JPH0942740A - Operation controller for heat storage air conditioner system and operation controlling method therefor - Google Patents

Operation controller for heat storage air conditioner system and operation controlling method therefor

Info

Publication number
JPH0942740A
JPH0942740A JP7216703A JP21670395A JPH0942740A JP H0942740 A JPH0942740 A JP H0942740A JP 7216703 A JP7216703 A JP 7216703A JP 21670395 A JP21670395 A JP 21670395A JP H0942740 A JPH0942740 A JP H0942740A
Authority
JP
Japan
Prior art keywords
heat
heat storage
air conditioning
conditioning system
storage air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7216703A
Other languages
Japanese (ja)
Other versions
JP3327445B2 (en
Inventor
Osamu Kakuno
修 覚野
Wataru Osawa
亙 大澤
Noboru Makita
昇 牧田
Mitsuteru Furuya
光輝 古谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
N T T FACILITIES KK
Ebara Corp
NTT Facilities Inc
Original Assignee
N T T FACILITIES KK
Ebara Corp
NTT Facilities Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by N T T FACILITIES KK, Ebara Corp, NTT Facilities Inc filed Critical N T T FACILITIES KK
Priority to JP21670395A priority Critical patent/JP3327445B2/en
Publication of JPH0942740A publication Critical patent/JPH0942740A/en
Application granted granted Critical
Publication of JP3327445B2 publication Critical patent/JP3327445B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To eliminate the waste residue of heat storage and to take out a suitable amount of heat storage by calculating an estimated radiation possible amount by considering the radiating characteristics of a heat storage tank, comparing it with the predicted air conditioning load previously stored, and selecting the optimum operation mode of a heat storage air conditioner system based on it. SOLUTION: A radiation possible amount calculator 35 calculates radiation possible amount from the residual storage amount, brine exit temperature and temperature in tank by considering the radiation characteristics of an ice thermal storage tank stored in an ice thermal storage tank radiation characteristic memory 34. On the other hand, a thermal load predicting unit 32 predicts the thermal load based on weather conditions and past storage data. A predicted air conditioning load calculator 33 calculates predicted air conditioning load from the present time to next heat storage starting time based on the result of the unit 32. An operation mode judging unit 37 compares the calculated radiation possible amount with the predicted air conditioning load, and selects the optimum operation mode from the modes stored in an operation mode memory 36.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ビルの空調などに用い
る蓄熱空調システムの運転制御装置に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an operation control device for a heat storage air conditioning system used for air conditioning of buildings.

【0002】[0002]

【従来の技術】近年、割安な夜間電力を利用して蓄熱槽
に潜熱あるいは顕熱を利用して蓄熱し、昼間に蓄熱した
熱量を使いながら空調運転を行う蓄熱空調システムの開
発が進んでいる。この場合、充分な省エネルギー効果を
得るには、前夜に蓄えた熱を翌日完全に使いきる必要が
ある。そのように蓄熱槽からの放熱を制御する技術の一
例として、特開昭63−251743号に開示された技
術がある。これは、放熱速度が異なる複数の運転パター
ンを有する氷蓄熱空調システムにおいて、空調装置の運
転中に測定した蓄熱量と、予め設定した予測蓄熱量とを
常に比較し、負荷変動があった場合にはその変動に追従
するように運転モードを自動的に切り換えることによ
り、余剰蓄熱量の使い切りを可能にしたものである。
2. Description of the Related Art In recent years, a thermal storage air conditioning system has been developed in which heat is stored using latent heat or sensible heat in a thermal storage tank using inexpensive nighttime electric power, and air conditioning operation is performed using the amount of heat stored during the day. . In this case, in order to obtain a sufficient energy saving effect, it is necessary to completely use up the heat stored the night before on the next day. As an example of the technique for controlling the heat radiation from the heat storage tank, there is the technique disclosed in Japanese Patent Laid-Open No. 63-251743. This is because in an ice heat storage air conditioning system having a plurality of operation patterns with different heat dissipation rates, the amount of heat storage measured during operation of the air conditioner is constantly compared with the preset amount of predicted heat storage, and when there is a load change. In this system, the excess heat storage amount can be used up by automatically switching the operation mode so as to follow the fluctuation.

【0003】[0003]

【発明が解決しようとする課題】ところで、蓄熱槽にお
いては、図5に示すように、出口温度を一定としたとき
に取り出せる単位時間当たりの放熱量(放熱可能量)は
蓄熱量により異なる。従って、放熱特性を一定として単
に蓄熱槽の出口温度だけを考慮して放熱制御を行ったの
では適正な放熱制御が行えず、そのため、熱源機優先モ
ード運転時に空調負荷が小さい場合には、空調終了時に
蓄熱が無駄に残ってしまう恐れがある。そこで、本発明
は、蓄熱空調システムの制御をよりきめ細かく行って、
無駄に蓄熱が残ることがないように蓄熱量を適切に取り
出すことを目的とする。
By the way, in the heat storage tank, as shown in FIG. 5, the amount of heat released per unit time (the amount of heat that can be released) when the outlet temperature is constant varies depending on the amount of stored heat. Therefore, if the heat radiation control is performed by considering only the outlet temperature of the heat storage tank while keeping the heat radiation characteristics constant, proper heat radiation control cannot be performed.Therefore, when the air conditioning load is small during the heat source unit priority mode operation, There is a risk that the stored heat will be wasted at the end. Therefore, the present invention provides more detailed control of the heat storage air conditioning system,
The purpose is to properly extract the amount of stored heat so that the stored heat does not remain in vain.

