JPH0943216A - Analyzing gas intake circuit - Google Patents

Analyzing gas intake circuit

Info

Publication number
JPH0943216A
JPH0943216A JP22693895A JP22693895A JPH0943216A JP H0943216 A JPH0943216 A JP H0943216A JP 22693895 A JP22693895 A JP 22693895A JP 22693895 A JP22693895 A JP 22693895A JP H0943216 A JPH0943216 A JP H0943216A
Authority
JP
Japan
Prior art keywords
gas
sample
pressure
solenoid valve
analysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22693895A
Other languages
Japanese (ja)
Other versions
JP3132542B2 (en
Inventor
Shigeru Toshida
茂 土信田
Hisashi Maruyama
久 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SANBI TEX KK
Original Assignee
SANBI TEX KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SANBI TEX KK filed Critical SANBI TEX KK
Priority to JP07226938A priority Critical patent/JP3132542B2/en
Publication of JPH0943216A publication Critical patent/JPH0943216A/en
Application granted granted Critical
Publication of JP3132542B2 publication Critical patent/JP3132542B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an analyzing gas intake circuit which can directly connect to a process line or a sample vessel to be measured and send the gas in a necessary small amount to the separation pipe of a gas chromatography analyzer without changing sample composition ratio in equilibrium state to measure the compositions of azeotropic mixture liquified gas and enables correcting the variation in the analyzed values due to pressure variation in the analyzing gas. SOLUTION: Provided are a solenoid valve A2 directly connected to a sample vessel, solenoid valve B4 placed by way of a liquid sealed channel, 3 sealing the sample, and an evaporation room 5 placed immediately afterward to evaporate al-l of liquid sealed sample. The circuit is constituted of a pressure sensor 7, an electrically operated flow control valve 6 which has a capability of controlling the pressure of the evaporated analyzing gas to be similar to the pressure of the carrier gas and an electric 6-way valve 8 having a switching function for sending the depressurized analyzing gas to a detection circuit.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、非共沸混合液化ガスの
組成比を測定するにあたって、混合組成比を変化させる
ことなく分析ガスをガスクロマトグラフィー分析装置等
に取り込むための回路に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a circuit for taking an analysis gas into a gas chromatography analysis device or the like without changing the mixture composition ratio when measuring the composition ratio of a non-azeotropic mixture liquefied gas. is there.

【0002】[0002]

【従来の技術】従来のガスクロマトグラフィー分析装置
への分析ガスの取り込み方法には、 a)試料を注射器などで試料気化室に注入し大気圧にガ
ス化させた後、流路抵抗可変のバイパスを持つスプリッ
ターで一定微少量の試料を分離管にキャリアーガスと共
に送る方法と、 b)試料容器と試料気化室をバルブ等によって連結し、
注射器等を用いずに試料容器から一部を直接試料気化室
に注入し大気圧にガス化させた後、上記b)と同様に分
離管に送る方法とがある。
2. Description of the Related Art A conventional method for taking an analysis gas into a gas chromatography analysis apparatus is as follows: a) A sample is injected into a sample vaporization chamber by a syringe or the like to be gasified to atmospheric pressure, and then a bypass having a variable flow path resistance is used. And a method of sending a fixed amount of a small amount of sample to a separation tube together with a carrier gas with a splitter having a
There is a method in which a part of the sample container is directly injected into the sample vaporization chamber without using a syringe or the like and gasified to atmospheric pressure, and then sent to a separation tube in the same manner as in b) above.

【0003】[0003]

【発明が解決しようとする課題】近年オゾン層保護のた
めに塩素基を持たない冷媒の開発が進行中であるが、こ
れらの代替冷媒のなかには既存の冷凍設備で従来の冷凍
能力を実現させるため、非共沸混合物であることを免れ
ないものも多い。従って、凝縮、膨張を繰り返す冷凍サ
イクルのプロセスラインから、このような非共沸混合液
化ガスを容易にサンプリングし、その組成比を正確に測
定することは冷凍機産業界においては急務の課題であ
る。しかるに前述の従来の被分析ガス取り込み方法b)
では、試料容器から試料の一部が試料気化室に取り込ま
れる瞬間に気相と液相の平衡が破れ、非共沸であるがた
め当初の混合組成比は既に変化し正確な分析値は得られ
ない。また、前述a)の方法では液体としてサンプリン
グし、この全量を気化し、その一部の微少量を分離管に
送るわけであるから当初の組成比は保たれるが、試料は
高圧ガスであり従来の注射器等は構造的に使用できな
い。使用可能な構造に改良したとしても被測定プロセス
ラインと直結しない方法では、測定の同時性からみると
利用価値が極めて減ぜられる。さらには、前述のa)、
b)いずれの方法も試料を大気圧に解放してガス化する
ため、分析ガス圧による分析出力結果の変動が見られ
る。本発明は上記の状況に鑑み、非共沸混合液化ガスの
組成比を測定するにあたって、被測定プロセスラインあ
るいは試料容器と直結でき且つ試料の当初の組成比を変
化させることなく、ガスクロマトグラフィー分析装置の
分離管へ必要微少量を送ることができ、かつ分析ガス圧
による出力変動を補正することのできる分析ガス取り込
み回路を提供しようとするものである。
In recent years, refrigerants having no chlorine group have been under development for protection of the ozone layer. Among these alternative refrigerants, existing refrigeration equipment is required to realize conventional refrigerating capacity. However, many are unavoidable as non-azeotropic mixtures. Therefore, it is an urgent task in the refrigerating machine industry to easily sample such a non-azeotropic mixed liquefied gas from a process line of a refrigeration cycle in which condensation and expansion are repeated and to accurately measure its composition ratio. . However, the above-mentioned conventional method for introducing the analyzed gas b)
However, at the moment when a part of the sample is taken from the sample container into the sample vaporization chamber, the equilibrium between the gas phase and the liquid phase is broken, and since it is non-azeotropic, the initial mixed composition ratio has already changed and an accurate analysis value can be obtained. I can't. In the method a), the liquid is sampled, the whole amount is vaporized, and a small amount of a part of the liquid is sent to the separation tube, so that the initial composition ratio is maintained, but the sample is a high-pressure gas. Conventional syringes cannot be structurally used. Even if the usable structure is improved, the method that is not directly connected to the process line to be measured greatly reduces the utility value in terms of measurement simultaneity. Furthermore, the above a),
b) In both methods, the sample is released to atmospheric pressure and gasified, so that the analysis output result varies depending on the analysis gas pressure. In view of the above situation, the present invention, when measuring the composition ratio of the non-azeotropic mixed liquefied gas, can be directly connected to the process line to be measured or the sample container and without changing the initial composition ratio of the sample, gas chromatography analysis It is an object of the present invention to provide an analysis gas intake circuit capable of sending a necessary minute amount to a separation tube of an apparatus and compensating an output fluctuation due to an analysis gas pressure.

【0004】[0004]

【課題を解決するための手段】本発明は上記の目的を達
成するために、 イ)被測定プロセスラインあるいは試料容器と直結する
電磁弁Aと試料を液封する容積V1の液封管路を介して
設けられる電磁弁Bと、 ロ)電磁弁Bの直後に設けられ、液封した容積V1の試
料を気化させる容積V2を有する気化室と、 ハ)分析ガス取り込み開始時において電磁弁Aから後述
ニ)の電動六方弁までの全管路内の残留ガスをパージす
る働きと、気化室で気化した分析ガスの圧力をキャリア
ーガスの圧力と同程度の圧力に制御する働きとを合わせ
持った電動流量調節弁および圧力センサーと、 ニ)圧力が減ぜられた分析ガスを、流量調節用スプリッ
ターと分離管および検出器等からなる検知回路に送るた
めの切り換え機能を有する電動六方弁とによって分析ガ
ス取り込み回路を構成し前述の課題を解決するものであ
る。
In order to achieve the above object, the present invention provides: (a) a solenoid valve A directly connected to a process line to be measured or a sample container, and a liquid-sealing conduit having a volume V1 for liquid-sealing a sample. And (b) a vaporization chamber that is provided immediately after the solenoid valve B and has a volume V2 for vaporizing a liquid-sealed volume V1 sample, and c) from the solenoid valve A when starting the analysis gas intake. It has a function of purging the residual gas in all the pipes up to the electric six-way valve (d), which will be described later, and a function of controlling the pressure of the analysis gas vaporized in the vaporization chamber to the same level as the pressure of the carrier gas. Separated by a motorized flow control valve and pressure sensor, and d) a motorized six-way valve having a switching function for sending the pressure-reduced analysis gas to a flow control splitter and a detection circuit consisting of a separation tube and a detector. This is to solve the above-mentioned problems by forming a deposition gas intake circuit.

【0005】[0005]

【作用と実施例】以下、図面を参照して本発明の作用と
実施例を説明する。
Operation and Embodiments The operation and embodiments of the present invention will be described below with reference to the drawings.

【図1】は本発明による分析ガス取り込み回路と動作説
明に供するために検知回路とを併せて示すものである。
分析ガス取り込み開始前は、電動六方弁(7のa乃至f
のポートは
FIG. 1 shows an analysis gas intake circuit according to the present invention and a detection circuit for explanation of operation.
Before starting the analysis gas uptake, the motorized six-way valve (7 a to f
Port of

【図1】に実線で示されるが如くab間とcd間および
ef間が連結されており、電磁弁A(2)は閉じられ電
磁弁B(4)および電動流量調節弁(6)は開放状態に
あって、電磁弁A(2)から電動流量調節弁(6)まで
が一方向が開放された流路となっている。またこの時点
で検知回路は電動六方弁(8)の連結されたポートcd
を介して、試料連結口(1)乃至電動流量調節弁(6)
で構成される取り込み回路とは独立な流路を構成してい
る。試料連結口(1)を被測定ラインあるいは試料容器
に連結した後、電磁弁A(2)を開けると、気化ガスの
圧力によって試料連結口(1)から電動流量調節弁
(6)までの流路の残留空気がパージされる。次に電磁
弁B(4)および電動流量調節弁(6)を閉じると、試
料連結口(1)と電磁弁B(4)との間は液化され平衡
状態に落ちつき、電磁弁B(4)と電動流量調節弁
(6)との間は置換された試料ガスで満たされてる。こ
のガスは既に混合組成比が変化してしまったガスであ
り、ほぼ大気圧に近い圧力にある。次に電磁弁A(2)
を閉じれば、これと電磁弁B(4)との間に連結されて
いる液封管路(3)には、被測定ラインあるいは試料容
器から電磁弁B(4)までの系全体が気相と液相が平衡
した状態にある時の液化試料が封じ込められたことにな
り、これを全量ガス化し、その一部微少量を分離管(1
0)に送れば混合組成比を変化させずに分析ガスを取り
込んだことになる。電磁弁B(4)の直後に設けられて
いる気化室(5)は液封菅(3)に封じ込められた液化
試料を気化させるためのものであって、その容積V2と
気化室を除く電磁弁B(4)から電動流量調節弁(6)
までの管路の容積VPと液封管路(3)の容積V1と、
容積V1の液化試料がキャリアーガスと同程度の圧力で
全量気化したときの容積Vとの関係は V>V1+V2+VP であり、上式の両辺の差が電動流量調節弁(6)から排
出される量である。液封管路(3)に液化試料を取り込
んだ後、電磁弁B(4)と電動流量調節弁(6)を開放
すると試料は気化室(5)で気化し、上式の関係がある
ため管路内に残留していた組成比が変化しているガスは
全てパージされる。気化室(5)と電動流量調節弁
(6)との間に設けられた圧力センサー(7)が、管路
内のガス圧がキャリアーガス圧と同程度になったことを
検知して自動的に電動流量調節弁(6)を閉じ、電動六
方弁(8)を
As shown by the solid line in FIG. 1, ab, cd and ef are connected, solenoid valve A (2) is closed and solenoid valve B (4) and electric flow control valve (6) are open. In the state, the electromagnetic valve A (2) to the electric flow rate control valve (6) is a flow path opened in one direction. Further, at this time, the detection circuit has a port cd connected to the electric six-way valve (8).
Via the sample connection port (1) to the electric flow control valve (6)
The flow path is independent of the intake circuit composed of. When the solenoid valve A (2) is opened after the sample connection port (1) is connected to the line to be measured or the sample container, the flow from the sample connection port (1) to the electric flow control valve (6) is caused by the pressure of the vaporized gas. The residual air in the tract is purged. Next, when the solenoid valve B (4) and the electric flow rate control valve (6) are closed, the sample connection port (1) and the solenoid valve B (4) are liquefied and settled in an equilibrium state, and the solenoid valve B (4) The space between the electric flow control valve (6) and the electric flow control valve (6) is filled with the replaced sample gas. This gas is a gas whose mixed composition ratio has already changed, and is at a pressure close to atmospheric pressure. Next, solenoid valve A (2)
When closed, the whole system from the line to be measured or the sample container to the solenoid valve B (4) is in the gas phase in the liquid ring conduit (3) connected between this and the solenoid valve B (4). This means that the liquefied sample when the liquid phase and the liquid phase are in equilibrium is confined, and this is completely gasified, and a small amount of it is separated into a separation tube (1
If it is sent to 0), the analysis gas is taken in without changing the mixed composition ratio. The vaporization chamber (5) provided immediately after the solenoid valve B (4) is for vaporizing the liquefied sample enclosed in the liquid sealing tube (3), and its volume V2 and the electromagnetic chamber excluding the vaporization chamber From valve B (4) to electric flow control valve (6)
The volume VP of the pipeline up to and the volume V1 of the liquid ring pipeline (3),
The relation with the volume V when the liquefied sample of volume V1 is completely vaporized at the same pressure as the carrier gas is V> V1 + V2 + VP, and the difference between both sides of the above equation is the amount discharged from the electric flow control valve (6). Is. When the solenoid valve B (4) and the electric flow rate control valve (6) are opened after the liquefied sample has been taken into the liquid-sealing pipe (3), the sample is vaporized in the vaporization chamber (5), and the above formula has the relationship. Any gas whose composition ratio has changed in the pipeline is purged. A pressure sensor (7) provided between the vaporization chamber (5) and the electric flow rate control valve (6) automatically detects when the gas pressure in the pipeline has reached the same level as the carrier gas pressure. Close the electric flow rate control valve (6) to the electric six-way valve (8)

【図1】において破線で示される連結即ち、bcとde
およびfaのポートが連結するように切り換えれば、分
析ガスはキャリアーガスと共にスプリッター(9)によ
って微少量が分岐されて分離管(10)に送られる。こ
の時の圧力センサーの出力は分析結果を正規化するとき
の補正値として利用される。
1 is a connection indicated by a broken line in FIG. 1, that is, bc and de
When the ports of and and fa are switched so as to be connected, a minute amount of the analysis gas is branched by the splitter (9) together with the carrier gas and sent to the separation tube (10). The output of the pressure sensor at this time is used as a correction value when normalizing the analysis result.

【0006】[0006]

【発明の効果】本発明の効果は次の通りである。2個の
電磁弁AおよびBの間の液封管路に、被測定ラインある
いは試料容器から平衡状態のまま液化試料を取り込むこ
とができ、これを全量ガス化した後、一部を分離管に送
ることができるため非共沸混合液化ガスの組成比を変化
させることなく正確な組成分析が可能となる。また、試
料連結口に直接被測定ラインあるいは試料容器を連結す
るだけで分析を開始することができ、何等の媒介容器を
必要としないため分析の同時性と操作の簡便性を実現し
ている。さらに分析ガス圧力を計測しているため、分析
結果を大気圧の変動による要因を除いて正規化すること
ができる。
The effects of the present invention are as follows. A liquefied sample can be taken from the line to be measured or the sample container in an equilibrium state into the liquid-sealed pipe between the two solenoid valves A and B. After completely gasifying the liquefied sample, part of it is transferred to a separation tube Since it can be sent, accurate composition analysis is possible without changing the composition ratio of the non-azeotropic mixed liquefied gas. Further, the analysis can be started only by directly connecting the line to be measured or the sample container to the sample connection port, and since no mediating container is required, the simultaneous analysis and the simplicity of the operation are realized. Further, since the analysis gas pressure is measured, the analysis result can be normalized by removing the factor due to the change in atmospheric pressure.

【0007】[0007]

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の分析ガス取り込み回路と動作説明に供
するための検知回路の回路図である。
FIG. 1 is a circuit diagram of an analysis gas intake circuit of the present invention and a detection circuit for explaining the operation.

【符号の説明】[Explanation of symbols]

1 ・・・・試料連結口 2 ・・・・電磁弁A 3 ・・・・液封管路 4 ・・・・電磁弁B 5 ・・・・気化室 6 ・・・・電動流量調節弁 7 ・・・・圧力センサー 8 ・・・・電動六方弁 9 ・・・・スプリッター 10 ・・・・分離管 1 ... Sample connection port 2 ... Solenoid valve A 3 ... Liquid sealing conduit 4 ... Solenoid valve B 5 ... Vaporization chamber 6 ... Electric flow rate control valve 7 ··· Pressure sensor 8 ··· Electric six-way valve 9 ··· Splitter 10 ··· Separation pipe

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 試料容器等に直結する電磁弁Aと試料を
液封する液封管路を介して設けられる電磁弁Bと、この
直後に設けられ液封した試料を全量気化させる気化室
と、気化した分析ガスの圧力をキャリアーガスの圧力と
同程度の圧力に制御する働き持たせた圧力センサーおよ
び電動流量調節弁と、圧力が減ぜられた分析ガスを検知
回路に送るための切り換え機能を有する電動六方弁とに
よって構成され、電磁弁および電動流量調節弁の操作に
よって試料容器等の試料を平衡状態のまま液封しこれを
全量ガス化した後一部微少量をガスクロマトグラフィー
分析装置の分離管に送ることにより、分析ガス取り込み
過程において何等組成比を変化させることなく分析する
ことが可能であって非共沸液化ガス組成分析に適合して
いることおよび分析ガス圧の変動に係わる補正能力を有
することを特徴とする分析ガス取り込み回路。
1. A solenoid valve A directly connected to a sample container and the like, a solenoid valve B provided via a liquid-sealing pipe for liquid-sealing a sample, and a vaporization chamber provided immediately after this for vaporizing the entire liquid-sealed sample. , A pressure sensor and an electric flow rate control valve that work to control the pressure of the vaporized analysis gas to the same level as the pressure of the carrier gas, and a switching function for sending the analysis gas of reduced pressure to the detection circuit And a motorized six-way valve, which is operated by a solenoid valve and a motor-operated flow control valve to liquid-seal a sample such as a sample container in an equilibrium state and completely gasify it, and then a small amount of a gas chromatographic analyzer By sending it to the separation tube of, it is possible to analyze without changing the composition ratio in the analysis gas uptake process, and it is suitable for non-azeotropic liquefied gas composition analysis. An analytical gas uptake circuit characterized by having a correction capability for fluctuations in pressure.
JP07226938A 1995-08-01 1995-08-01 Analysis gas intake circuit Expired - Fee Related JP3132542B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07226938A JP3132542B2 (en) 1995-08-01 1995-08-01 Analysis gas intake circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07226938A JP3132542B2 (en) 1995-08-01 1995-08-01 Analysis gas intake circuit

Publications (2)

Publication Number Publication Date
JPH0943216A true JPH0943216A (en) 1997-02-14
JP3132542B2 JP3132542B2 (en) 2001-02-05

Family

ID=16852967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07226938A Expired - Fee Related JP3132542B2 (en) 1995-08-01 1995-08-01 Analysis gas intake circuit

Country Status (1)

Country Link
JP (1) JP3132542B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114295616A (en) * 2022-03-11 2022-04-08 西南石油大学 Casing pipe detection equipment based on image recognition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114295616A (en) * 2022-03-11 2022-04-08 西南石油大学 Casing pipe detection equipment based on image recognition
CN114295616B (en) * 2022-03-11 2022-05-10 西南石油大学 Casing detection equipment based on image recognition

Also Published As

Publication number Publication date
JP3132542B2 (en) 2001-02-05

Similar Documents

Publication Publication Date Title
O'Brien et al. A new technique for the measurement of multicomponent gas transport through polymeric films
US20070186622A1 (en) Method and device for measurement of permeation
US5457316A (en) Method and apparatus for the detection and identification of trace gases
KR0163608B1 (en) Calibration system for ultra high purity gas analysis
US4499752A (en) Counterflow leak detector with cold trap
US7260978B2 (en) Gas chromatography/mass spectrometry system
KR20040058057A (en) Gas permeability measurement method and gas permeability measurement device
US20210364483A1 (en) Chromatographic apparatus for online enrichment of trace and ultra-trace components and method for analyzing trace and ultra-trace components using same
Halas An automatic inlet system with pneumatic changeover valves for isotope ratio mass spectrometer
JP4475447B2 (en) Apparatus and method for investigating physical properties of solid substances by inverse chromatography
CN111398495A (en) Novel trace and ultra-trace impurity component online chromatographic enrichment and analysis device
US6447575B2 (en) Method and apparatus for gas chromatography analysis of samples
US3753656A (en) Gas chromatograph
JPH04274728A (en) Method and apparatus for preliminary enrichment for analyzing minute amount of component in gas
US6063166A (en) Chromatograph having a gas storage system
Maes et al. Determination of the nitrogen gas transmission rate (N2GTR) of ethylene vinyl alcohol copolymer, using a newly developed permeation measurement system
JPH0943216A (en) Analyzing gas intake circuit
Müller et al. Analysis of C1‐and C2‐halocarbons in ambient air from remote areas using stainless steel canister sampling, cold trap injection HRGC, and a static calibration technique
KR101348540B1 (en) Outgas Analysis Apparatus Having Concentrating Device
CN114609257B (en) Gas chromatograph mass spectrometer and gas circuit control method thereof
US20230364610A1 (en) Membrane inlet for chemical analysis with sample degassing
JPH0291564A (en) Head space sampler
RU1777074C (en) Method of chromatographic analysis by means of compound column
SU661333A1 (en) Method of determining sorption properties of adsorbents
JP2874307B2 (en) Calibration method of process gas chromatograph

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees