JP3132542B2 - Analysis gas intake circuit - Google Patents

Analysis gas intake circuit

Info

Publication number
JP3132542B2
JP3132542B2 JP07226938A JP22693895A JP3132542B2 JP 3132542 B2 JP3132542 B2 JP 3132542B2 JP 07226938 A JP07226938 A JP 07226938A JP 22693895 A JP22693895 A JP 22693895A JP 3132542 B2 JP3132542 B2 JP 3132542B2
Authority
JP
Japan
Prior art keywords
sample
gas
analysis
liquid
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07226938A
Other languages
Japanese (ja)
Other versions
JPH0943216A (en
Inventor
茂 土信田
久 丸山
Original Assignee
株式会社三美テックス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社三美テックス filed Critical 株式会社三美テックス
Priority to JP07226938A priority Critical patent/JP3132542B2/en
Publication of JPH0943216A publication Critical patent/JPH0943216A/en
Application granted granted Critical
Publication of JP3132542B2 publication Critical patent/JP3132542B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、非共沸混合液化ガスの
組成比を測定するにあたって、混合組成比を変化させる
ことなく分析ガスをガスクロマトグラフィー分析装置等
に取り込むための回路に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a circuit for taking an analysis gas into a gas chromatography analyzer without changing the composition ratio when measuring the composition ratio of a non-azeotropic mixed liquefied gas. is there.

【0002】[0002]

【従来の技術】従来のガスクロマトグラフィー分析装置
への分析ガスの取り込み方法には、 a)試料を注射器などで試料気化室に注入し大気圧にガ
ス化させた後、流路抵抗可変のバイパスを持つスプリッ
ターで一定微少量の試料を分離管にキャリアーガスと共
に送る方法と、 b)試料容器と試料気化室をバルブ等によって連結し、
注射器等を用いずに試料容器から一部を直接試料気化室
に注入し大気圧にガス化させた後、上記b)と同様に分
離管に送る方法とがある。
2. Description of the Related Art Conventional methods for taking an analysis gas into a gas chromatography analyzer include the following: a) A sample is injected into a sample vaporization chamber with a syringe or the like and gasified to atmospheric pressure, and then a bypass having a variable flow path resistance is used. A method in which a small amount of a sample is sent together with a carrier gas to a separation tube by a splitter having: b) a sample container and a sample vaporization chamber are connected by a valve or the like,
There is a method in which a part is directly injected from a sample container into a sample vaporization chamber without using a syringe or the like, gasified to atmospheric pressure, and then sent to a separation tube as in the above b).

【0003】[0003]