【0004】[0004]

【課題を解決するための手段】上記目的を達成するため
の請求項1に記載の発明は、蓄熱槽と熱源機とを有する
蓄熱空調システムと、夜間に熱源機を運転して蓄熱し、
昼間にこの蓄熱を消費して空調を行うように上記蓄熱空
調システムを制御する制御装置とを有する蓄熱空調シス
テムの運転制御装置において、上記制御装置は、蓄熱槽
の放熱特性を加味して推定放熱可能量を算出し、これと
予測空調負荷とを比較し、これに基づいて蓄熱空調シス
テムの最適な運転モードを自動的に選択することを特徴
とする蓄熱空調システムの運転制御装置である。
In order to achieve the above object, the invention according to claim 1 is a heat storage air conditioning system having a heat storage tank and a heat source device, and the heat source device is operated at night to store heat.
In the operation control device of the heat storage air conditioning system having a control device that controls the heat storage air conditioning system so as to perform air conditioning by consuming this heat storage in the daytime, the control device estimates the heat radiation considering the heat radiation characteristics of the heat storage tank. An operation control device for a heat storage air-conditioning system, which calculates a possible amount, compares it with a predicted air-conditioning load, and automatically selects an optimum operation mode of the heat storage air-conditioning system based on this.

【0005】このような制御は、空調運転が開始してか
ら任意の時刻に開始することができるが、よりきめ細か
い制御を行なうためには、運転開始直後から行なうのが
望ましい。またその時間間隔も任意であるが、30分〜
1時間に1回で充分である。請求項2に記載の発明は、
上記放熱特性が、蓄熱槽の残蓄熱量に依存する特性であ
ることを特徴とする請求項1に記載の蓄熱空調システム
の運転制御装置である。
Such control can be started at any time after the air conditioning operation is started, but it is desirable to perform it immediately after the operation is started in order to perform more detailed control. The time interval is also arbitrary, but from 30 minutes
Once an hour is sufficient. The invention according to claim 2 is
The operation control device of the heat storage air conditioning system according to claim 1, wherein the heat radiation characteristic is a characteristic that depends on a residual heat storage amount of the heat storage tank.

【0006】請求項3に記載の発明は、運転モードとし
て熱源機より放熱運転を優先的に運転する放熱優先モー
ドと放熱運転より熱源機を優先的に運転する熱源機優先
モードの少なくとも2つを有することを特徴とする請求
項1又は2に記載の蓄熱空調システムの運転制御装置で
ある。請求項4に記載の発明は、上記の比較判断を繰り
返し行なうことを特徴とする請求項1ないし3のいずれ
かに記載の蓄熱空調システムの運転制御装置である。請
求項5に記載の発明は、上記の比較判断をある設定時刻
以降に行なうことを特徴とする請求項1ないし4のいず
れかに記載の蓄熱空調システムの運転制御装置である。
設定時刻は、空調が行われる施設の条件に応じて適宜に
選択され、例えば冷房負荷が大幅に減少する終業時刻な
どが採用される。
According to a third aspect of the present invention, at least two operation modes are provided: a heat dissipation priority mode in which heat dissipation operation is preferentially performed over the heat source machine, and a heat source machine priority mode in which heat dissipation machine is preferentially operated over heat dissipation operation. It is an operation control device of the heat storage air conditioning system according to claim 1 or 2 characterized by the above. The invention according to claim 4 is the operation control device for a heat storage air-conditioning system according to any one of claims 1 to 3, characterized in that the above-mentioned comparison determination is repeatedly performed. The invention according to claim 5 is the operation control device for a heat storage air conditioning system according to any one of claims 1 to 4, wherein the comparison determination is performed after a certain set time.
The set time is appropriately selected according to the condition of the facility where the air conditioning is performed, and for example, the closing time when the cooling load is significantly reduced is adopted.

【0007】請求項6に記載の発明は、夜間に熱源機を
運転して蓄熱槽に蓄熱し、昼間にこの蓄熱を消費して空
調を行うように蓄熱空調システムを制御する蓄熱空調シ
ステムの運転制御方法において、蓄熱槽の放熱特性を加
味して推定放熱可能量を算出し、これと予め記憶された
予測空調負荷とを比較し、これに基づいて蓄熱空調シス
テムの最適な運転モードを選択する工程を有することを
特徴とする蓄熱空調システムの運転制御方法である。
According to a sixth aspect of the present invention, the heat storage air conditioning system is controlled so that the heat source device is operated at night to store heat in the heat storage tank and the heat storage air conditioning system is controlled to consume the heat storage during the daytime to perform air conditioning. In the control method, the estimated heat dissipation possible amount is calculated in consideration of the heat dissipation characteristics of the heat storage tank, and this is compared with the predicted air conditioning load stored in advance, and the optimum operation mode of the heat storage air conditioning system is selected based on this. It is an operation control method of a heat storage air conditioning system characterized by having a process.

【0008】[0008]

【作用】この発明においては、蓄熱槽の例えば残蓄熱量
に依存する放熱特性を加味して推定放熱可能量を算出
し、これと予測空調負荷とを比較し、これに基づいて蓄
熱空調システムの最適な運転モードを自動的に選択する
ので、蓄熱槽の放熱特性を考慮したよりきめ細かい運転
制御が行われる。
According to the present invention, the estimated heat radiation amount is calculated by taking into consideration the heat radiation characteristic of the heat storage tank, which depends on, for example, the remaining heat storage amount, and this is compared with the predicted air conditioning load. Since the optimum operation mode is automatically selected, more detailed operation control is performed in consideration of the heat radiation characteristics of the heat storage tank.

【0009】従って、例えば事務所などの終業時刻以降
において冷房負荷が急減するときでも、現状の残蓄量か
ら蓄熱槽の放熱特性を加味して算出した単位時間当たり
の放熱できる熱量(放熱可能量)と、熱負荷予測から算
出した現時刻から1時間の冷房負荷(予測冷房負荷)と
を比較し、現状の残蓄量で今後1時間の冷房負荷を賄え
ると判断された場合には、運転モードを放熱優先モード
に自動的に切り換えて、無駄に蓄熱が残らないようにす
る。
Therefore, for example, even when the cooling load suddenly decreases after the end of work hours in an office or the like, the amount of heat that can be radiated per unit time (the amount of heat that can be radiated) calculated from the current remaining storage amount taking into account the heat radiation characteristics of the heat storage tank. ) And the cooling load for one hour from the current time calculated from the heat load prediction (predicted cooling load), and if it is determined that the current remaining storage amount can cover the cooling load for the next one hour, The mode is automatically switched to the heat dissipation priority mode to prevent wasteful accumulation of heat.

【0010】[0010]

【実施例】図1は、本発明の一実施例の氷蓄熱空調シス
テムSを示すものである。本システムの構成は、大きく
分けてブライン系と水系に分かれる。ブライン系は主に
蓄熱槽1、主熱源機(冷凍機)2、主熱源機にブライン
を循環させるためのブラインポンプ3、蓄熱槽からの放
熱運転を行うための放熱用ブラインポンプ4,5及び温
度調整を行うための三方弁6で構成されている。水系
は、補助熱源機(冷却機)7,8、補助熱源機に水を循
環させるための冷水ポンプ9,10で構成されている。
また、放熱運転及び主熱源機の追いかけ運転時に、水と
ブラインを熱交換するための水−ブライン熱交換機1
1,12、水−ブライン熱交換機に水を循環させるため
の2次側熱交ポンプ13,14で構成されている。
1 shows an ice heat storage air conditioning system S according to an embodiment of the present invention. The configuration of this system is roughly divided into brine system and water system. The brine system mainly includes a heat storage tank 1, a main heat source device (refrigerator) 2, a brine pump 3 for circulating brine in the main heat source device, and heat radiation brine pumps 4, 5 for performing heat radiation operation from the heat storage tank. It is composed of a three-way valve 6 for adjusting the temperature. The water system is composed of auxiliary heat source devices (coolers) 7 and 8 and cold water pumps 9 and 10 for circulating water in the auxiliary heat source devices.
A water-brine heat exchanger 1 for exchanging heat between water and brine during heat dissipation operation and chasing operation of the main heat source machine.
1, 12 and secondary side heat exchange pumps 13 and 14 for circulating water in the water-brine heat exchanger.

【0011】図2は、氷蓄熱空調システムSの制御装置
の構成を示すもので、各種データの記憶及び演算を行う
ためのパーソナルコンピュータ21と、検出装置22、
23からなっている。
FIG. 2 shows the configuration of the control device of the ice heat storage air conditioning system S, which includes a personal computer 21 for storing and calculating various data, and a detecting device 22,
It consists of 23.

【0012】この氷蓄熱槽1は内融式と呼ばれるもので
あり、図3に示すように蓄熱時は熱交換器11,12内
の水24に囲まれたチューブ25内に冷たいブライン2
6を流すことにより、チューブ25の外表面に氷27を
生成し、放熱時はチューブ25内に温かいブライン26
を流すことによりチューブ25外表面の氷27を融解す
るものである。氷蓄熱槽1には、現状の残蓄量を検出す
るための残蓄量検出装置22及び温度検出装置23が設
けられ、これらの出力端子はパソコン21に接続されて
いる。
This ice heat storage tank 1 is called an internal melting type, and as shown in FIG. 3, during storage of heat, a cold brine 2 is placed in a tube 25 surrounded by water 24 in the heat exchangers 11 and 12.
6 flows to generate ice 27 on the outer surface of the tube 25, and when heat is dissipated, warm brine 26
The ice 27 on the outer surface of the tube 25 is melted by flowing the water. The ice heat storage tank 1 is provided with a remaining amount detecting device 22 and a temperature detecting device 23 for detecting the current remaining amount, and these output terminals are connected to the personal computer 21.

【0013】パソコン21には、キーボード部30から
入力された制御開始時刻を記憶する開始時刻記憶部3
1、気象条件や過去の蓄積データなどを基に熱負荷予測
を行う熱負荷予測部32、熱負荷予測部32の結果に基
づいて単位時間当たりの予測空調負荷を算出する予測空
調負荷算出部33、氷蓄熱槽の放熱特性を記憶する氷蓄
熱槽放熱特性記憶部34、残蓄量及び氷蓄熱槽の放熱特
性から単位時間当たりの放熱量を算出する放熱可能量算
出部35、複数の運転モードを記憶するための運転モー
ド記憶部36、放熱可能量と予測空調負荷との比較判断
から運転モードを決定する運転モード判断部37を備え
ている。運転モード記憶部36に記憶されている運転モ
ードは、この実施例では、図4に示すように、冷凍機よ
り氷放熱を優先的に運転する氷放熱優先モード及び氷放
熱より冷凍機を優先的に運転する冷凍機優先モードがあ
る。
The personal computer 21 has a start time storage unit 3 for storing the control start time input from the keyboard unit 30.
1. A heat load predicting unit 32 that predicts a heat load based on meteorological conditions and past accumulated data, and a predictive air conditioning load calculating unit 33 that calculates a predicted air conditioning load per unit time based on the result of the heat load predicting unit 32. An ice heat storage tank heat radiation characteristic storage unit 34 that stores the heat radiation characteristic of the ice heat storage tank, a heat radiation possible amount calculation unit 35 that calculates the heat radiation amount per unit time from the remaining storage amount and the heat radiation characteristic of the ice heat storage tank, and a plurality of operation modes Is provided with an operation mode storage unit 36 for storing, and an operation mode determination unit 37 for determining the operation mode based on the comparison judgment of the heat radiation possible amount and the predicted air conditioning load. In this embodiment, the operation mode stored in the operation mode storage unit 36 is, as shown in FIG. 4, an ice heat dissipation priority mode in which ice heat dissipation is preferentially operated over a refrigerator and a refrigerator is prioritized over ice heat dissipation. There is a refrigerator priority mode to operate in.

【0014】本発明の特徴は放熱制御を行う際、氷放熱
槽放熱特性記憶部34に記憶された蓄熱槽の放熱特性を
用いることである。以下に、その放熱特性を加味した単
位時間当たりの放熱可能量の算出方法について説明す
る。氷蓄熱槽の交換熱量〔Q〕は次の式で表わされる。 ここにおいて、 U:熱通過率(kcal/m2 ・h・
℃) A:氷蓄熱槽内熱交換器の伝熱面積(外表面積)
(m2 ) ΔT:対数平均温度差(℃) T0 :槽内温度(℃) T1 :ブライン入口温度(℃) T2 :ブライン出口温度(℃) ここで、Aはチューブの外径及び長さから、またT0
1 ,T2 は測温抵抗体から容易に求めることができ
る。従って、熱通過率Uを算出することにより、氷蓄熱
槽の交換熱量、つまり放熱可能量を算出できる。
A feature of the present invention is to use the heat radiation characteristics of the heat storage tank stored in the ice heat radiation tank heat radiation characteristic storage unit 34 when performing heat radiation control. Below, a method of calculating the heat radiation possible amount per unit time in consideration of the heat radiation characteristics will be described. The heat exchange amount [Q] of the ice heat storage tank is expressed by the following equation. Where, U: heat transfer rate (kcal / m 2 · h ·
℃) A: Heat transfer area (outer surface area) of the heat exchanger in the ice storage tank
(M 2 ) ΔT: Logarithmic mean temperature difference (° C) T 0 : Temperature in tank (° C) T 1 : Brine inlet temperature (° C) T 2 : Brine outlet temperature (° C) where A is the outer diameter of the tube and From the length again, T 0 ,
T 1 and T 2 can be easily obtained from the resistance temperature detector. Therefore, the heat exchange rate U can be calculated to calculate the amount of heat exchanged in the ice storage tank, that is, the amount of heat that can be dissipated.

【0015】次に、熱通過率Uの算出方法について説明
する。熱通過率Uは、一般的に次式で表わされる。 αi :管内(ブライン側)熱伝達率(kcal/m2 ・h・
℃) α0 :管外(水側)熱伝達率(kcal/m2 ・h・℃) Di :チューブ内径(m) D0 :チューブ外径(m) Rt :伝熱管抵抗 (kcal/m2 ・h・℃) Rs :スケール係数(kcal/m2 ・h・℃) ここで、Di ,D0 ,Rt ,Rs は定数、αi も使用範
囲内では変化は微小であり一定とする。従って、α0
算出できれば氷蓄熱槽の熱通過率Uを算出できる。
Next, a method of calculating the heat transmission rate U will be described. The heat transmission rate U is generally expressed by the following equation. α i : Heat transfer coefficient (kcal / m 2 · h ・) in the pipe (brine side)
℃) α 0 : Outer pipe (water side) heat transfer coefficient (kcal / m 2 · h · ° C) D i : Tube inner diameter (m) D 0 : Tube outer diameter (m) R t : Heat transfer tube resistance (kcal / m 2 · h · ° C) R s : Scale coefficient (kcal / m 2 · h · ° C) where D i , D 0 , R t , and R s are constants, and α i has a small change within the use range. There is a constant. Therefore, if α 0 can be calculated, the heat transmission rate U of the ice heat storage tank can be calculated.

【0016】次に、管外(水側)熱伝達率α0 の算出方
法について説明する。氷とチューブ表面との間は自然対
流伝熱であるが、4℃で比重に極値を持つ水は、その近
傍では自然対流であり、非常に特殊なものとなる。従っ
て、管外(水側)熱伝達率α0 を一般的に求めるのは難
しいが、この発明では以下の方法を採用する。
Next, a method for calculating the outside (water side) heat transfer coefficient α 0 will be described. There is natural convection heat transfer between the ice and the tube surface, but water having an extreme value in specific gravity at 4 ° C. is natural convection in the vicinity, which is very special. Therefore, it is generally difficult to determine the extra-tube (water side) heat transfer coefficient α 0 , but the present invention adopts the following method.

【0017】管外熱伝達率α0 は、一般的にチューブ管
壁の表面積、熱流束、ブライン温度・チューブ管外まわ
り温度分布に関係してくる。ここでは最大氷蓄熱量(満
蓄量)Q0 を基準にし、蓄熱量(残蓄量)Qr との比率
で氷蓄熱率Pf を定義(Pf=Qr /Q0 )し、チュー
ブ管壁と氷の間の距離の代わりにこの氷蓄熱率Pf を用
いる。そこで、熱伝達率α0 を次の実験式に示すよう
に、Pf,T1−T0 ,T2 −T0 の関数で表わす。 α0 =f(Pf ,T1 −T0 ,T2 −T0 ) このように、熱伝達率α0 は、残蓄量Qr 、槽内温度T
0 、ブライン入口温度T1、ブライン出口温度T2 の関
数であるので、前述の4つパラメータを算出すれば、氷
蓄熱の交換熱量つまり放熱可能量を算出することができ
る。これにより、図5に示すようなグラフが算出され
る。
The external heat transfer coefficient α 0 is generally related to the surface area of the tube tube wall, the heat flux, the brine temperature, and the temperature distribution around the tube tube. Here, the maximum ice heat storage amount (full storage amount) Q 0 is used as a reference, and the ice heat storage rate P f is defined as a ratio with the heat storage amount (remaining storage amount) Q r (P f = Q r / Q 0 ). This ice heat storage rate P f is used instead of the distance between the tube wall and the ice. Therefore, the heat transfer coefficient α 0 is represented by a function of P f , T 1 −T 0 , and T 2 −T 0 as shown in the following empirical formula. α 0 = f (P f , T 1 −T 0 , T 2 −T 0 ) Thus, the heat transfer coefficient α 0 is calculated by the residual amount Q r and the temperature T in the tank.
Since it is a function of 0 , the brine inlet temperature T 1 , and the brine outlet temperature T 2 , it is possible to calculate the exchange heat amount of ice storage, that is, the heat radiable amount, by calculating the above-mentioned four parameters. Thereby, the graph as shown in FIG. 5 is calculated.

【0018】次に、図6に示す制御フロー図を参照しつ
つ、上記の氷蓄熱式空調システムの運転制御装置の作用
を説明する。予めキーボード部30から、制御開始時刻
を入力しておき、制御開始時刻記憶部31に記憶する
(ステップ1)。制御開始時刻は、運転の開始時刻と同
じでも良く、夕方など冷房負荷が急減する時刻(例え
ば、営業所や事務所の終業時刻である18時)にしても
よい。制御開始時刻は更新されない限り同じである。
Next, with reference to the control flow chart shown in FIG. 6, the operation of the operation control device of the ice storage type air conditioning system will be described. The control start time is input in advance from the keyboard unit 30 and stored in the control start time storage unit 31 (step 1). The control start time may be the same as the operation start time, or may be a time when the cooling load sharply decreases, such as in the evening (for example, 18:00, which is the end time of the business office or office). The control start time is the same unless it is updated.

【0019】制御開始時刻を判断し(ステップ2)、残
蓄量検出装置22にて氷蓄熱空調システムSからの蓄熱
槽水位レベル信号より現状の残蓄量を検出し(ステップ
3)、温度検出装置23にてブライン出入口温度及び槽
内温度を算出する(ステップ4)。放熱可能量算出部3
5において、上記の残蓄量、ブライン26出入口温度及
び槽内温度から、氷蓄熱槽放熱特性記憶部34に記憶さ
れている氷蓄熱槽1の放熱特性を加味して、つまり、上
述した式に基づいて放熱可能量を算出する(ステップ
5)。
The control start time is determined (step 2), the remaining amount detecting device 22 detects the current remaining amount from the heat storage tank water level signal from the ice heat storage air conditioning system S (step 3), and the temperature is detected. The brine inlet / outlet temperature and the bath temperature are calculated by the device 23 (step 4). Heat dissipation possible amount calculation part 3
5, in consideration of the heat radiation characteristic of the ice heat storage tank 1 stored in the ice heat storage tank heat radiation characteristic storage unit 34 from the above-mentioned residual storage amount, the inlet / outlet temperature of the brine 26, and the tank temperature, that is, Based on this, the heat radiation possible amount is calculated (step 5).

【0020】一方、熱負荷予測部32において、気象条
件や過去の蓄積データなどを基に熱負荷予測を行い、予
測空調負荷算出部33では熱負荷予測部32の結果に基
づいて現時刻から次の蓄熱開始時刻までの予測空調負荷
を算出する(ステップ6)。そして、運転モード判断部
37にて、上記で算出した放熱可能量(a)と予測空調
負荷(b)とを比較して(ステップ7)、運転モード記
憶部36に記憶されている運転モードの中から最適な運
転モードを選択する(ステップ8,9)。すなわち、 (a)>(b) ならば 氷放熱優先モード (a)<(b) ならば 冷凍機優先モード を選択する。選択された運転モードは氷蓄熱空調システ
ム1へ出力される。以上の制御は制御開始時刻から蓄熱
開始時刻まで一定時間毎に行われる。
On the other hand, the heat load predicting unit 32 predicts the heat load based on the meteorological condition and past accumulated data, and the predictive air conditioning load calculating unit 33 calculates the next time from the current time based on the result of the heat load predicting unit 32. The predicted air conditioning load up to the heat storage start time is calculated (step 6). Then, the operation mode determination unit 37 compares the heat radiation possible amount (a) calculated above with the predicted air conditioning load (b) (step 7) to determine the operation mode stored in the operation mode storage unit 36. The optimum operation mode is selected from the above (steps 8 and 9). That is, if (a)> (b), the ice heat radiation priority mode is selected. If (a) <(b), the refrigerator priority mode is selected. The selected operation mode is output to the ice storage air conditioning system 1. The above control is performed at regular time intervals from the control start time to the heat storage start time.

【0021】図7は本発明の効果を説明するものであ
る。本発明による制御を行わなかった場合には、図9に
示すように、急激に負荷がなくなったときでも冷凍機が
優先的に運転され、蓄熱量が残ってしまう。一方、本発
明による制御を行った場合には、図7に示すように、負
荷変動に合わせて運転モードを切り換えることにより蓄
熱を適切に取り出すことができる。図8は、より簡単な
制御方法として、営業所や事務所の終業時刻である18
時を制御開始時刻とした場合を示している。
FIG. 7 illustrates the effect of the present invention. If the control according to the present invention is not performed, as shown in FIG. 9, the refrigerator is preferentially operated even when the load suddenly disappears, and the heat storage amount remains. On the other hand, when the control according to the present invention is performed, as shown in FIG. 7, heat storage can be appropriately taken out by switching the operation mode according to the load fluctuation. As a simpler control method, FIG.
The case where time is set as the control start time is shown.

【0022】尚、本発明が適用する空調システムは、氷
蓄熱空調システムのみならず、0℃以上あるいは以下で
凝固する蓄熱媒体による潜熱を利用したもの、あるいは
冷水蓄熱や温水蓄熱等の顕熱を利用したもの等の任意の
蓄熱空調システムに対して適用可能である。
The air conditioning system to which the present invention is applied is not limited to an ice heat storage air conditioning system, but one that utilizes latent heat from a heat storage medium that solidifies at or above 0 ° C., or sensible heat such as cold water heat storage or hot water heat storage. It can be applied to any heat storage air conditioning system such as the one used.

【0023】[0023]

【発明の効果】本発明によれば、残蓄量、ブライン出入
口温度、槽内温度等の条件に加え、蓄熱槽の放熱特性を
も考慮して算出される放熱可能量と、熱負荷予測から算
出される予想空調負荷とを比較判断し、自動的に適切な
運転モードに切り換えることにより、蓄熱量を適切に取
り出すので、氷蓄熱空調システムをよりきめ細かく制御
して、蓄熱を有効に活用した空調システムを構築するこ
とができ、空調設備のランニングコストを大幅に軽減す
ることができる。
EFFECTS OF THE INVENTION According to the present invention, in addition to the conditions such as residual storage amount, brine inlet / outlet temperature, tank temperature, etc., the heat dissipation amount calculated in consideration of the heat dissipation characteristics of the heat storage tank and the heat load prediction By comparing the estimated expected air-conditioning load and automatically switching to an appropriate operation mode, the amount of heat storage is extracted appropriately, so the ice storage air-conditioning system is controlled more finely and air conditioning that effectively utilizes heat storage. The system can be constructed and the running cost of the air conditioning equipment can be greatly reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例の蓄熱システムの全体構成
を示すブロック図である。
FIG. 1 is a block diagram showing an overall configuration of a heat storage system according to an embodiment of the present invention.

【図2】この発明の一実施例の蓄熱システムの制御装置
の全体構成を示すブロック図である。
FIG. 2 is a block diagram showing the overall configuration of a heat storage system controller according to an embodiment of the present invention.

【図3】氷蓄熱槽の要部の構造を示す断面図である。FIG. 3 is a sectional view showing a structure of a main part of an ice heat storage tank.

【図4】本発明の一実施例の運転制御装置における運転
モードを示すグラフである。
FIG. 4 is a graph showing an operation mode in the operation control device according to the embodiment of the present invention.

【図5】蓄熱量と放熱可能量の関係を示すグラフであ
る。
FIG. 5 is a graph showing a relationship between a heat storage amount and a heat dissipation possible amount.

【図6】運転制御装置の制御のフロー図である。FIG. 6 is a flow chart of control of the operation control device.

【図7】本発明による運転制御装置の効果を示すグラフ
である。
FIG. 7 is a graph showing effects of the operation control device according to the present invention.

【図8】本発明による運転制御装置の効果を示すグラフ
である。
FIG. 8 is a graph showing effects of the operation control device according to the present invention.

【図9】従来の運転制御装置の効果を示すグラフであ
る。
FIG. 9 is a graph showing an effect of a conventional operation control device.

【符号の説明】[Explanation of symbols]

S 氷蓄熱空調システム 1 蓄熱槽 23 制御装置(パソコン) 33 予測空調負荷部 35 放熱可能量算出部 37 運転モード判断部 S Ice heat storage air conditioning system 1 Heat storage tank 23 Control device (personal computer) 33 Predictive air conditioning load unit 35 Heat dissipation possible amount calculation unit 37 Operation mode determination unit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大澤 亙 東京都港区六本木一丁目4番33号 株式会 社エヌ・ティ・ティファシリティーズ内 (72)発明者 牧田 昇 東京都大田区羽田旭町11番1号 株式会社 荏原製作所内 (72)発明者 古谷 光輝 東京都大田区羽田旭町11番1号 株式会社 荏原製作所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yasushi Osawa 1-33, Roppongi, Minato-ku, Tokyo Inside NTT FACILITIES INC. (72) Inventor Noboru Makita 11 Asahi-cho, Haneda, Ota-ku, Tokyo No. 1 in EBARA CORPORATION (72) Inventor Mitsuteru Furuya 11-1 Haneda Asahi-cho, Ota-ku, Tokyo Inside EBARA CORPORATION

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 蓄熱槽と熱源機とを有する蓄熱空調シス
テムと、 夜間に熱源機を運転して蓄熱し、昼間にこの蓄熱を消費
して空調を行うように上記蓄熱空調システムを制御する
制御装置とを有する蓄熱空調システムの運転制御装置に
おいて、 上記制御装置は、蓄熱槽の放熱特性を加味して推定放熱
可能量を算出し、これと予め記憶された予測空調負荷と
を比較し、これに基づいて蓄熱空調システムの最適な運
転モードを自動的に選択することを特徴とする蓄熱空調
システムの運転制御装置。
1. A heat storage air conditioning system having a heat storage tank and a heat source device, and a control for controlling the heat storage air conditioning system such that the heat source device is operated at night to store heat, and this heat storage is consumed during the daytime to perform air conditioning. In the operation control device of the heat storage air conditioning system having a device, the control device calculates the estimated heat dissipation possible amount in consideration of the heat dissipation characteristics of the heat storage tank, and compares this with a pre-stored predicted air conditioning load, An operation control device for a heat storage air conditioning system, which automatically selects an optimum operation mode of the heat storage air conditioning system based on the above.
【請求項2】 上記放熱特性は、蓄熱槽の残蓄熱量に依
存する特性であることを特徴とする請求項1に記載の蓄
熱空調システムの運転制御装置。
2. The operation control device for a heat storage air conditioning system according to claim 1, wherein the heat radiation characteristic is a characteristic that depends on a residual heat storage amount of the heat storage tank.
【請求項3】 運転モードとして熱源機より放熱運転を
優先的に運転する放熱優先モードと放熱運転より熱源機
を優先的に運転する熱源機優先モードの少なくとも2つ
を有することを特徴とする請求項1又は2に記載の蓄熱
空調システムの運転制御装置。
3. The operation mode has at least two of a heat dissipation priority mode in which heat dissipation operation is prioritized over heat source equipment, and a heat source equipment priority mode in which heat dissipation equipment is operated preferentially over heat dissipation operation. Item 3. An operation control device for a heat storage air conditioning system according to item 1 or 2.
【請求項4】 上記の比較判断を繰り返し行なうことを
特徴とする請求項1ないし3のいずれかに記載の蓄熱空
調システムの運転制御装置。
4. The operation control device for a heat storage air conditioning system according to claim 1, wherein the comparison and judgment are repeated.
【請求項5】 上記の比較判断をある設定時刻以降に行
なうことを特徴とする請求項1ないし4のいずれかに記
載の蓄熱空調システムの運転制御装置。
5. The operation control device for a heat storage air conditioning system according to claim 1, wherein the comparison judgment is performed after a certain set time.
【請求項6】 夜間に熱源機を運転して蓄熱槽に蓄熱
し、昼間にこの蓄熱を消費して空調を行うように蓄熱空
調システムを制御する蓄熱空調システムの運転制御方法
において、 蓄熱槽の放熱特性を加味して推定放熱可能量を算出し、
これと予め記憶された予測空調負荷とを比較し、これに
基づいて蓄熱空調システムの最適な運転モードを選択す
る工程を有することを特徴とする蓄熱空調システムの運
転制御方法。
6. A heat storage air conditioning system operation control method for controlling a heat storage air conditioning system such that a heat source device is operated at night to store heat in the heat storage tank and this heat storage is consumed during the daytime to perform air conditioning. Calculate the estimated heat dissipation possible considering the heat dissipation characteristics,
An operation control method for a heat storage air conditioning system, comprising a step of comparing this with a predicted air conditioning load stored in advance and selecting an optimum operation mode of the heat storage air conditioning system based on this.
JP21670395A 1995-08-02 1995-08-02 Operation control device and operation control method for heat storage air conditioning system Expired - Lifetime JP3327445B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21670395A JP3327445B2 (en) 1995-08-02 1995-08-02 Operation control device and operation control method for heat storage air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21670395A JP3327445B2 (en) 1995-08-02 1995-08-02 Operation control device and operation control method for heat storage air conditioning system

Publications (2)

Publication Number Publication Date
JPH0942740A true JPH0942740A (en) 1997-02-14
JP3327445B2 JP3327445B2 (en) 2002-09-24

Family

ID=16692604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21670395A Expired - Lifetime JP3327445B2 (en) 1995-08-02 1995-08-02 Operation control device and operation control method for heat storage air conditioning system

Country Status (1)

Country Link
JP (1) JP3327445B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013124819A (en) * 2011-12-15 2013-06-24 Shimizu Corp Air-conditioning operation control system
CN108361885A (en) * 2018-01-30 2018-08-03 深圳市奥宇节能技术股份有限公司 A kind of ice-chilling air conditioning system dynamic programming method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013124819A (en) * 2011-12-15 2013-06-24 Shimizu Corp Air-conditioning operation control system
CN108361885A (en) * 2018-01-30 2018-08-03 深圳市奥宇节能技术股份有限公司 A kind of ice-chilling air conditioning system dynamic programming method

Also Published As

Publication number Publication date
JP3327445B2 (en) 2002-09-24

Similar Documents

Publication Publication Date Title
KR100363823B1 (en) Ice heat storage cooling unit
EP3024107B1 (en) A method for operating at least one distributed energy ressource comprising a refrigeration system
WO2022242166A1 (en) Heat storage control method for heat-storage air conditioner fan, and heat-storage air conditioner fan and storage medium
KR101571806B1 (en) Self-operating Optimal Control Method for Air Conditioning System
JP4692180B2 (en) Heat pump water heater
JP4525744B2 (en) Operation control device for hot water storage type water heater
JPH0942740A (en) Operation controller for heat storage air conditioner system and operation controlling method therefor
JP2003130494A (en) Air conditioning system utilizing underground heat exchanger, and operating method for the same
JPH0942741A (en) Operation controller for heat storage air conditioner system
JPH09189444A (en) Ice-heat accumulation type air conditioner
JPH09264583A (en) Heat storage air conditioning system and its residual storage amount determining method
JP6906164B2 (en) Cogeneration system and its operation method
JP6184880B2 (en) Solar solar heat utilization system control device, solar solar heat utilization system, and solar solar heat utilization system control method
JP2005321852A (en) Heat load prediction control system
JP3304265B2 (en) Operation control method of ice storage type air conditioner
JPH0835708A (en) Ice cold heat storage type refrigerator unit and operating method therefor
JP2921667B2 (en) Ice heat storage control device
JP3217113B2 (en) Thermal storage operation method for thermal storage tank
JP2018159526A (en) Hot water supply system
JP2509618B2 (en) Operation control method for heat storage air conditioner
JPH0391633A (en) Thermal accumulation type heat source device and thermal accumulating amount control method
JP2577141B2 (en) Heat storage type heat source device and its peak cut control method
JPH1123037A (en) Regenerative air conditioner
JPH07133945A (en) Operation of ice storage type apparatus
JP2007232277A (en) Personal heat storage air-conditioning device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080712

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080712

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090712

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090712

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100712

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110712

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110712

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120712

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120712

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130712

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term