect in the electrode gap, and the step coverage is further deteriorated. It is speculated that this is happening.

【0041】更に、、の素子を封着加熱後、電極−
電極ギャップ−電極の部分の断面を透過電子顕微鏡(T
EM)で観察したところ、の素子では、図2(b)の
ように電極2,3を微粒子膜5がカバーしきれておら
ず、更に微粒子膜がカバーしきれていない部分の電極
2,3の表面が酸化されて素子電極酸化部分7が形成さ
れており、これらの事が素子抵抗の高抵抗化につながっ
たものと推測される。
Furthermore, after sealing and heating the element of,
Electrode gap-A cross section of the electrode is taken with a transmission electron microscope (T
As a result of observation with EM), in the element, as shown in FIG. 2B, the electrodes 2 and 3 are not completely covered with the fine particle film 5, and further, the electrodes 2 and 3 in the part where the fine particle film is not completely covered. The surface of the element is oxidized to form the oxidized portion 7 of the element electrode, which is presumed to have led to the increase of the element resistance.

【0042】100°<θ≦180°のとき 本条件で素子を作成し、、と同様にして断面を観察
したところ、カバレージはされていたが、電極端部の腹
厚が、のときよりうすかったため、封着加熱後は加熱
前の2倍程度に高抵抗化し、フォーミング電圧が4Vか
ら5.5V程度に上昇した。
When 100 ° <θ ≦ 180 °, an element was formed under the above conditions, and a cross section was observed in the same manner as in, but it was found that there was coverage, but the abdominal thickness of the electrode end was thinner than when. Therefore, after the sealing and heating, the resistance became about twice as high as that before the heating, and the forming voltage increased from 4V to about 5.5V.

【0043】以上のような理由から、本電子放出素子及
びそれを用いた電子源、画像表示装置では、の構成が
適している。即ち、電極端面と絶縁性基板のなす角度θ
が0<θ≦80°となるような構成とする事により、電
極が微粒子膜により完全に覆われ、封着後も酸化により
高抵抗化することなく、フォーミングの際も低電圧で安
定してフォーミングすることができた。
For the above reasons, the structure of the present electron-emitting device, the electron source using the same, and the image display device are suitable. That is, the angle θ formed between the electrode end surface and the insulating substrate
Is set to 0 <θ ≦ 80 °, the electrode is completely covered with the fine particle film, the resistance is not increased by oxidation even after sealing, and the electrode is stable at a low voltage during forming. I was able to form.

【0044】[0044]

【実施例】以下に実施例を挙げて本発明を具体的に説明
する。
EXAMPLES The present invention will be specifically described below with reference to examples.

【0045】実施例1 まず、図1に基づいて本実施例の電子放出素子の製造方
法を説明する。
Example 1 First, a method of manufacturing an electron-emitting device of this example will be described with reference to FIG.

【0046】絶縁性基板1として青板基板を用い、有
機溶剤等により充分洗浄し、真空蒸着技術、フォトリソ
ブラフィー技術により電極2,3を形成した。電極の材
料としては導電性を有するものであれば、どのようなも
のであっても構わないが、本実施例ではNi金属を用い
て形成した。
A blue plate substrate was used as the insulating substrate 1, which was thoroughly washed with an organic solvent or the like, and electrodes 2 and 3 were formed by a vacuum deposition technique and a photolithography technique. Any material may be used as the material of the electrode as long as it has conductivity, but in the present embodiment, it was formed using Ni metal.

【0047】この時電極の断面形状を逆テーパー状とな
るようにした。電極の断面形状を逆テーパー状とするの
は、テーパー状のレジスト膜を形成しリフトオフした
り、エッチャントで少し余分にエッチングをしてサイド
エッチンングを発生させたりすれば良いが、本実施例で
は前者を用いた。
At this time, the cross-sectional shape of the electrode was made into an inverse taper shape. The cross-sectional shape of the electrode is reversely tapered by forming a tapered resist film and lifting off, or by slightly etching with an etchant to cause side etching, but in the present embodiment, The former was used.

【0048】また、電極間隔は実用的には0.5μmか
ら20μmに形成されることが望ましく、本実施例では
3μm間隔とし、膜厚は2000Åとした。
Further, it is desirable that the electrode interval is practically set to 0.5 μm to 20 μm. In this embodiment, the electrode interval is 3 μm and the film thickness is 2000 Å.

【0049】次に、微粒子膜5を形成しようとする領域
以外の領域にマスクとしてCrを2000Åの厚さで成
膜した。この上にSnO2 微粒子1.0g、有機溶媒
(メチルエチルケトン:シクロヘキサン=3:1,80
0cc)の各材料をガラスビーズと共にペイントシェー
カーで24時間攪拌して得られた分散液をスピンコート
し、250℃で10分間焼成した。その後、先に成膜し
たCrをエッチアウトした。これにより微粒子膜5が形
成された。
Next, Cr was deposited in a thickness of 2000Å as a mask in a region other than the region where the fine particle film 5 is to be formed. 1.0 g of SnO 2 particles and an organic solvent (methyl ethyl ketone: cyclohexane = 3: 1,80)
0 cc) of each material was stirred with a glass bead for 24 hours on a paint shaker, and the resulting dispersion was spin-coated and baked at 250 ° C. for 10 minutes. After that, the previously deposited Cr was etched out. Thereby, the fine particle film 5 was formed.

【0050】こうして得られた素子の1つの電極ギャッ
プ部分の断面をFE−SEMで観察すると電極2,3と
基板1のなす角度θは約70℃となっており、SnO2
微粒子は電極を完全に覆う形で形成されていた。
When the cross section of one electrode gap portion of the element thus obtained is observed by FE-SEM, the angle θ formed between the electrodes 2 and 3 and the substrate 1 is about 70 ° C., and SnO 2
The fine particles were formed so as to completely cover the electrodes.

【0051】このような形状の素子を真空容器に入れ、
上部にフェースプレート(不図示)をおき、封着加熱を
行った。この後、抵抗値を測定すると、2KΩであり、
封着加熱前の約1.2倍にとどまっていた。
An element having such a shape is placed in a vacuum container,
A face plate (not shown) was placed on the top, and heating for sealing was performed. After that, when the resistance value is measured, it is 2 KΩ,
It was about 1.2 times that before heating for sealing.

【0052】更に、容器内を1.0×10-6torr程
度まで排気してひいた状態でフォーミングを行ったとこ
ろ、フォーミング電圧は9Vであり、封着加熱前の約
1.1倍にとどまった。更に、この素子の上方のフェー
スプレートにVa=1kVをかけたことろ、安定して電
子放出が得られた。このように電極端面と絶縁性基板の
なす角度θを0<θ≦80°とする事によって封着時の
高抵抗化の防止、ひいてはバラツキなく安定してフォー
ミングを行うことができた。
Further, when forming was performed while the container was evacuated to about 1.0 × 10 -6 torr, the forming voltage was 9 V, which was about 1.1 times as high as before the sealing and heating. It was Furthermore, by applying Va = 1 kV to the face plate above this device, stable electron emission was obtained. By thus setting the angle θ between the electrode end face and the insulating substrate to be 0 <θ ≦ 80 °, it was possible to prevent the resistance from becoming high at the time of sealing and to perform the forming stably without variation.

【0053】実施例2 図3は本発明の電子放出素子を直線状に複数配列した線
電子放出素子を複数併設した、本実施例における電子線
発生装置を示す概略構成図である。同図中、1は基板、
2a及び3aは素子電極、5は微粒子膜、8は配線電極
であり、9はこれからなる電子源である。また10は変
調電極、11は電子通過孔である。
Embodiment 2 FIG. 3 is a schematic constitutional view showing an electron beam generator in this embodiment, in which a plurality of line electron emitting devices in which a plurality of electron emitting devices of the present invention are linearly arranged are provided. In the figure, 1 is a substrate,
Reference numerals 2a and 3a are element electrodes, 5 is a fine particle film, 8 is a wiring electrode, and 9 is an electron source made of this. Further, 10 is a modulation electrode, and 11 is an electron passage hole.

【0054】本実施例の電子線発生装置は次のようにし
て製造される。まず、実施例1と同様の方法で素子電極
2a,3a及び微粒子膜5を線状に並べたものを複数形
成した。次に、この上に前記素子電極2a,3aを形成
する場合と同様にして配線電極8を形成して電子源9と
した。更に、通常のフォトリソ・プロセスを用いて、絶
縁体(不図示)を介してグリッド電極からなる変調電極
10を形成した。
The electron beam generator of this embodiment is manufactured as follows. First, in the same manner as in Example 1, a plurality of device electrodes 2a and 3a and a fine particle film 5 arranged linearly were formed. Next, the wiring electrode 8 was formed as the electron source 9 in the same manner as the case where the device electrodes 2a and 3a were formed thereon. Further, the modulation electrode 10 composed of a grid electrode is formed through an insulator (not shown) by using a normal photolithography process.

【0055】これらを真空容器に入れ450℃で封着を
行い、真空度1×10-6torrまで真空びきした後、
封止し、抵抗値を測定したところ、封着前は、1ライン
の合同抵抗が10Ωであったものが13Ωと1.3倍に
とどまった。また、素子電極2,3間に電圧を印加して
フォーミングしたところ7Vで安定にフォーミングさ
れ、封着加熱前のフォーミング電圧の1.1倍であっ
た。
These were placed in a vacuum vessel and sealed at 450 ° C., and after vacuum evacuating to a vacuum degree of 1 × 10 -6 torr,
Upon sealing and measuring the resistance value, the joint resistance of 1 line before sealing was 13Ω, which was 1.3 times that of 13Ω. When a voltage was applied between the device electrodes 2 and 3 to perform forming, stable forming was performed at 7 V, which was 1.1 times the forming voltage before the sealing and heating.

【0056】更に、素子電極2a,3a間に駆動電圧1
4Vを印加し、次に変調電極10に情報信号に応じた電
圧を印加した。すなわち、0V以下で電子線をオフ制御
でき、+30V以上でオン制御できた。また、30〜0
Vの間で電子線の電子量を連続的に変化し得た。その結
果、複数の素子からなる線電子放出素子から1ライン分
の情報信号に応じた電子線の放出が得られた。以上の動
作を隣接する線電子放出素子に対し順次行うことによ
り、全情報信号に応じた電子線の放出が得られた。
Further, a driving voltage 1 is applied between the device electrodes 2a and 3a.
4V was applied, and then a voltage according to the information signal was applied to the modulation electrode 10. That is, the electron beam could be off-controlled at 0 V or less, and on-controlled at +30 V or more. Also, 30 to 0
The electron amount of the electron beam could be continuously changed between V. As a result, an electron beam was emitted from a line electron emission element composed of a plurality of elements according to an information signal for one line. By sequentially performing the above operation on the adjacent electron beam emitting devices, electron beam emission corresponding to all information signals was obtained.

【0057】本実施例の電子線発生装置は、電子源の素
子電極2a,3aと絶縁性基板1とのなす角度θが0<
θ≦80°とする事により、微粒子膜5の素子電極2
a,3aへのカバレージを良くし、封着加熱後の素子抵
抗の増加を防止する事ができた。このことから各素子の
フォーミング時に均一且つ低電圧で安定にフォーミング
でき、更に、各素子から放出された電子線のバラツキが
極めて小さく、均一な電子線が得られるという効果があ
った。
In the electron beam generator of this embodiment, the angle θ between the element electrodes 2a and 3a of the electron source and the insulating substrate 1 is 0 <.
By setting θ ≦ 80 °, the element electrode 2 of the fine particle film 5 is formed.
It was possible to improve the coverage to a and 3a and prevent the element resistance from increasing after the sealing heating. From this fact, there is an effect that the forming can be performed uniformly and stably at a low voltage at the time of forming each element, and further, the variation of the electron beam emitted from each element is extremely small and a uniform electron beam can be obtained.

【0058】実施例3 図4は本発明の電子放出素子を多数個並べた電子源を有
する本実施例における画像表示装置の概略構成を示すも
のである。同図中、13は画像形成板、12は画像形成
部材であるところの蛍光体であり、電子が衝突すること
により発光する。14は蛍光体の輝点である。尚、本図
において、図3に示した電子線発生装置と同一符号のも
のは同一部材を示すものであり、再度の説明は省略す
る。
Embodiment 3 FIG. 4 shows a schematic structure of an image display device in this embodiment having an electron source in which a large number of electron-emitting devices of the present invention are arranged. In the figure, 13 is an image forming plate, and 12 is a phosphor which is an image forming member, and emits light when electrons collide. 14 is a bright spot of the phosphor. In this figure, the same reference numerals as those used in the electron beam generator shown in FIG. 3 denote the same members, and a repetitive description thereof will be omitted.

【0059】本画像表示装置は、配線電極8の間に素子
を複数並べた電子源9とグリッド電極からなる変調電極
10でXYマトリクス駆動を行い、画像形成板13上の
蛍光体12に電子を衝突させることにより、画像形成を
行う装置である。
In this image display device, XY matrix driving is performed by the electron source 9 in which a plurality of elements are arranged between the wiring electrodes 8 and the modulation electrode 10 composed of a grid electrode, and electrons are emitted to the phosphor 12 on the image forming plate 13. It is a device that forms an image by colliding.

【0060】本実施例の画像表示装置では、まず、実施
例2と同様にして電子線発生装置を作製し、真空容器に
入れ450℃で封着を行い、真空度1×10-6torr
まで真空びきした後、封止し、抵抗値を測定したとこ
ろ、実施例2と同様封着前の1.2〜1.5倍程度であ
った。素子電極2,3間に電圧を印加してフォーミング
を行った。この時、7Vで安定にフォーミングできた。
In the image display device of this example, first, an electron beam generator was prepared in the same manner as in example 2, placed in a vacuum container and sealed at 450 ° C., and the degree of vacuum was 1 × 10 −6 torr.
After vacuum vacuuming and sealing, the resistance value was measured and found to be about 1.2 to 1.5 times that before sealing as in Example 2. Forming was performed by applying a voltage between the device electrodes 2 and 3. At this time, stable forming was possible at 7V.

【0061】次に、この電子線発生装置の鉛直上に蛍光
体12を有する画像形成板13を設置し、5KVの電圧
を印加したところ、画像形成体13上の輝点14は一電
子放出素子内で均一な輝度を示したのみならず、並列に
並べた複数の素子間でもばらつきのない輝度が得られ
た。
Next, the image forming plate 13 having the phosphor 12 was placed vertically above the electron beam generator, and a voltage of 5 KV was applied. As a result, the bright spot 14 on the image forming body 13 was one electron-emitting device. In addition to showing uniform brightness in the interior, uniform brightness was obtained among a plurality of elements arranged in parallel.

【0062】以上のように本発明の電子放出素子を複数
個配置した電子源を用いた画像表示装置は封着加熱後の
素子抵抗の高抵抗化を防止する事ができ、素子のフォー
ミング時に均一かつ低電圧で安定にフォーミングでき
た。更に、画像形成板13上の輝点も輝度のバラツキが
少なく、より均一な輝度の画像を得ることができた。
As described above, the image display apparatus using the electron source in which a plurality of electron-emitting devices of the present invention are arranged can prevent the increase of the resistance of the element after the heating for the sealing, and makes it uniform during the forming of the element. Moreover, stable forming was possible at a low voltage. Furthermore, the bright spots on the image forming plate 13 have little variation in luminance, and an image with more uniform luminance can be obtained.

【0063】[0063]

【発明の効果】以上説明したように、本発明によれば以
下のような効果が得られる。 電子電極の端面と絶縁性基板とのなす角度θを0<θ
≦80°とする事により、電極端面の微粒子膜によるカ
バレージが良くなり、封着加熱後も素子が高抵抗化する
事なく、均一かつ低電圧でフォーミングを行う事がで
き、歩留り良く電子放出素子を作製できる。
As described above, according to the present invention, the following effects can be obtained. The angle θ between the end surface of the electron electrode and the insulating substrate is 0 <θ
By setting ≦ 80 °, the coverage by the fine particle film on the end face of the electrode is improved, the element does not have a high resistance even after the heating for sealing, and the forming can be performed uniformly and at a low voltage, and the electron emission element has a good yield. Can be produced.

【0064】低電圧で安定にフォーミングでき、各素
子から放出された電子線のバラツキが極めて小さく、均
一な電子線を発生する電子線発生装置が得られる。
It is possible to obtain an electron beam generator which can perform stable forming at a low voltage, has a very small variation in the electron beam emitted from each element, and generates a uniform electron beam.

【0065】低電圧で安定にフォーミングできる事か
ら、複数の素子間でバラツキのない均一な輝点を得るこ
とができ、本発明の電子放出素子を用いた画像表示装置
はより均一な明るさの画像が得られる。
Since stable forming can be performed at a low voltage, uniform bright spots without variations can be obtained among a plurality of elements, and the image display device using the electron-emitting device of the present invention has a more uniform brightness. An image is obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の電子放出素子の一例を示す概略図であ
る。
FIG. 1 is a schematic view showing an example of an electron-emitting device of the present invention.

【図2】従来の電子放出素子を示す概略図である。FIG. 2 is a schematic view showing a conventional electron-emitting device.

【図3】本発明の電子線発生装置の一例を示す概略図で
ある。
FIG. 3 is a schematic view showing an example of an electron beam generator of the present invention.

【図4】本発明の画像表示装置の一例を示す概略図であ
る。
FIG. 4 is a schematic view showing an example of an image display device of the present invention.

【図5】従来の表面伝導形電子放出素子の典型的な素子
構成を示す説明図である。
FIG. 5 is an explanatory diagram showing a typical device configuration of a conventional surface conduction electron-emitting device.

【符号の説明】[Explanation of symbols]

1 絶縁性基板 2,3 素子電極 2a,3a 素子電極 4 電子放出部 5 微粒子膜 7 素子電極酸化部分 8 配線電極 9 電子源 10 変調電極 11 電子通過孔 12 蛍光板 13 画像形成板 14 輝点 15 薄膜 16 電極端面 L 電極ギャップ DESCRIPTION OF SYMBOLS 1 Insulating substrate 2, 3 Element electrode 2a, 3a Element electrode 4 Electron emission part 5 Fine particle film 7 Element electrode oxidized part 8 Wiring electrode 9 Electron source 10 Modulation electrode 11 Electron passing hole 12 Fluorescent plate 13 Image forming plate 14 Bright spot 15 Thin film 16 Electrode end face L Electrode gap

フロントページの続き (72)発明者 三道 和宏 東京都大田区下丸子3丁目30番2号 キヤ ノン株式会社内 (72)発明者 河手 信一 東京都大田区下丸子3丁目30番2号 キヤ ノン株式会社内 (72)発明者 武田 俊彦 東京都大田区下丸子3丁目30番2号 キヤ ノン株式会社内 (72)発明者 野村 一郎 東京都大田区下丸子3丁目30番2号 キヤ ノン株式会社内Front page continued (72) Inventor Kazuhiro Michi 3-30-2 Shimomaruko, Ota-ku, Tokyo Canon Inc. (72) Inventor Shinichi Kawate 3-30-2 Shimomaruko, Ota-ku, Tokyo Canon Incorporated (72) Inventor Toshihiko Takeda 3-30-2 Shimomaruko, Ota-ku, Tokyo Canon Inc. (72) Inventor Ichiro Nomura 3-30-2 Shimomaruko, Ota-ku, Tokyo Canon Inc.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 絶縁性基板上に一対の電極と、該電極間
の電極ギャップに該一対の電極を電気的に接続する微粒
子膜とを有する電子放出素子において、該電極ギャップ
に面する電極の端面と絶縁性基板とのなす角度θが0<
θ≦80°であることを特徴とする電子放出素子。
1. An electron-emitting device having a pair of electrodes on an insulating substrate and a fine particle film for electrically connecting the pair of electrodes to an electrode gap between the electrodes, the electrode facing the electrode gap. The angle θ between the end surface and the insulating substrate is 0 <
An electron-emitting device characterized in that θ ≦ 80 °.
【請求項2】 前記微粒子膜が分散塗布法により形成さ
れる膜である請求項1記載の電子放出素子。
2. The electron-emitting device according to claim 1, wherein the fine particle film is a film formed by a dispersion coating method.
【請求項3】 少なくとも請求項1記載の電子放出素子
を複数配置した電子源と、該電子源から放出される電子
線を変調する変調手段とを具備する事を特徴とする電子
線発生装置。
3. An electron beam generator comprising: an electron source having at least a plurality of the electron-emitting devices according to claim 1 arranged therein; and a modulation means for modulating an electron beam emitted from the electron source.
【請求項4】 少なくとも請求項1記載の電子放出素子
を複数配置した電子源と、該電子源から放出される電子
線を変調する変調手段と、電子線の照射により画像を形
成する画像形成部材とを具備することを特徴とする画像
表示装置。
4. An electron source in which at least a plurality of the electron-emitting devices according to claim 1 are arranged, a modulation means for modulating an electron beam emitted from the electron source, and an image forming member for forming an image by irradiation of the electron beam. An image display device comprising:
JP21293595A 1995-07-31 1995-07-31 Electron emitting element, and electron beam generator, and image forming device Pending JPH0945223A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21293595A JPH0945223A (en) 1995-07-31 1995-07-31 Electron emitting element, and electron beam generator, and image forming device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21293595A JPH0945223A (en) 1995-07-31 1995-07-31 Electron emitting element, and electron beam generator, and image forming device

Publications (1)

Publication Number Publication Date
JPH0945223A true JPH0945223A (en) 1997-02-14

Family

ID=16630736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21293595A Pending JPH0945223A (en) 1995-07-31 1995-07-31 Electron emitting element, and electron beam generator, and image forming device

Country Status (1)

Country Link
JP (1) JPH0945223A (en)

Similar Documents

Publication Publication Date Title
JP2967334B2 (en) Method of manufacturing electron-emitting device, and method of manufacturing electron source and image forming apparatus using the same
JPH05101769A (en) Electron emitting element, and electron beam generator and image forming device using electron emitting element
JPH0687392B2 (en) Method for manufacturing electron-emitting device
USRE41086E1 (en) Electron source substrate, production method thereof, and image forming apparatus using electron source substrate
JP3305143B2 (en) Surface conduction electron-emitting device, electron source, and method of manufacturing image forming apparatus
JP2946153B2 (en) Method for manufacturing electron-emitting film and electron-emitting device
JP2961477B2 (en) Electron emitting element, electron beam generator, and method of manufacturing image forming apparatus
JPH0950757A (en) Electron source base plate, image forming device, and manufacture thereof
JP3200270B2 (en) Surface conduction electron-emitting device, electron source, and method of manufacturing image forming apparatus
JP2631007B2 (en) Electron emitting element, method of manufacturing the same, and image forming apparatus using the element
JPH0945223A (en) Electron emitting element, and electron beam generator, and image forming device
JP2949639B2 (en) Electron emitting element, electron source, image forming apparatus, and method of manufacturing them
JP3332673B2 (en) Electron source substrate, image forming apparatus, and manufacturing method thereof
JP3214985B2 (en) Electron emitting portion forming material, electron emitting element, and method of manufacturing image forming apparatus
JP3450533B2 (en) Method of manufacturing electron source substrate and image forming apparatus
JP2884496B2 (en) Electron-emitting device, electron source, image forming apparatus, and manufacturing method thereof
JP2884482B2 (en) Electron emitting element, electron source, and method of manufacturing image forming apparatus
JPH07130280A (en) Manufacture of electron source material and electron source, and electron source and image forming device
JPH05190077A (en) Electron emitting element
JPH09298030A (en) Electron emission element, electron source and image forming device
JPH09245690A (en) Manufacture of matrix wiring, manufacture of electron source, electron source and image display device provided with this electron source
JP2000243230A (en) Electron source substrate, its manufacture and image forming device using the same
JPH09283064A (en) Image forming device and its manufacture
JP2001351548A (en) Flat-panel image forming device and its manufacturing method
JPH09219142A (en) Electron emitting element, electron source substrate, electron source, display panel and image forming device