【発明が解決しようとする課題】近年オゾン層保護のた
めに塩素基を持たない冷媒の開発が進行中であるが、こ
れらの代替冷媒のなかには既存の冷凍設備で従来の冷凍
能力を実現させるため、非共沸混合物であることを免れ
ないものも多い。従って、凝縮、膨張を繰り返す冷凍サ
イクルのプロセスラインから、このような非共沸混合液
化ガスを容易にサンプリングし、その組成比を正確に測
定することは冷凍機産業界においては急務の課題であ
る。しかるに前述の従来の被分析ガス取り込み方法b)
では、試料容器から試料の一部が試料気化室に取り込ま
れる瞬間に気相と液相の平衡が破れ、非共沸であるがた
め当初の混合組成比は既に変化し正確な分析値は得られ
ない。また、前述a)の方法では液体としてサンプリン
グし、この全量を気化し、その一部の微少量を分離管に
送るわけであるから当初の組成比は保たれるが、試料は
高圧ガスであり従来の注射器等は構造的に使用できな
い。使用可能な構造に改良したとしても被測定プロセス
ラインと直結しない方法では、測定の同時性からみると
利用価値が極めて減ぜられる。さらには、前述のa)、
b)いずれの方法も試料を大気圧に解放してガス化する
ため、分析ガス圧による分析出力結果の変動が見られ
る。本発明は上記の状況に鑑み、非共沸混合液化ガスの
組成比を測定するにあたって、被測定プロセスラインあ
るいは試料容器と直結でき且つ試料の当初の組成比を変
化させることなく、ガスクロマトグラフィー分析装置の
分離管へ必要微少量を送ることができ、かつ分析ガス圧
による出力変動を補正することのできる分析ガス取り込
み回路を提供しようとするものである。
In recent years, refrigerants having no chlorine group have been developed for the protection of the ozone layer. Among these refrigerants, there are some existing refrigeration facilities for realizing the conventional refrigeration capacity. Many are unavoidable as non-azeotropic mixtures. Therefore, it is an urgent task in the refrigerating machine industry to easily sample such a non-azeotropic mixed liquefied gas from the process line of a refrigeration cycle in which condensation and expansion are repeated, and accurately measure the composition ratio. . However, the above-mentioned conventional method for capturing an analyte gas b)
At the moment when a part of the sample is taken from the sample container into the sample vaporization chamber, the equilibrium between the gas phase and the liquid phase is broken, and since it is non-azeotropic, the initial mixture composition ratio has already changed and accurate analytical values can be obtained. I can't. In the method a), the sample is sampled as a liquid, the whole amount is vaporized, and a small amount of a part of the sample is sent to the separation tube. Therefore, the initial composition ratio is maintained, but the sample is a high-pressure gas. Conventional syringes cannot be used structurally. In a method that is not directly connected to the process line to be measured even if the structure is improved to a usable structure, the utility value is extremely reduced in view of the simultaneity of measurement. Further, the above a),
b) In either method, the sample is released to the atmospheric pressure and gasified, so that the analysis output result varies depending on the analysis gas pressure. In view of the above situation, the present invention provides a method for measuring the composition ratio of a non-azeotropic mixed liquefied gas, which can be directly connected to a process line to be measured or a sample container, and does not change the initial composition ratio of the sample. It is an object of the present invention to provide an analysis gas take-in circuit which can send a required minute amount to a separation pipe of an apparatus and can correct output fluctuation due to analysis gas pressure.

【0004】[0004]

【課題を解決するための手段】本発明は上記の目的を達
成するために、 イ)被測定プロセスラインあるいは試料容器と直結する
電磁弁Aと試料を液封する容積V1の液封管路を介して
設けられる電磁弁Bと、 ロ)電磁弁Bの直後に設けられ、液封した容積V1の試
料を気化させる容積V2を有する気化室と、 ハ)分析ガス取り込み開始時において電磁弁Aから後述
ニ)の電動六方弁までの全管路内の残留ガスをパージす
る働きと、気化室で気化した分析ガスの圧力をキャリア
ーガスの圧力と同程度の圧力に制御する働きとを合わせ
持った電動流量調節弁および圧力センサーと、 ニ)圧力が減ぜられた分析ガスを、流量調節用スプリッ
ターと分離管および検出器等からなる検知回路に送るた
めの切り換え機能を有する電動六方弁とによって分析ガ
ス取り込み回路を構成し前述の課題を解決するものであ
る。
In order to achieve the above object, the present invention provides: a) a solenoid valve A directly connected to a process line to be measured or a sample container, and a liquid sealing pipe having a volume V1 for liquid sealing a sample. B) a vaporization chamber provided immediately after the solenoid valve B and having a volume V2 for vaporizing a liquid-sealed volume V1 sample; c) a solenoid valve A at the start of analysis gas intake It has the function of purging the residual gas in all the lines up to the electric six-way valve and the function of controlling the pressure of the analysis gas vaporized in the vaporization chamber to the same level as the pressure of the carrier gas. A) a motorized flow control valve and a pressure sensor; and d) a motorized six-way valve having a switching function for sending the pressure-reduced analysis gas to a detection circuit including a flow control splitter, a separation tube, and a detector. An object of the present invention is to provide a gas analysis circuit for solving the above-mentioned problems.

【0005】[0005]

【作用と実施例】以下、図面を参照して本発明の作用と
実施例を説明する。
The operation and embodiment of the present invention will be described below with reference to the drawings.

【図1】は本発明による分析ガス取り込み回路と動作説
明に供するために検知回路とを併せて示すものである。
分析ガス取り込み開始前は、電動六方弁(7のa乃至f
のポートは
FIG. 1 shows an analysis gas take-in circuit according to the present invention and a detection circuit in order to explain the operation.
Before the start of analysis gas intake, the electric six-way valve (7 a to f)
The port is

【図1】に実線で示されるが如くab間とcd間および
ef間が連結されており、電磁弁A(2)は閉じられ電
磁弁B(4)および電動流量調節弁(6)は開放状態に
あって、電磁弁A(2)から電動流量調節弁(6)まで
が一方向が開放された流路となっている。またこの時点
で検知回路は電動六方弁(8)の連結されたポートcd
を介して、試料連結口(1)乃至電動流量調節弁(6)
で構成される取り込み回路とは独立な流路を構成してい
る。試料連結口(1)を被測定ラインあるいは試料容器
に連結した後、電磁弁A(2)を開けると、気化ガスの
圧力によって試料連結口(1)から電動流量調節弁
(6)までの流路の残留空気がパージされる。次に電磁
弁B(4)および電動流量調節弁(6)を閉じると、試
料連結口(1)と電磁弁B(4)との間は液化され平衡
状態に落ちつき、電磁弁B(4)と電動流量調節弁
(6)との間は置換された試料ガスで満たされてる。こ
のガスは既に混合組成比が変化してしまったガスであ
り、ほぼ大気圧に近い圧力にある。次に電磁弁A(2)
を閉じれば、これと電磁弁B(4)との間に連結されて
いる液封管路(3)には、被測定ラインあるいは試料容
器から電磁弁B(4)までの系全体が気相と液相が平衡
した状態にある時の液化試料が封じ込められたことにな
り、これを全量ガス化し、その一部微少量を分離管(1
0)に送れば混合組成比を変化させずに分析ガスを取り
込んだことになる。電磁弁B(4)の直後に設けられて
いる気化室(5)は液封菅(3)に封じ込められた液化
試料を気化させるためのものであって、その容積V2と
気化室を除く電磁弁B(4)から電動流量調節弁(6)
までの管路の容積VPと液封管路(3)の容積V1と、
容積V1の液化試料がキャリアーガスと同程度の圧力で
全量気化したときの容積Vとの関係は V>V1+V2+VP であり、上式の両辺の差が電動流量調節弁(6)から排
出される量である。液封管路(3)に液化試料を取り込
んだ後、電磁弁B(4)と電動流量調節弁(6)を開放
すると試料は気化室(5)で気化し、上式の関係がある
ため管路内に残留していた組成比が変化しているガスは
全てパージされる。気化室(5)と電動流量調節弁
(6)との間に設けられた圧力センサー(7)が、管路
内のガス圧がキャリアーガス圧と同程度になったことを
検知して自動的に電動流量調節弁(6)を閉じ、電動六
方弁(8)を
As shown by a solid line in FIG. 1, the connection between ab, between cd and between ef is connected, the solenoid valve A (2) is closed, and the solenoid valve B (4) and the motorized flow control valve (6) are open. In this state, the flow path from the solenoid valve A (2) to the electric flow control valve (6) is open in one direction. At this time, the detection circuit is connected to the port cd connected to the electric six-way valve (8).
Through the sample connection port (1) to the motorized flow control valve (6)
Constitutes a flow path independent of the take-in circuit constituted by. When the solenoid valve A (2) is opened after connecting the sample connection port (1) to the line to be measured or the sample container, the flow from the sample connection port (1) to the motorized flow control valve (6) is caused by the pressure of the vaporized gas. The road is purged of residual air. Next, when the solenoid valve B (4) and the electric flow control valve (6) are closed, the space between the sample connection port (1) and the solenoid valve B (4) is liquefied and settled down to an equilibrium state, and the solenoid valve B (4) The space between the sample and the electric flow control valve (6) is filled with the replaced sample gas. This gas is a gas whose mixture composition ratio has already changed, and is at a pressure close to the atmospheric pressure. Next, the solenoid valve A (2)
When the valve is closed, the entire system from the line to be measured or the sample container to the solenoid valve B (4) is gas-phased in the liquid-sealed conduit (3) connected between the valve and the solenoid valve B (4). The liquefied sample when the liquid phase and the liquid phase are in an equilibrium state is confined.
If it is sent to 0), the analysis gas is taken in without changing the mixture composition ratio. The vaporizing chamber (5) provided immediately after the solenoid valve B (4) is for vaporizing the liquefied sample sealed in the liquid sealing tube (3), and has a volume V2 and an electromagnetic excluding the vaporizing chamber. Valve B (4) to electric flow control valve (6)
And the volume V1 of the liquid seal pipe (3),
The relationship between the volume V1 and the volume V when the liquefied sample of volume V1 is completely vaporized at the same pressure as the carrier gas is V> V1 + V2 + VP, and the difference between both sides in the above equation is the amount discharged from the electric flow control valve (6). It is. After the liquefied sample is taken into the liquid ring conduit (3), when the solenoid valve B (4) and the electric flow control valve (6) are opened, the sample is vaporized in the vaporization chamber (5), and the above equation is satisfied. Any gas having a changed composition ratio remaining in the pipeline is purged. A pressure sensor (7) provided between the vaporization chamber (5) and the motorized flow control valve (6) automatically detects when the gas pressure in the pipeline becomes almost equal to the carrier gas pressure. The motorized flow control valve (6) is closed and the motorized six-way valve (8) is closed.

【図1】において破線で示される連結即ち、bcとde
およびfaのポートが連結するように切り換えれば、分
析ガスはキャリアーガスと共にスプリッター(9)によ
って微少量が分岐されて分離管(10)に送られる。こ
の時の圧力センサーの出力は分析結果を正規化するとき
の補正値として利用される。
FIG. 1 shows the connections indicated by broken lines, ie bc and de
When the ports are switched to connect the ports of and, the analysis gas is branched by the splitter (9) together with the carrier gas and sent to the separation tube (10). The output of the pressure sensor at this time is used as a correction value when normalizing the analysis result.

【0006】[0006]

【発明の効果】本発明の効果は次の通りである。2個の
電磁弁AおよびBの間の液封管路に、被測定ラインある
いは試料容器から平衡状態のまま液化試料を取り込むこ
とができ、これを全量ガス化した後、一部を分離管に送
ることができるため非共沸混合液化ガスの組成比を変化
させることなく正確な組成分析が可能となる。また、試
料連結口に直接被測定ラインあるいは試料容器を連結す
るだけで分析を開始することができ、何等の媒介容器を
必要としないため分析の同時性と操作の簡便性を実現し
ている。さらに分析ガス圧力を計測しているため、分析
結果を大気圧の変動による要因を除いて正規化すること
ができる。
The effects of the present invention are as follows. A liquefied sample can be taken in the liquid sealing pipeline between the two solenoid valves A and B from the line to be measured or the sample container in an equilibrium state. Since it can be sent, accurate composition analysis is possible without changing the composition ratio of the non-azeotropic mixed liquefied gas. In addition, the analysis can be started only by connecting the line to be measured or the sample container directly to the sample connection port, and no intermediary container is required, realizing the simultaneity of the analysis and the simple operation. Further, since the analysis gas pressure is measured, the analysis result can be normalized excluding the factor due to the fluctuation of the atmospheric pressure.

【0007】[0007]

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の分析ガス取り込み回路と動作説明に供
するための検知回路の回路図である。
FIG. 1 is a circuit diagram of an analysis gas intake circuit of the present invention and a detection circuit for explaining the operation.

【符号の説明】[Explanation of symbols]

1 ・・・・試料連結口 2 ・・・・電磁弁A 3 ・・・・液封管路 4 ・・・・電磁弁B 5 ・・・・気化室 6 ・・・・電動流量調節弁 7 ・・・・圧力センサー 8 ・・・・電動六方弁 9 ・・・・スプリッター 10 ・・・・分離管 1 ... Sample connection port 2 ... Solenoid valve A 3 ... Liquid sealing pipeline 4 ... Solenoid valve B 5 ... Vaporization chamber 6 ... Electric flow control valve 7 ····· Pressure sensor 8 ···· Electric six-way valve 9 ··· Splitter 10 ··· Separation tube

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 試料容器等に直結する電磁弁Aと試料を
液封する液封管路を介して設けられる電磁弁Bと、この
直後に設けられ液封した試料を全量気化させる気化室
と、気化した分析ガスの圧力をキャリアーガスの圧力と
同程度の圧力に制御する働き持たせた圧力センサーおよ
び電動流量調節弁と、圧力が減ぜられた分析ガスを検知
回路に送るための切り換え機能を有する電動六方弁とに
よって構成され、電磁弁および電動流量調節弁の操作に
よって試料容器等の試料を平衡状態のまま液封しこれを
全量ガス化した後一部微少量をガスクロマトグラフィー
分析装置の分離管に送ることにより、分析ガス取り込み
過程において何等組成比を変化させることなく分析する
ことが可能であって非共沸液化ガス組成分析に適合して
いることおよび分析ガス圧の変動に係わる補正能力を有
することを特徴とする分析ガス取り込み回路。
1. An electromagnetic valve A directly connected to a sample container or the like, an electromagnetic valve B provided via a liquid-sealing conduit for liquid-sealing the sample, and a vaporization chamber provided immediately after this for evaporating the entire liquid-sealed sample. , A pressure sensor and an electric flow control valve that control the pressure of the vaporized analysis gas to the same level as the pressure of the carrier gas, and a switching function to send the pressure-reduced analysis gas to the detection circuit A liquid chromatograph comprising a liquid sample in a sample container and the like in an equilibrium state by operating an electromagnetic valve and a motorized flow rate control valve, gasifying the entire amount of the liquid, and then partially gasifying a small amount thereof. The analysis tube can be analyzed without changing any composition ratio in the process of taking in the analysis gas, and it is suitable for non-azeotropic liquefied gas composition analysis. An analysis gas take-in circuit having a correction capability for fluctuations in pressure.
JP07226938A 1995-08-01 1995-08-01 Analysis gas intake circuit Expired - Fee Related JP3132542B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07226938A JP3132542B2 (en) 1995-08-01 1995-08-01 Analysis gas intake circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07226938A JP3132542B2 (en) 1995-08-01 1995-08-01 Analysis gas intake circuit

Publications (2)

Publication Number Publication Date
JPH0943216A JPH0943216A (en) 1997-02-14
JP3132542B2 true JP3132542B2 (en) 2001-02-05

Family

ID=16852967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07226938A Expired - Fee Related JP3132542B2 (en) 1995-08-01 1995-08-01 Analysis gas intake circuit

Country Status (1)

Country Link
JP (1) JP3132542B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114295616B (en) * 2022-03-11 2022-05-10 西南石油大学 Casing detection equipment based on image recognition

Also Published As

Publication number Publication date
JPH0943216A (en) 1997-02-14

Similar Documents

Publication Publication Date Title
EP0528386B1 (en) Calibration system for ultra high purity gas analysis
US20070186622A1 (en) Method and device for measurement of permeation
EP0681182B1 (en) Instrument for measuring non-methane organic gases in gas samples
US3672207A (en) Apparatus for verifying hermeticity of small electronic assemblies
US3923461A (en) Apparatus and method employing gas-permeable membrane for separating, diluting, or concentrating molecular species
US4650499A (en) Gas chromatographic apparatus and method
US7594428B2 (en) Apparatus and method for eliminating the breakthrough peak in differential detectors
CN111337598A (en) Trace detection device
US6447575B2 (en) Method and apparatus for gas chromatography analysis of samples
US6063166A (en) Chromatograph having a gas storage system
JP4475447B2 (en) Apparatus and method for investigating physical properties of solid substances by inverse chromatography
JP3132542B2 (en) Analysis gas intake circuit
GB2391700A (en) Ion mobility spectrometer with GC column and internal regulated gas cycle
Müller et al. Analysis of C1‐and C2‐halocarbons in ambient air from remote areas using stainless steel canister sampling, cold trap injection HRGC, and a static calibration technique
Greenhouse et al. Generation of gaseous standards using exponential dilution flasks in series
JPH06167482A (en) Volatile hydrocarbon continuously automatic analyzer
CN114609257B (en) Gas chromatograph mass spectrometer and gas circuit control method thereof
JP2508749B2 (en) Gas chromatograph
JPH0291564A (en) Head space sampler
US20230364610A1 (en) Membrane inlet for chemical analysis with sample degassing
SU661333A1 (en) Method of determining sorption properties of adsorbents
SU842475A1 (en) Method and device for determination of oxygen and nitrogen concentration in a fuel
Vejrosta et al. A method for measuring infinite-dilution partition coefficients of volatile compounds between the gas and liquid phases of aqueous systems
JP2874307B2 (en) Calibration method of process gas chromatograph
JPH04166762A (en) Method for measuring adsorbable gas

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees